
FaaS-Profiler:
Serverless Tracing and Profiling

Bachelor Thesis

Malte Wächter

October 05, 2022

Advisors: Prof. Dr. Torsten Hoefler, Marcin Copik

Department of Computer Science, ETH Zürich

Abstract

Serverless computing or Function-as-a-Service is an emerging and
promising cloud execution model. The critical difference between
Function-as-a-Service versus a traditional cloud execution method is
that applications are broken down into smaller stateless functions that
interact with each other driven by results, and the executing infras-
tructure is abstracted away for ease of use. In this process, the ability
to collect performance metrics is hampered. We present the profiling
and tracing framework FaaS-Profiler. The framework generalizes
executions in a serverless environment. It is designed with the goal of
instrumenting serverless functions without much effort, taking measure-
ments to collect metrics, and tracing functions end to end. We evaluate
our design with a concrete implementation in Python on Amazon Web
Services and Google Cloud Platform.

i

Contents

Contents iii

1 Introduction 1

2 Background 3
2.1 Serverless Computing . 3

2.1.1 Execution Environment 5
2.1.2 Deployment . 7
2.1.3 Triggers . 8

3 Related Work 11
3.1 Cloud Provider Solutions . 11

3.1.1 Amazon Webservices 11
3.1.2 Google Cloud Platform 12
3.1.3 Comparison with FaaS-Profiler 13

3.2 Research Systems . 13

4 Design 15
4.1 Profiling Format . 16

4.1.1 Function Context . 17
4.1.2 Tracing Context . 19
4.1.3 Inbound & Outbound Contexts 20
4.1.4 Record Data . 22

4.2 Instrumenter . 24
4.2.1 Instrumentation . 25
4.2.2 Payload . 25
4.2.3 Function Metrics . 26
4.2.4 Exporters . 30
4.2.5 Patching Framework . 31
4.2.6 Distributed Tracer . 33

iii

Contents

5 Implementation 41
5.1 Instrumenter for Python . 41

5.1.1 Instrumentation & Configuration 41
5.1.2 Payload . 43
5.1.3 Patchers . 45
5.1.4 Measurements . 46
5.1.5 Captures . 49
5.1.6 Exporters . 50

5.2 Visualizer and CLI . 50

6 Evaluation 53
6.1 Micro-Benchmarks . 53

6.1.1 Methodology . 53
6.1.2 No-op Function . 55
6.1.3 Functions with Tracing 56
6.1.4 Functions with Profiling 58

6.2 Applications . 63
6.2.1 Image Processing . 65
6.2.2 Quotes Event-Processing 67
6.2.3 Matrix Multiplication on AWS 70

7 Conclusion & Outlook 73

A Appendix 75
A.1 Assets . 75
A.2 Setup . 75

A.2.1 Client Deployment . 75
A.2.2 Instrumentation . 76
A.2.3 Configuration . 76
A.2.4 Environment Variable Configuration 78

A.3 Usage . 78

Bibliography 79

iv

Chapter 1

Introduction

Serverless computing or Function-as-a-Service (FaaS) is a new emerging fully-
managed cloud computing execution model. In contrast to traditional cloud
computing paradigms, FaaS platforms divide applications into independent
stateless functions that various events can trigger. The goal of the model
is to focus the user on the code without worrying about the underlying
infrastructure, which the platform provider entirely manages. All resources
required for function execution are allocated on-the-fly by the cloud plat-
form. Serverless computing thus offers the advantage of simple software
deployment, high scalability on demand, and concurrency. In addition, the
pay-as-you-go method of billing is used, so that you only have to pay for
resources that were actually used.

The complete abstraction of the underlying infrastructure has the disadvan-
tage that details about the structure remain hidden from the user and possible
code optimizations are more challenging to implement and measure their
impact. Furthermore, serverless workflows are built from the interaction of
different functions, making constructing a causal dependency between the
tasks and collecting performance values across function boundaries difficult.

In this thesis, we introduce FaaS-Profiler. FaaS-Profiler is a profiling
framework for serverless functions, with the design goal of collecting metrics
independent of programming language and cloud provider. The framework
is open and modular, allowing arbitrary measurements to be taken during
the execution of an instrumented serverless function. A concept is presented
to collect function metrics across function boundaries and reconstruct the
temporal ordering of function calls using a distributed tracer. To view and
analyze the results, an offline tool allows the user to perform user-defined
analyses and visualize data.

We first give background information on serverless computing and discuss
the execution environment, deployment, and trigger of a serverless function

1

1. Introduction

using Amazon Web Services (AWS) Lambda and Google Platform Cloud
(GCP) Functions. In Chapter 3, we introduce related work focusing on cloud
provider solutions and work from the research sector. We then introduce
the high-level design of the profiler. We detail the design, profiling format
structure, and how the distributed tracer interconnects function calls. In
Chapter 5, we offer more information about a possible implementation of
the design in Python and address specifics in its deployment in AWS and
GCP. We also show what metrics could be collected. In Chapter 6, we
present measurements performed with the profiler with different functions
and workflows and give details on the cost of the tool. We end the thesis
with a conclusion and outlook.

2

Chapter 2

Background

In this chapter, we will introduce the reader to serverless computing. We
present the different providers of serverless computing and discuss how they
are structured, how functions are deployed, and how they can be triggered.

2.1 Serverless Computing

Serverless computing is a new emerging cloud computing and deployment
model known as Function as a Service (FaaS) or Cloud Functions. Several
leading cloud providers offer to run code in a serverless environment on
their platforms. After the introduction of AWS Lambda in 2014 [2, 17],
Google Cloud Functions [37], Azure Functions [48], and the open source
platform Apache OpenWhisk [12] also followed with an implementation of
the paradigm.

Unlike other cloud computing models, applications deployed in a serverless
environment are divided into several individual functions. This allows in a
traditional environment to allocate monolithic developed applications into
fine-grained stateless functions [4]. These functions are triggered by different
events, making serverless computing an implementation of an event-driven
ideal. [54]. The functions are primarily developed separately, resulting in a
high degree of flexibility. With the help of virtualization through containers,
the individual functions are executed in an isolated environment. Therefore,
the serverless concept allows high concurrency of functions, as multiple
instances of the same functions can be activated as needed [63]. Scaling a
function according to the function’s load is usually handled automatically by
the provider.

As the name Function-as-a-Service suggests, cloud providers focus on provid-
ing the function, abstracting the management of the runtime and underlying
servers from the developer. This dramatically simplifies the provision of soft-

3

2. Background

Figure 2.1: Comparison between traditional architecture and serverless. In the serverless model,
several functions of different applications run on one physical machine. In the traditional
architecture, the entire application is run in a container on different physical servers [62].

ware and leads to the high scalability of the functions. Users of the serverless
model are also charged using the pay-as-you-go method, according to which
only the resources used need to be paid for [4]. In other words, the user does
not have to pay the components to make the server ”always-on” even if no
requests are handled. For serverless to be profitable for providers, thousands
of independent instances of functions are normally run on a physical server
[63]. This guarantees high server utilization.

The developer is left with fewer configuration options compared to traditional
models. Depending on the provider, the runtime, the timeout (i.e., the
maximum execution time), memory limit, and the size of the ephemeral
storage of a function can be selected. Billing is based on used execution time
and memory consumption.

As noted, ”serverless” does not mean an application runs without a server. It
refers much more to the fact that the management and provisioning of the
servers are absent since this is completely taken care of by the provider.

In the following subsections, we will describe the serverless execution model
in more detail by going into the execution environment, explaining how
functions can be deployed, and finally, describing how functions can be
triggered. We will focus primarily on AWS and GCP as cloud providers since
the program presented in this thesis was tested with these.

4

2.1. Serverless Computing

2.1.1 Execution Environment

Runtime AWS Lambda Google Cloud Functions

NodeJS 12, 14, 16 6, 8, 10, 12, 14, 16
Python 3.6, 3.7, 3.8, 3.9 3.7, 3.8, 3.9
Ruby 2.7 2.6, 2.7, 3.0
Java 8, 11 11, 17
Go 1.x 1.11, 1.13, 1.16
.NET Core 3.1, 6 Core 3.1
PHP - 7.4, 8.1

Table 2.1: Available runtimes and versions in Google Cloud Functions [38] and Amazon Web
Services Lambda [29]

The execution environment is the environment set up by the cloud provider
into which the serverless function is invoked. Within this environment, the
runtime environment requested for the function is initialized. Table 2.1
shows the different runtimes available in AWS and GCP. In addition to
these predefined runtimes, AWS also supports user-defined runtimes. Each
function is executed in an isolated and secure context [38, 18] and within a
container.

Environment Life Cycle Each environment has a life cycle; the cycle phases
depend on the provider. Across providers, it can be stated that the execution
environment is not destroyed directly after the function has been performed.
This ensures that the execution environment is not rebuilt entirely for subse-
quent calls of the same function.

A function call in an existing environment is also called a warm-start. In
contrast, cold-start refers to the absence of the environment. A cold-start is
always associated with higher latency because the FaaS platform must first
spin up the environment before it can execute the actual function. In the
case of AWS, the code must be downloaded first; then, the environment is
loaded with configured runtime, memory, and parameters [19]. AWS calls
this phase Init and divides it into three subphases: Extension Init, Runtime
Init, and Function Init. The first set up all third-party extensions associated
with the Lambda Function, the second load’s resources are required by the
runtime, and the latter executes the function’s static code [18]. AWS limits
the Init phase to 10 seconds.

For Cloud Function in GCP, cold-starts are described similarly; when execut-
ing a function without an existing environment, the code is first downloaded,
and the requested runtime is loaded [38].

5

2. Background

Neither AWS nor GCP indicates how long an environment is held before it
is destroyed. However, Copik et al. showed in their paper that the function
containers are kept active between 9 to 15 minutes, depending on the provider
[5].

When a new function is deployed, the next call to that function is always a
cold start [38, 18].

Listing 1 Local and global scope in Execution Environment
// Global scope

import numpy as np

def handler(*args, **kwargs)

// Local scope

pass

AWS and GCP distinguish between global and local scope in the function
code. Global scope is all the code defined outside the function handler
[38, 23]. This is loaded once per execution environment. Typically, imported
libraries are found in the global scope, so they only have to be imported once.
The local scope is the function handler reloaded on each execution. Listing 1
shows the difference using a Python function.

Summary of execution environment characteristics

Below, we will summarize the features of the Google Cloud Functions and
AWS Lambda execution environments.

AWS Lambda AWS Lambda calls the function in a secure and isolated
runtime environment. This manages all resources to execute the function. The
user is offered the possibility to choose a predefined runtime (see Table 2.1)
or to define it by a container. In the latter case, it is left to the user to decide
which operating system to use. If a predefined runtime is chosen, Lambda
uses its own Linux distribution, called ”Amazon Linux,” with preinstalled
packages 1. This supports the architectures x84 64 and arm64 [21].

A memory from 128 to 10240 MB can be allocated to a function.

The maximum configurable execution time is 900 seconds. The minimum is
3 seconds.

Lambda only allows writing access from the function to the folder /tmp. This
can be configured from 512 up to 10240 MB. This is only reset in the next init
phase.

1https://aws.amazon.com/amazon-linux-ami/2018-03-packages/

6

https://aws.amazon.com/amazon-linux-ami/2018-03-packages/

2.1. Serverless Computing

Lambda function generally has network access. Further steps are necessary
if they are part of a VPC (Virtual Private Cloud) [27].

An file system can be attached to a Lambda function using the AWS service
Elastic File System (EFS). A maximum of one file system can be connected.

An entry point can be defined that specifies where the function to be executed
in the source code is located.

Google Could Functions Google Cloud Functions entirely manages the user’s
infrastructure, operating system, and runtime. Each function runs in its
secure context, independent of other functions. Google supports the runtimes
shown in Table 2.1; custom runtimes are not supported. The operating system
is Ubuntu with pre-installed packages 2; the version may differ from runtime
to runtime.

A memory from 128MB to 8GB is allocated in discrete intervals.

The maximum execution time can be configured to 540 seconds. The mini-
mum is 1 second.

Google Cloud Function allows writing access to all folders except the function
code folder. The file system is an in-memory implementation, which means
that stored data consumes the memory allocated for the function.

Every function has access to the public internet by default.

GCP is more restrictive than AWS in choosing an entry point. The platform
forces the developer to have the method in a specific module depending on
the runtime [47].

2.1.2 Deployment

To deploy an AWS Lambda function, there is an option to use a ZIP file
or container image [25]. The first method uses a ZIP file consisting of the
complete function code plus all dependencies. Lambda does not install
any dependent package; all third-party packages must be included with
the function code in the ZIP [24]. To deploy a container image, a container
must be uploaded to ECR (Amazon Elastic Container Registry). An entry
command is specified to invoke the Lambda function inside the container.
All dependencies and the entire source code of the function must be present
in the container.

To deploy a function in Google Cloud Platform, there is only the possibility
to give the function’s source code directly. For example, the source code can
be provided by uploading a ZIP file or via a repository. The service generates

2https://cloud.google.com/functions/docs/reference/system-packages

7

https://cloud.google.com/functions/docs/reference/system-packages

2. Background

an executable image for each new deployment, automatically uploaded to the
container registry [40]. These images are generated with the help of Google
Cloud Build.

2.1.3 Triggers

A serverless function can be triggered and executed in different ways. In
most cases, the function is executed driven by an event. As execution forms,
the synchronous and asynchronous kind is available. In a synchronous
execution, the caller waits until the function has been executed, and the result
of the called function is returned. In asynchronous execution, also known as
fire-and-forget, the caller returns immediately and does not wait until the
function has been called. The triggered function will eventually be executed
in the future.

In AWS, many of the services offered by Amazon provide integration with
Lambda, so many triggering events can be configured [32, 28]. Depend-
ing on the triggering service, the function is executed asynchronously or
synchronously; AWS Lambda provides the ability to retry calls if they fail au-
tomatically [26]. A Lambda function is passed an event context following its
triggering, which can vary greatly depending on the cause. Many services3

pass a list of records to the function. The records can contain information
about the triggering event, e.g., the object key of a changed object in S3 or the
key of an entry in DynamoDB. Other call types, such as calling the function
via the SDK or the AWS API Gateway, do not contain any information about
the triggering event besides the general function payload. Amazon also
provides the ability to route events from third-party platforms to a function
via EventBridge [30].

Google Cloud Functions distinguishes between HTTP and events triggered
by other Google Cloud Services [43]. A function can be performed via Cloud
Pub/Sub, Cloud Storage, Firebase and Cloud Log. Cloud Pub/Sub is a
service to distribute messages and data and also supports the possibility
to call cloud function asynchronously [45, 13]. Event-driven calls receive
an event context as a payload. This contains various metadata about the
triggering event and information about the object in the case of cloud storage
or the message in the case of cloud pub/sub [39].

AWS StepFunctions and GCP Workflows

AWS and GCP offer the ability to orchestrate various cloud products using
workflows [34, 44]. AWS StepFunctions and GCP Workflows let users config-
ure state machines, making it easy to construct complex business logic by
connecting different serverless functions and other services. Both provide

3CloudFront, CodeCommit, DynamoDB, Kinesis, S3, SNS, SES, SQS [32]

8

2.1. Serverless Computing

simple control operations based on the state and result of previous executions,
parallel executions, error control, and human interaction within the workflow.
In the context of serverless functions, AWS StepFunctions and GCP Workflow
can be seen as independent services that automate the triggering of functions
based on states in the workflow.

9

Chapter 3

Related Work

This chapter will present existing solutions and works related to FaaS-
Profiler shown in this thesis. We will first discuss solutions that cloud
providers offer to their customers. Then, we will discuss different approaches
to solutions from the research sector.

3.1 Cloud Provider Solutions

3.1.1 Amazon Webservices

Amazon Web Services offers several ways to display metrics and traces of
a Lambda function. The essential services are AWS CloudWatch and AWS
X-Ray: The former provides a logging service while the latter implements a
distributed tracer.

AWS CloudWatch CloudWatch [16] offers integration to almost all AWS
services and is also enabled by default for Lambda functions. CloudWatch
aggregates log entries generated during an execution of a Lambda function.
Each Lambda function is assigned a CloudWatch log group and a log stream
for each active instance of the function. Output to the standard output is
transferred to the logs. In addition to collecting logs, metrics are also gener-
ated. AWS Lambda automatically generates metrics about the function calls,
e.g., number of calls, errors, and throttles, as well as performance-relevant
units, e.g., duration, and information about the function’s concurrency, e.g.,
number of concurrent executions.1 CloudWatch collects data from Lambda
at one-minute intervals per default.

1A complete list of metrics can be taken here: https://docs.aws.amazon.com/lambda/
latest/dg/monitoring-metrics.html

11

https://docs.aws.amazon.com/lambda/latest/dg/monitoring-metrics.html
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-metrics.html

3. Related Work

AWS X-Ray X-Ray [20] is Amazon’s implementation of a distributed tracer
to analyze and debug distributed systems. It provides the ability to visualize
a service map to trace the end-to-end journey of a request. AWS Lambda
includes integration for X-Ray, but this must be enabled manually and may
require changes to the source code, for example, to instrument the method.
In X-Ray, a trace is referred to as a request with multiple services; a trace
has numerous segments, which are layered into various subsegments. In
the case of a Lambda call, a segment is created that is divided into three
subsegments Initialization, Invocation, and Overhead. Initialization refers to the
section to load the Execution Environment, Invocation is the actual calling
of the function, and Overhead is the period between the time the Runtime
Environment sends the response and the signal for the next call [31].

AWS X-Ray for Lambda uses a daemon to manage trace records. Records are
first sent to the daemon via UDP traffic, cached, and then sent to the X-Ray
as a batch to reduce latency. The daemon is fully managed, and the user
cannot influence the behavior.

Based on the collected records, X-Ray provides the possibility to visualize a
service map of requests and analyze bottlenecks and errors.

3.1.2 Google Cloud Platform

Under the Cloud Operations service, Google Cloud offers various ways of
gaining insights into ongoing cloud processes. Operations are the central
location in Google Cloud, where log entries are collected and performance
metrics are processed. These include logging, monitoring, tracing, debugging,
profiling, and error reporting [41].

Cloud Monitor collects metrics, metadata, and event details about appli-
cations and systems in the cloud, including cloud functions. The data is
automatically processed and visualized in the form of dashboards. For exam-
ple, each cloud function’s calls per second, execution time, memory usage,
and active instances are displayed.

Log entries of all services are collected via cloud logging. All entries output
via standard output for Google Cloud Functions is displayed as a log entry.
The entries are grouped by function, execution, and trace.

With Cloud Trace, Google realizes an implementation of a distributed tracer.
The tool collects latency information of an application from user request to
completion and visualizes the different components as a trace. The data is
automatically collected and processed in near real-time.

12

3.2. Research Systems

3.1.3 Comparison with FaaS-Profiler

As seen, Google Cloud Platform and Amazon Web Services each offer similar
services to gain insight into the serverless function. One limitation of their
services is that they offer black-box metrics primarily and provide little
information about the performance of a particular source code. In addition,
the solution is provider-specific, which makes it challenging to compare
performance across platforms. Last but not least, as pointed out in the paper
by Wei-Tsung Lin et el., AWS X-Ray works with sampling and UDP packets
to capture trace data, which may not guarantee complete insight into the
trace [52].

FaaS-Profiler works platform independently, allows easy addition of mea-
surement data on application level, and collects the same profiling format for
all platforms.

3.2 Research Systems

Let’s Trace It: Fine-Grained Serverless Benchmarking using Synchronous and
Asynchronous Orchestrated Applications Joel Scheuner, et al., present in their
paper [57] ServiBench, an application-level benchmark suite to perform end-
to-end experiments with serverless functions and realistic invocation patterns.
ServiBench operates as an offline tool especially tailored for AWS Lambda,
which downloads the collected log files for called Lambda functions and
reconstructs a temporal causal ordering between function calls. ServiBench
handles both asynchronous and synchronous calls. Based on the X-Ray log
data, a graph representing the causal relationship between calls is used to
calculate a critical path so that the end-to-end latency of a request can be bro-
ken down. The happened-before order and the definition of an asynchronous
call are made by temporal arguments alone; a tolerance was introduced to
respect clock differences between calls. The presented tool breaks down the
latencies of an application with real-world call patterns with synchronous
and asynchronous calls. However, the tool is heavily dependent on AWS
X-Ray, and the construction traces are based only on temporal reasoning.

Tracking Causal Order in AWS Lambda Applications Wei-Tsung Lin et al.
present GammaRay [52] in their paper, a tool to track the causal ordering of
Python applications in AWS Lambda. GammaRay was developed with the
background of tracking and connecting asynchronous and synchronous calls
to Lambda functions. The tool was split into a library to provide runtime
support for Lambda functions and an offline tool that post-processes recorded
events through the library. To trace outgoing requests to a lambda function
or to collect information that can help to establish causal order later, the
paper presents three ways: First, dynamically patching the AWS SDK, then

13

3. Related Work

statically patching the AWS SDK, and reading and analyzing AWS X-Ray
and CloudWatch entries. GammaRay uses a transactional database to record
events and rework them offline in append order. For all three variants, the
overhead was evaluated with mirco-benchmarks. The static instrumentation
of the SDK was shown to produce the most memory overhead, followed by
dynamic patching and the X-Ray variant.

Tracing Function Dependencies across Clouds Wei-Tsung Lin, et el., present a
tool called Lowgo [51] to record causal relationships between functions in
serverless applications. Lowgo was developed with the background of also
establishing an ordering of applications operating in different clouds, thus
providing a cross-cloud tracing tool. Lowgo automatically intercepts requests
from the cloud SDK to be informed about possible invocation origins. These
events are processed in a Lowgo instance located in each cloud. The tool does
not need to record events in a database, which reduces overhead compared
to GammaRay [52]. The instances cache the entries until the position in the
trace can be found for the record. Lowgo replicates the records intercepted
in different clouds across instances to create a consistent, distributed log.
The authors could show in benchmarks that Lowgo can show the causal
relationships, and the overhead in execution time is between 2-12%.

14

Chapter 4

Design

Figure 4.1: FaaS-Profiler Design Overview. It shows the different phases of using the
framework. First, a configuration and measurement plan is defined, packaged, and deployed
together with the instrumented function code and measurement/capture routines. In the serverless
execution environment, the function is executed with active patchers. The distributed tracer
handles incoming and outgoing requests while the measurement and capture routines collect data.
Finally, these are exported so the analyzers can process the collected data offline.

In this chapter, we will describe the high-level design of the FaaS-Profiler

profiling tool in more detail. The tool was developed with the ulterior
motive of being independent of the chosen programming language and cloud
provider. Therefore, the general structure and design idea will be discussed
in this chapter. In contrast, in Chapter 5, implementation details in Python

on the cloud platforms Amazon Web Services and Google Cloud Platform
will be addressed.

In short, FaaS-Profiler provides an open and easily configurable framework
that allows users to collect data and metrics about any serverless function

15

4. Design

and then analyze and visualize them. In addition to collecting this data, the
profiler has a distributed tracer that also allows metrics to be obtained across
interacting functions.

The tool comprises two main components: A client library, hereafter referred
to as Instrumenter, and a visualization and post-processing tool, hereafter
referred to as Visualizer.

As shown in Figure 4.1, three phases are required to apply the FaaS-Profiler

to any serverless function successfully. In the beginning, there is the phase of
preparation for the user. Defining what data and metrics should be collected
and where they should be exported is necessary. In addition, the Instrumenter
must be packaged and deployed with the instrumented function code. In
phase two, the function is executed in the serverless execution environment.
The Instrumenter can now process incoming and outgoing requests in the
tracer and perform routines to collect data. This data is exported through an
exporter. In the final phase, the Visualizer reads this exported data, performs
a postprocessing routine, and visualizes the data in the form of a dashboard.
The calculations of the Visualizer are not performed in the cloud and can be
executed locally and offline on the user’s computer.

The chapter is structured as follows: We will first define the profiling format
(Section 4.1) that the Instrumenter generates as output and the Visualizer
analyzes as input. Then, in Section 4.2, we will discuss the Instrumenter’s
structure in more detail, explaining which part of the program collects which
data.

4.1 Profiling Format

This section defines the profiling format automatically generated by the
Instrumenter for each instrumented serverless function. If configured, this is
then exported to the Visualizer for further analysis. The format was developed
with the following four main goals:

• Uniqueness: Unique record is exported for each execution of a function.

• Generalization: The profiling format defines characteristics for a func-
tion independent of provider and runtime.

• Modularity: Any additional data to be exported can be defined.

• Traceability: Information that should later help to arrange the function
call in a trace of other serverless function calls is stored.

A concrete instance of the profiling format contains, among other things,
information to later sort the arrangement of invocations and construct a trace.
We, therefore, call this instance a Trace Record and define it as follows:

16

4.1. Profiling Format

Definition 4.1 (Trace Record) A Trace Record characterizes a single execution
of an instrumented serverless function. A record has a unique ID and is
composed of different contexts:

• Function Context (Section 4.1.1) gives general information about the
function itself and the function call.

• Tracing Context (Section 4.1.2) gives IDs to the current trace.

• Inbound Context (Section 4.1.3) characterizes the request that led to the
function’s execution.

• Outbound Contexts (Section 4.1.3), possibly several, characterize all
requests initiated by the function itself.

• Record Data (Section 4.1.4) is a list of various collected function metrics.

The data structure in Listing 2 represents a Trace Record.

Listing 2 Trace Record Struct Definition
struct TraceRecord

id: UUID

function_context: FunctionContext

tracing_context: TracingContext

inbound_context: InboundContext

outbound_contexts: List[OutboundContext]

data: List[RecordData]

As seen from Definition 4.1, the Trace Record consists of different contexts,
each of which serves other purposes. In the following, we will go into more
detail about the components of the Trace Record.

4.1.1 Function Context

The Function Context collects information about the executed function and
the execution itself.

Definition 4.2 (Function Context) The Function Context exports information
about the entire execution of the function and about the environment in which
it was executed. Listing 3 defines the data structure that a Function Context
follows. FaaS-Profiler creates this context about each call, guaranteeing its
existence.

17

4. Design

Listing 3 Function Context Struct Definition

class FunctionContext

provider: Provider

region: Region

runtime: Runtime

function_name: str

handler_name: str

invoked_at: datetime

handler_executed_at: datetime

handler_finished_at: datetime

finished_at: datetime

max_memory: int

max_execution_time: int

has_error: bool

error_type: str

error_message: str

traceback: List[str]

arguments: dict

environment_variables: dict

response: Any

Remark We want to discuss the difference between function names and
handler names. The function name is the user’s name for a particular
serverless function. This name is entirely user-definable (except for provider-
dependent restrictions) and is generally independent of the source code
defined for the function. The handler name, on the other hand, is the name
of the function in the source code to be executed for the function, so it is
dependent on the provided source code and can be arbitrarily changed for a
function if the code changes.

Function Key The Function Context contains details about the function in
general, which remain the same for each function call. These are the Provider,
Runtime, Region, and Function Name. Since the cloud providers ensure that
no function in the same region has the same name, a Function Key can be
defined:

Definition 4.4 (Function Key) The Function Context automatically provides
a property named Function Key. This is composed of the Provider, Region, and

18

4.1. Profiling Format

Function Name. The function key uniquely describes a serverless function
across multiple providers and regions. Its existence is guaranteed.

The function key can be used to compare or group two different trace records
of the same serverless function.

Timing Properties In addition to the general function properties, the
function context characterizes the current execution. invoked at,
handler executed at, handler finished at and finished at provide in-
formation about the duration of the function. The section between
handler executed at and handler finished at indicates the time the in-
strumented function took. invoked at and finished at denotes the section
that the entire execution took, i.e., instrumented function plus the overhead
of the profiling tool.

Configuration The properties max memory and max execution time gives
information about the current configuration in which the function is executed.

Error Evidence The Function Context collects simple information about failed
executions. has error indicates whether the execution of the instrumented
function ended with any error. If so, error type and error message contain
the error type and message, respectively. Additionally, traceback exports
the last operations of the function.

Payload and Response With the properties arguments and
environment variables, we summarize all the data passed to the
function at the beginning of the execution. response is a wildcard field that
stores all possible return values of the function.

Remark As presented, the Function Context contains many values, which
probably inflates the size of the trace record. The modularity of the Instru-
menter allows disabling all fields in the configuration except those defining
the Function Key and the Timing Properties. This reduces the overhead in
the runtime. By default, all fields are disabled except for the exceptions
mentioned.

4.1.2 Tracing Context

Next, we define the Tracing Context used by the Distributed Tracer (see
Section 4.2.6) to assign records to a trace.

Definition 4.6 (Tracing Context) The tracing context consists of up to three
IDs and uniquely describes a record in a trace. It is created automatically
with each function call and its existence is guaranteed. The data structure in
Listing 4 defines a tracing context.

19

4. Design

Listing 4 Tracing Context Struct Definition
struct TracingContext

trace_id: UUID

record_id: UUID

parent_id: Optional[UUID]

Note that the Trace ID and Record ID always exist, while a Parent ID does
not necessarily have to exist.

4.1.3 Inbound & Outbound Contexts

Figure 4.2: Difference between inbound and outbound requests. The inbound request leads to
the execution of the function, while the process initiates outbound requests.

This section deals with the characterization of requests in the serverless
environment. Figure 4.2 schematically shows the difference between an
incoming and outgoing request in the context of a serverless function. The
profiling format of the FaaS-Profiler generalizes this as a Request Context,
distinguishing between an Inbound and an Outbound Request Context.

An Inbound Context characterizes the request that led to the triggering of the
instrumented function. For example, this can be a simple HTTP trigger or a
file upload to a cloud storage. With the inbound context, we thus generalize
the trigger that triggered this function.

An Outbound Context is created when the current function triggers an op-
eration of a service during its execution. For example, when the function
uploads a file to storage, an outbound request is made to the cloud storage.
Information about this operation is stored in the outbound context.

20

4.1. Profiling Format

Both requests are generalized in the profiling format as Request Contexts. We
define it as follows:

Definition 4.7 (Request Context) A Request Context contains information
about a made request. With its help, the origin and reason of the request
can be traced back, and information on the chronology can be provided. In
addition, values have been attached that help to identify a particular request
uniquely. The presented data structure in Listing 5 defines a Request Context.

Listing 5 Request Context Struct Definition
struct RequestContext

provider: Provider

service: Service

operation: Operation

trigger_synchronicity: TriggerSynchronicity

identifier: dict

tags: dict

Request origin and reason Provider, Service, and Operation characterize
the origin and reason of the request. The three values are dependent on each
other and limit the possible values. The choice of provider restricts the choice
of service since, for example, only services from AWS are now available for
selection. Service, in turn, determines the operation. Assuming that the
service is AWS S3, for example, only ”Object created” or ”Object deleted”
remain available for selection as operations.

TriggerSynchronicity indicates whether the request was asynchronous and
synchronous.

Request metadata Identifier and tags are key-value mappings that can
store arbitrary information about the request. Especially identifier should
be emphasized because these values should help to describe a request
uniquely.

Example 4.8 (Identifier for AWS S3) To explain inbound and outbound con-
text more efficiently, we give an example of a workflow in AWS Lambda.
Suppose we have deployed two Lambda functions. Function Upload uploads
an image to a bucket, and function Process is executed by Lambda when a
new image is uploaded to that bucket.

21

4. Design

Function Upload makes an outbound request, namely S3::UploadFile. FaaS-
Profiler detects the outbound request and saves the following request
context for the function:

provider: AWS

service: S3

operation: UploadFile

trigger_synchronicity: SYNC

identifier:

bucket_name: MyBucketName

object_key: example_file.txt

request_id: 175f2e7a-d3ad-4b1e-9b2a-548142ac5eb2

Function Process detects an inbound request, namely the trigger of
S3::UploadFile. FaaS-Profiler extracts information about the inbound
request and stores the following inbound request:

provider: AWS

service: S3

operation: ObjectCreated

trigger_synchronicity: ASYNC

identifier:

bucket_name: MyBucketName

object_key: example_file.txt

request_id: 175f2e7a-d3ad-4b1e-9b2a-548142ac5eb2

How FaaS-Profiler precisely extracts the characteristics of the request is ex-
plained in Chapter 5 about implementation. We will see later, in Section 4.2.6,
how the distributed tracer uses this information to connect two independent
function calls.

Since a function execution has been performed only by a specific trigger,
there is, at most, one inbound context. Since a function can call any number
of other services, there can be any number of outbound contexts for a record.

4.1.4 Record Data

We call Record Data all the results collected during the execution of the
instrumented function.

Definition 4.9 (Record Data) Record data is a simple list of function metrics
collected during the function’s execution. Each entry in the list has a unique
name associated with it, which facilitates later access to the data.

22

4.1. Profiling Format

Example 4.10 (Trace Record for AWS) Assume the following Python func-
tion was deployed to AWS Lambda in region eu-central-1 with the name
my lambda function and then executed by a Lambda trigger. The functions
uploads a JSON object to S3.

import faas_profiler_python as fp

import json

import boto3

@fp.profile()

def upload_handler(event, context):

s3 = boto3.client("s3")

file_body = json.dumps(

{"message": "Hello Lambda"}).encode('utf-8')
s3.put_object(

Bucket="my-bucket",

Key="my-object.json",

Body=file_body)

return {

"message": "Uploaded"

}

FaaS-Profiler automatically generates and exports the following trace
record, including detected inbound context for Lambda and outbound con-
text for S3.

tracing_context:

record_id: 17b693c9-572f-4829-b63b-f3fd43968c55

trace_id: d891a835-3fe7-4bc7-ac3c-fd68c03bb106

function_context:

provider: aws

handler: handler

function_name: my_lambda_function

region: eu-central-1

runtime: python

invoked_at: '2022-09-30T10:39:12.421205'
handler_executed_at: '2022-09-30T10:39:12.422787'
handler_finished_at: '2022-09-30T10:39:12.920682'
finished_at: '2022-09-30T10:39:12.924835'
max_memory: 1024

max_execution_time: 5

environment_variables: {...}

23

4. Design

arguments: {...}

has_error: false

inbound_context:

provider: aws

service: lambda

operation: invoke

trigger_synchronicity: SYNC

invoked_at: '2022-09-30T10:39:12.422098'
identifier:

function_name: my_lambda_function

request_id: 6c502e72-749f-4187-ba4c-75ea09d4f2af

outbound_contexts:

- provider: aws

service: s3

operation: ObjectCreated

trigger_synchronicity: SYNC

invoked_at: '2022-09-30T10:39:12.432098'
finished_at: '2022-09-30T10:39:12.482098'
identifier:

bucket_name: my-bucket

object_key: my-object.json

request_id: 39f6f4bb-9c65-422b-b438-68a54654887b

4.2 Instrumenter

Figure 4.3: Schematic structure of the FaaS-Profiler Client. The components shown run in
the execution environment of the serverless function to be profiled.

24

4.2. Instrumenter

The Instrumenter is responsible for instrumenting, collecting functional met-
rics, and exporting these metrics. It provides a configurable framework to
facilitate the addition of custom components.

This section focuses on the design structure of the instrument, which is
shown in Figure 4.3. After discussing in the previous Section 4.1 what our
format looks like, which will be used for profiling and tracing a serverless
function, we now introduce the Instrumenter, which is executed in the same
environment as the instrumented function and generates this format.

We introduce the payload, Section 4.2.2, of any serverless function and present
how it can be represented uniformly and what information can be extracted
from it. We will show in Section 4.2.3 how routines are defined to collect
function metrics. We also introduce a patching framework, Section 4.2.5,
that allows modification of arbitrary functions at runtime to collect metrics
about their execution and intercept and record outgoing requests. In the last
Section 4.2.6 we introduce our version of a distributed tracer. A distributed
tracer is a tracer that tries to establish temporal order in a distributed system,
such as serverless workflows. We will see how FaaS-Profiler uses the
Tracing Context (section 4.1.2) and the Request Contexts (Section 4.1.3) to
reconstruct an order.

4.2.1 Instrumentation

To activate the profiler and instrument, 1 in Figure 4.3, a function, the
function to be examined is passed along with arguments to the profiler entry
point. The client can load and set up all necessary resources before executing
the function. The instrumented function is then executed by the profiler,
while all possible exceptions are caught and documented during execution.
Also recorded is how long the function took to complete. This information is
stored in the Function Context, Section 4.1.1.

4.2.2 Payload

The following section covers 2 of the overview shown in Figure 4.3. Recall
that the client’s goal is to generalize all possible providers and programming
languages. Serverless functions can be called in different ways and with
different arguments. Therefore, we define the term Payload.

Definition 4.11 (Serverless Function Payload) The payload of a function is
defined by all the data available to it before it is executed. More precisely,
these are the functions’ arguments, environment variables, headers, and all
data that can be retrieved without using third-party software.

Note that this term is intentionally comprehensive. This is necessary because
the payload can differ significantly from provider to provider and from
trigger type to trigger type.

25

4. Design

A payload representation must be defined to understand and break down
the structure of a particular cloud platform. Each payload representation
follows the interface in Listing 6.

Listing 6 Payload interface
interface Payload

public procedure extract_tracing_context

public procedure extract_inbound_context

end

As can be read from Listing 6, a concrete payload representation extracts an
inbound context, which should give information for the request that leads to
the execution of the function, and a tracing context, which maps the function
call to a trace. The both extracted contexts are passed to the distributed tracer
(Section 4.2.6).

Correctness of the extracted tracing context

Extracting the tracing context has its limitations. In general, there is no
guarantee that a tracing context exists in the incoming payload, and if it
exists, it is correct. An example is asynchronous triggers: As we will see
later in the discussion of the distributed tracer, Section 4.2.6, for specific
asynchronous triggers, it is impossible to send the tracing context to the
triggered function. The triggered function does not know at the time of
execution that it belongs to the trace of the triggering function. As a result of
the absence of the tracing context in the payload, the function creates a new
context and treats itself as the root of a new trace. The correct context, in the
sense of connecting the two calls, can only be clarified in the post-processing
of the Visualizer; hence the note that its context may be incorrect at the time
of execution.

4.2.3 Function Metrics

Generally speaking, Function Metrics are the data that should give the user
of FaaS-Profiler more insight into the execution of the serverless function.
FaaS-Profiler roughly distinguishes between two different types of function
metrics: Measurements and Captures.

Measurements allow the recording of a metric. This can, for example, be
dependent on the time of the function execution and record the memory
consumption of the function by measuring points. Or measurements can
be taken directly before and after the function to calculate a difference
introduced by the function.

26

4.2. Instrumenter

Captures, on the contrary, allow notifying when the instrumented function has
invoked a specific function. For example, if we want to know how long and
often a cloud storage upload was made, we tell the FaaS-Profiler to capture
the upload method. Based on the notification, we can calculate cloud-specific
metrics.

In the overview Figure 4.3 3 shows this process of collecting metrics.

Measurements

Measurements are program routines designed to facilitate the collection of
data of interest during function execution. The client allows you to perform
two different measurements: Periodic Measurements and Simple Measurements,
where each periodic measurement is a simple measurement but not vice
versa.

Definition 4.12 (Simple Measurement) A simple measurement is a routine
triggered once before the instrumented function is executed and after the
function is executed. Simple measurements are performed in the same
process as the function.

Simple measurements follow the interface in Listing 7.

Listing 7 Simple Measurement interface
interface Measurement

public procedure initialize

public procedure start

public procedure stop

public procedure deinitialize

public procedure results

end

initialize can be used to introduce data structures and to prepare sys-
tems for measurement, e.g., importing load-expensive third-party libraries.
This function is also passed user defined parameters for customization.
deinitialize can be used again to free the resources.

start and stop are commands to start and stop the measurement respectively.
They are called immediately after function start or function stop.

The Instrumenter makes the following guarantees to the measurement classes:

• initialize is the first method that is executed. There is no guarantee
of the success of this execution.

• start is called after all other measurements have been initialized.

• stop is called after all other measurements have been started.

27

4. Design

• deinitialize is the last method to be called. Before that, all measure-
ments were stopped.

For example, snapshot measurements can be performed with simple measure-
ments. For this purpose, a measure of a metric of interest is performed before
the start of the function and a measure after the completion of the function.
A difference can be calculated with these measurement points, which was
caused by the function. In Chapter 5, about implementing the FaaS-Profiler,
we will see how we used this concept, for example, to measure I/O counters.

To collect time-continuous data, there is a possibility to perform periodic
measurements. As the name suggests, these measurements are triggered
periodically during the execution of the function instead of only at the
beginning and end of the function, as with simple measurements.

Definition 4.13 (Periodic Measurement) Periodic measurements are exten-
sions of Simple measurements. These are triggered at equal intervals during
the execution of the instrumented function. The default delay between two
measurement calls is 0.1 seconds. The user can change this delay. Periodic
measurements are performed in parallel in a child process.

Periodic measurements follow the interface in Listing 8.

Listing 8 Periodic Measurement interface
interface PeriodicMeasurement extends Measurement

public procedure measure

end

The motivation for introducing the periodic measurements is the following:
For capturing some metrics, it is too coarse-grained to take only one mea-
surement point at the beginning and the end of the function. An example of
this is the memory consumption of longer-running functions. To record the
behavior of the allocated memory space during the execution, it is necessary
to be able to add further measuring points parallel to the running of the func-
tion. If we were to take measurement points only at the beginning and end
instead, we would get an incomplete picture of memory consumption, since
memory could be freed up again during execution. Periodic measurements
fulfill precisely this purpose.

Besides the guarantees of the simple measurements, the following guarantees
are made:

• measure is always called after start and before stop. No guarantee is
made about the number of calls.

Process synchronization of periodic measurements As explained in Defini-
tion 4.13, all periodic measurements are executed in another process, hereafter

28

4.2. Instrumenter

referred to as Measuring Process, to perform measurements in parallel with
the main process in which the function is executed. FaaS-Profiler makes
the following guarantees by process synchronization of the two processes:

• initialize and start a periodic measurement, are executed and fin-
ished before the instrumented function starts. In other words, the
primary process waits for the measuring process until all periodic
measurements are started.

• measure may be executed again after the function is finished due to
polling delay.

• stop and deinitialize are called after the main process has reported
that the function has finished executing.

Captures

Captures are routines designed to facilitate documenting function calls as the
instrumented function is executed. Capture routines can be used to capture
cloud-specific performance metrics. One application area, for example, would
be to record how long and how often the function makes API requests to
other services to identify possible bottlenecks. Capture routines are, therefore,
always suitable if you want to observe the behavior of specific function calls.

Definition 4.14 (Capture) Capture is a routine that is notified each time
a function of interest is called during the execution of the instrumented
serverless function.

Captures follow the interface in Listing 9.

Listing 9 Interface for capture routines.
interface Capture

public procedure initialize

public procedure start

public procedure capture

public procedure stop

public procedure deinitialize

end

initialize, start, stop and deinitialize have the same function as in
simple measurements. capture is then called automatically if the method of
interest is called.

In general, there are several ways to intercept calls to specific functions.
Mainly the choice of these possibilities is strongly limited by the selection
of a programming language in which the client should be available. Here

29

4. Design

we present a solution using Monkey-Patching, described in more detail in
Section 4.2.6.

Order of measurement routines

Figure 4.4: Order in which captures, simple and periodic measurements are started and stopped.

Figure 4.4 shows how measurement and capture routines are started and
stopped in the FaaS-Profiler. The order was chosen so that the measure-
ments influence each other the least. For example, since periodic measure-
ments can be used to query the memory usage over the time of execution,
we want to start them last so that the setup of the other routines is not
included in the data. For the same reason, we start and stop captures first
and last, respectively, since preparing to intercept function calls produces
more overhead.

4.2.4 Exporters

The task of an Exporter 6 is to export the collected data and thus store it for
later analysis. Each defined Exporter is given the Trace Record created by the
execution of the instrumented function. For example, the Trace Record can be
written as JSON in a cloud storage bucket or stored in a database. The final
medium used for export is configurable and modular interchangeable. The
Instrumenter guarantees that the export is the last action performed before
returning the result of the actual method.

Exporters follow the simple interface in Listing 10.

30

4.2. Instrumenter

Listing 10 Exporters interface
interface Exporter

public procedure initialize

public procedure export

end

FaaS-Profiler currently defines a Record Storage interface that can be used
optionally for ease of use. The interface serves as a kind of contract between
the Instrumenter and the Visualizer and guarantees that the Visualizer will find
records stored by the Instrumenter.

4.2.5 Patching Framework

The FaaS-Profiler Instrumenter provides a framework, shown as 4 in
Figure 4.3, to quickly patch any functions. We will first describe the general
notion of Patching (also called Monkey-Patching). Then we will explain the
framework, which plays a vital role in capturing and tracing functions.

Monkey-Patching

Monkey patching is a technique that can be applied to dynamic programming
languages such as Python and Ruby. The idea that it is possible to add
behavior to an existing object at runtime to meet some requirement that
originally the type did not meet [14].

Assume that the method foo was defined in the module bar in the original
source code. To patch the method foo now dynamically with another method,
monkey foo, the address of the method definition foo is replaced by the
method definition monkey foo. If the method foo is now called, not the
source code of foo is executed, but that of monkey foo. The method was thus
replaced in runtime by another without changing the original source code.

Patching is mainly used in unit tests (i.e., in Python’s mock library [11]) and
editing and extending third-party software.

The Framework

In general, any code of the FaaS-Profiler must never change the behavior
of the instrumented function. In other words, the serverless function must
behave exactly identically with and without the FaaS-Profiler. For this
reason, we never completely replace a function of interest with another
function; instead, the function is replaced with a Wrapper. A wrapper executes
logic before and after the patched function and returns the return value of
the original function. So for the original method, the patch is invisible.

31

4. Design

Figure 4.5: Function patcher in FaaS-Profiler with event observer pattern. A function
patcher is defined for a specific function. FaaS-Profiler automatically exchanges the function
with a wrapper to catch arguments to the function and return values. After determining an
outbound context for the particular call, all interested observers are notified. If needed, the
function arguments are injected before the original function is called.

To patch an arbitrary function (for example, an API call of a third-party
library), a Function Patcher is defined for the library function. A function
patcher is a class with the interface in Listing 11.

Listing 11 Function Patcher interface
interface FunctionPatcher

public static property module_name

public static property function_name

public procedure activate

public procedure deactivate

public procedure register_observer

public procedure set_data_to_inject

public procedure extract_context

public procedure inject_payload

end

The properties module name and function name tell the framework in which
module which function should be patched. After checking whether a function
patcher has already been defined for the same function, the function is
replaced by a wrapper at runtime, as described above.

The Patcher of a function performs two main tasks, which must be defined
individually by the user for each patched function: Firstly, the extraction
of information about the function call and, secondly, the modification of
function parameters. The patching framework has been designed to simplify
the definition of these methods. The modality allows multiple patcher

32

4.2. Instrumenter

routines to be applied to different target methods. Moreover, the framework
takes care of extracting the arguments and results of the target method and
passes them uniformly to the concrete patcher.

Information Extraction An individual patcher’s extract context method
defines the logic to extract information for a function call. Given the original
method and arguments, as well as the result after execution of the patched
function, a context can be created that provides further information about
the execution. This can be, for example, the request ID of an API to a service
or the filename of a file upload.

Parameter Modification Sometimes, it is necessary to modify the function
arguments dynamically before executing the patched method. We will see
later, in Section 4.2.6, that the distributed tracer makes elementary use of this
possibility. The method inject payload of an individual patcher defines
how to modify the function’s arguments. So if data was set to inject with
the method set data to inject, the method inject payload tries to add
it to the original arguments if the patched function allows it. Note that
inject payload is always called strictly before calling the original function.

With the method register observer, other parts of the tool (e.g., captures
and the distributed tracer) can register themselves as interested in the patched
function according to the Event-Observer pattern. The framework automati-
cally calls the observer with the extracted information; it then remains for the
observer to take further steps with the data. The critical point of constructing
the function patchers in this pattern is that we want to ensure only one active
patcher for each function. If more than one party is interested in that patcher,
they can register as observers. The reason for this is trivial since we can only
replace one function with one another function. Furthermore, functions are
only patched if the patcher holds a lock for the function to avoid possible
problems with concurrent programs.

4.2.6 Distributed Tracer

As explained in the Background section, Chapter 2, serverless application
can be composed of multiple serverless functions.

FaaS-Profiler is designed to collect functional metrics across multiple server-
less functions. To achieve this, our tool implements a distributed tracer,
shown as 5 in Figure 4.3. A distributed tracer traces execution threads in a
distributed environment. Here, distributed refers to the many independent
services that communicate and interact with each other through events. In
terms of the serverless execution model, we want to be able to trace which
serverless function led to the execution of another serverless function.

33

4. Design

To fulfill this goal, FaaS-Profiler uses the extracted information in the Trac-
ing and Request Contexts, Section 4.1.3, (inbound and outbound contexts)
to reconstruct a partial temporal ordering between function calls. The dis-
tributed tracer works actively in the Instrumenter on the one hand; on the
other a hand a postprocessing routine in the Visualizer is needed to record all
traces.

We start with a problem definition and first approaches how to order function
calls. Followed by a theory part where we explain when two function calls
are comparable in a partial order. Last but not least, we present insights into
our concrete version of the tracer.

Problem statement and first approaches

Figure 4.6: Depicted is a serverless workflow where function A uploads a file to cloud storage,
and function B is triggered for each new upload.

The basic idea of a distributed tracer is the following: We want to find
a way to tell a serverless function the reason and origin for its execution.
Assuming that it would be possible for each function to know precisely what
other execution of a serverless function led to the current execution, one can
accurately trace the functions. Here, the function with no predecessor is the
root of the trace.

A simple and naive solution would be that each function that calls another
serverless function sends along data that makes it clear that the called func-
tion is part of a trace. This is precisely what the tracing context, Section 4.1.2,
can be used for. The calling function sends its Record ID R and Trace ID T to
the called function. If the called function now sees these IDs, the function
knows that it belongs to the trace with ID T and that its parent has the Record
ID R. It is now possible to connect the two calls in this way. This relatively
simple possibility solves most cases, but not all, as we will explain now.

Recall that many different events can execute serverless functions. It is
important to note that functions may not be directly triggered by other
functions but by services that act as a ”middleman”. By this we mean,
for example, an execution resulting from an upload to S3, with S3 as the
middleman, or a publication of a new message in SNS, with SNS stepping in
as the middleman. Figure 4.6 shows an example where two functions, A and

34

4.2. Instrumenter

B, interact indirectly through a bucket. The question arises: Is it also possible
to send the tracing context along here so that the functions can be connected,
even though a middleman is involved? The answer is generally: No.

Firstly, it is impossible to modify the payload for certain services so that
the tracing context can be attached. Secondly, even if it is the case that it
is possible to append the context, it is not guaranteed that it will arrive at
the called function.1. Nevertheless, we would like to trace and analyze such
workflows.

The solution lies in the use of the request contexts. The basic idea is the
following: If a function makes an outbound request, an outbound context is
defined and stored. If another function, which a tracing context cannot link,
is executed, an inbound context is also defined and stored. If outbound and
inbound contexts can be linked with the help of identifiers, then these two
records can be connected. This matching of request contexts is done offline in
the Visualizer since a global view of the records is necessary. This is because
not all functions terminate in the same order as they were triggered. Thus
the order of the exported records does not reflect the order of the function
triggers.

Theory

Having defined the problem in the previous section and developed initial
ideas on how to solve it, we would like to express how traces are constructed
in the FaaS-Profiler formally.

Our goal is to order the function calls partially. A partial order is an order
that arises from a relation on a set, where not every element of the set can
be compared to every other element. To put it in our context, for specific
function calls we can state that one must precede the other. Nevertheless,
there are calls about which we cannot make such a statement.

We begin with a general definition of when a set of function calls form a
partial order:

Definition 4.15 (Partial Temporal Order of Functions) Let F be the set of
all serverless function executions. For any f ∈ F and g ∈ F with f ̸= g,
we say f ≺ g if f made an outgoing request at time tout, f that led to the
execution of function g at time tin,g with tout, f ≤ tin,g.

Note that F denotes the set of all function executions, not functions itself.
A function can call itself during execution. FaaS-Profiler tries to estab-
lish the order between the function executions to avoid circles in the trace
reconstruction. Since, as described in Section 4.1, a trace record is created

1An example is the asynchronous call of a AWS Lambda function. Although the tracing
context was placed in the client context, it can no longer be found in the calling function.

35

4. Design

for each function execution, ordering between the function executions is
equivalent to ordering the associated records. We focus now on ordering
Trace Records since FaaS-Profiler works with them as representatives of a
function execution.

If a tracing context exists for a set of Trace Records, an order can be repre-
sented by the tracing contexts:

Definition 4.16 (Partial Order of Trace Records by Tracing Context) Let R
be the set of all trace records, moreover, let a ∈ R and b ∈ R be arbitrary
records with a ̸= b. Let TCa and TCb be the tracing context of a and b,
respectively.

We say a ≺TC b if TCTraceID
a = TCTraceID

b and TCRecordID
a = TCParentID

b

Definition 4.16 is sufficient to formally describe the first naive approach to
the solution written in the problem defined above. Informally expressed, we
say the function call A with trace record a happened precisely before the
function call B with trace record b if both are in the same trace, i.e., for both
the trace ID in the tracing context matches, and the record ID of trace record
a is the parent ID of trace record b.

But as mentioned at the beginning, this definition alone is insufficient to bring
all trace records into a partial order. Therefore, we present an alternative
definition that orders trace records based on their associated request contexts.

Definition 4.17 (Partial Order of Trace Records by Request Contexts) Let
R be the set of all trace records, moreover, let a ∈ R and b ∈ R be arbitrary
records with a ̸= b. Let IBCa the inbound context of a and OBCa the set of
outbound contexts of a. We define IBCb and OBCb analogously for b.

We say a ≺RC b if ∃C ∈ OBCa such that CIdentifier = IBCIdentifier
b

In other words, if function A actuated an outgoing request whose identifiers
matched the identifiers of B’s incoming request, then function A happened
before function B.

Based on Definition 4.16 and Definition 4.17 we can define a trace of serverless
function as follows:

Definition 4.18 (Trace of Serverless Function Executions) Let F be the set
of all serverless function executions. Then we define a partial ordering on F
denoted by ≺combined. For f1, f2 ∈ F we have:

f1 ≺combined f2 ⇐⇒ f1 and f2 have trace records a, b ∈ R, a ̸= b,
for which Def. 4.16 or Def. 4.17 holds

In the following, we use ≺ as ≺combined as introduced in Definition 4.18.

36

4.2. Instrumenter

Remark One could argue to establish a complete order over the time of
calling. However, this is generally not possible since it is not guaranteed
that the clocks of the microservices are synchronous. For this reason, we use
partial ordering based on the mappings of caller and callee.

Example 4.20 Suppose we have a set of four trace records R = {A, B, C, D},
where each record belongs to an execution of a serverless function. Call
A made an asynchronous call to B, which could be found in the inbound
and outbound context of A and B respectively (Definition 4.17). Also, call A
made a synchronous call to C, which a common trace ID could reconstruct
in the tracing context and corresponding parent mapping (Definition 4.16).

According to Definition 4.18, we find two traces. One with a function calls A
as root, where we know that A ≺ B and A ≺ C. About the relation between
B and C, we have no statement. None of the calls relates to D. Therefore D
is a root of a trace with only itself as element.

Payload Injection: Forwarding the Tracing Context

Figure 4.7: Payload Injection in FaaS-Profiler. All available patchers for libraries that can
make outgoing requests are used. The tracer subscribes to these and saves each outgoing request
for later export. If a payload injection is available for the outgoing method, the current tracing
context of the function is injected.

FaaS-Profiler always tries to pass the tracing context if possible, so a
possible triggered function learns directly from the trace and its predecessor.
The Instrumenter accomplishes this by exploiting the patching framework
and its ability to modify the payload before an outbound request is made.
Figure 4.7 shows the distributed tracer and its interaction with the payload
representation, Section 4.2.2, and the patching framework, Section 4.2.5. The
tracer can be notified if a method could trigger another function. If the
nature of the request allows adding a custom payload, the record ID and

37

4. Design

trace ID are appended with the hope that they will be found and read by the
triggered function. The actual injection of the context is highly dependent
on the library used and the type of request. In Chapter 5 about a concrete
Implementation in Python we provide concrete hints on how we patched
specific libraries to inject payload.

Postprocessing: Connect traces afterwards

Figure 4.8: The simplified decision tree for each new Trace Record to subsequently merge
independent traces. For each outgoing request, the record checks if a child trace has already
been processed and triggered by the request. If so, the child trace is merged into the current
trace. At the same time, a check is made for the incoming request context to see if a parent
trace can be found that triggered this trace. If so, the trace is merged into the found parent
trace. If an incoming or outgoing request context cannot be resolved, it is cached to help later
arriving records progress.

Recall that not all traces can be mapped by simply forwarding the tracing
context.We need an alternative way to connect parts of a trace afterwards. For
this purpose, FaaS-Profileroffers a back-tracing algorithm in the Visualizer,
i.e., it does not run at runtime of a serverless function.

The tracer exploits the request contexts for this purpose. Recall that we
distinguish between inbound and outbound requests for each function ex-
ecution. An Inbound Request Context characterizes the request that led to
the execution of the currently instrumented function. Outbound Request Con-
texts characterize all outbound requests to other services undertaken during

38

4.2. Instrumenter

execution.

Section 4.1.3 shows that we associate a set of identifiers with each Request
Context. These should help to find incoming and outgoing requests in the
postprocessing step. For the role of the identifiers, we refer to Example 4.21.

Example 4.21 (Connecting AWS Lambda calls by identifier) Assume a
Lambda function A triggers a Lambda function B asynchronously. After
executing the trigger for function B, AWS returns a request ID that is the
same as the one that function B receives when it runs. Therefore, for function
A, we store the request ID and function name as the outbound request
context identifier, and once function B is triggered, we extract its function
name and request ID. Once both functions export their trace record, we find
that the records have matching identifiers in their outbound and inbound
contexts. We can thus connect both function calls.

In Figure 4.8, we show the simplified decision tree of the postprocessing
algorithm. The basic idea is the following: For each trace record, we handle
the stored inbound and outbound context detected and exported by the
Instrumenter. We look to see if we have already seen a trace record that made
an outbound request whose identifiers match the inbound request context
of the currently handled record. If so, we have found a parent record and
a new trace in which we append the record. If not, we store the record
temporarily with the hope of being resolved later. We do the same process
for each outgoing request context of the trace record, only this time, we don’t
look for a parent but for possible children that can be appended.

In addition to the check for matching identifiers, the temporal order is also
checked. This means that only an outbound and inbound request will be
connected if the outbound request was made before the inbound request. To
account for possible clock differences between actors, a tolerance is added.

Algorithm 1 shows the pseudo-code of the backtracing algorithm. The
algorithm can be applied manually for a batch of new records or each new
record. The latter allows live updating of traces, but requires a database for
recording the request contexts.

The algorithm was designed to know that trace records can be processed
in any order. So the algorithm behaves the same for any order of records.
The concept of ”helping others to make progress, ” used in multiprocessor
operation, was applied. It is elementary that we cache request identifiers
that are not directly resolvable, hoping that a later processed record will find
itself as parent or child.

39

4. Design

Algorithm 1 Offline Backtracing Algorithm

Traces← ∅
OutboundRequests← ∅
InboundRequests← ∅
procedure MergeTraces(UnprocessedRecords)

for each record ∈ UnprocessedRecords do
trace← find or create new trace for record
if TracingContextrecord has no parent ID then

ResolveInboundContext(InboundContextrecord)
end if
for each OutboundContext ∈ OutboundContextsrecord do

ResolveOutboundContext(OutboundContext)
end for

end for
end procedure

procedure ResolveInboundContext(InboundContext)
if ∃ ParentRequest ∈ OutboundRequests
s.t. InboundContextIdentifier = ParentRequestIdentifier then

ParentTrace← Trace of ParentRequest
Merge Trace into ParentTrace

else
Store InboundContext→ InboundContexts

end if
end procedure

procedure ResolveOutboundContext(OutboundContext)
if ∃ChildRequest ∈ InboundContexts
s.t. OutboundContextIdentifier = ChildRequestIdentifier then

ChildTrace← Trace of ChildRequest
Merge ChildTrace into Trace

else
Store OutboundContext→ OutboundContexts

end if
end procedure

40

Chapter 5

Implementation

In this chapter, we will dive deeper into implementing the FaaS-Profiler.
While chapter 4 was more about the high-level design of the tool, we will
now provide more details about a concrete implementation. Recall that the
FaaS-Profiler is divided into two main components: the Instrumenter 1,
installed with the function to be examined, and the Visualizer 2, installed
locally and used to explore the results.

In the following, we focus on a realization in Python applied to the serverless
functions deployed on Google Cloud Platform and Amazon Web Services.

5.1 Instrumenter for Python

The following subsections are roughly structured according to the Instru-
menter’s control flow. We will first cover how the Payload of the functions is
resolved. Then we will discuss how the Patchers are implemented in Python.
In the end, we examined existing Measurement, Capture, and Exporter routines.

5.1.1 Instrumentation & Configuration

Listing 12 Instrumentation of a serverless function with handler
import faas_profiler_python as fp

@fp.profile()

def serverless_handler(*args, **kwargs):

pass

1pip-installable package under the name faas-profiler-python
2pip-installable package under the name faas-profiler

41

5. Implementation

To instrument, a serverless function with the FaaS-Profiler in Python, only
one line of code needs to be added. Listing 12 shows an example. Note that
only the handler, i.e., the function entry point, needs to be edited accordingly.

The entry point for the Instrumenter is a special function that takes the server-
less handler’s method reference and associated arguments as parameters.
The handler is not executed until the Instrumenter commands it. This provides
the ability to execute logic before and after the serverless function is executed.
Also, operations can be performed based on the results of the instrumented
function.

The Instrumenter uses a Python’s decorator fp.profile to instrument the
function in a user-friendly way. Decorators are special functions that take a
function with its arguments as parameter and return a function themselves
[9]. The profiler’s decorator returns the instrumented handler instead of the
original handler.

Configuration

Listing 13 Example configuration for profiling a function
measurements:

- name: network::Connections

- name: network::IOCounters

- name: memory::LineUsage

- name: memory::Usage

- name: cpu::UsageOverTime

- name: information::Environment

- name: information::OperatingSystem

- name: disk::IOCounters

captures:

- name: aws::S3Capture

- name: aws::EFSCapture

parameters:

mounting_point: /efs/mount

exporters:

- name: common::Console

- name: storage::AWSVisualizerUploader

parameters:

region_name: eu-central-1

bucket_name: faas-profiler-records

The client library can be configured individually for each serverless function.

42

5.1. Instrumenter for Python

For this purpose, a configuration file can be passed in YAML format. The
following section briefly describes the configuration options using a YAML
file, as this is the most descriptive. Note that the configuration via the file
is one possibility of many. Other ways, like via environment variables or
program arguments, can be used too. We refer to Appendix A.2 for further
guidance on using environment variables.

The main task of the configuration is to tell the profiling tool which mea-
surements, captures, and exporters to use. This is done by simply defining
defines a list for each of these three components, which specifies to the tool
which routines are to be loaded and executed. Each routine is assigned a
unique name. This is used once to import the routine dynamically and later
when exporting it as identification in the record data.

An example configuration is shown in Listing 13; Section 5.1.4, 5.1.5, and
5.1.6 will go into the measurement, capture and exporter routines shown.

5.1.2 Payload

In the design chapter, Chapter 4, we have defined that the Payload is defined
by all data available to the function at the start of execution. Once a serverless
function is instrumented, the client breaks down the payload to get more
information about a possible tracing context and the inbound context. Since
the payload differs significantly from provider to provider, a separate repre-
sentation is defined for each. In the following sections, we provide details
on the specific payload representation for AWS Lambda and Google Cloud
Functions.

Payload Representation for AWS Lambda

Based on the official documentation of AWS Lambda, a Lambda handler is
passed two arguments when called: An Event object as the first argument
and a Context object as the second argument.

The Event object contains information about the service that triggered this
function.

The Context object contains information about the function call, its runtime,
and the Lambda function itself.

Recall that each payload representation, Section 4.2.2, in the FaaS-Profiler

has two tasks: Detect the Inbound Context and extract the Tracing Context.

Determination of the Inbound Request Context Based on the Event argument
for the AWS call, the FaaS-Profiler can create the inbound request context.
As described in the Background Chapter 2, Lambda functions can generally

43

5. Implementation

be triggered by several other AWS services. Event-driven services 3 send the
lambda functions a list of records representing items to be processed by the
function in the context of the triggering service. In the case of DynamoDB,
for example, these are new entries or, in the case of S3, new uploaded objects.
FaaS-Profiler extracts from each of these the AWS service and operation, as
well as identifiers, to help the backtracing algorithm identify the request of
an outgoing service.

General calls, either by the gateway, SDK, or StepFunctions, can be recognized
by the missing records; the event parameter carries the available payload of
the function.

Determination of the Tracing Context Extracting the tracing context can be
seen as the reverse operations of payload injection. The payload resolver tries
to find the context in the headers and payload of the request independently
of the event. The location in the payload where the context was placed varies
significantly from event to event. For example, in the case of messages for
SQS or SNS, it was sent in the attributes of the message; in the case of a call
to AWS Lambda, it is sent in the client context.

Payload Representation for GCP Functions

The payload for the GCP function can be roughly divided into HTTP payload
and event-driven payload.

In the case of an HTTP request, a representation of the HTTP request is
passed to the function, which makes the headers and data available.

If the function is triggered due to an event in another service, an Event and
Context object are passed to the function as an argument. Where Event gives
information about the triggering data element, e.g., a queue message or a
cloud storage object. The Context object describes the event in more detail,
e.g., specifying the event ID, cloud storage bucket, or the message queue’s
name.

Determination of the Inbound Request Context The payload representation for
Google Cloud functions detects whether the request is an HTTP request or an
event is the origin of the execution. In the case of event execution, the event
and context object is used to detect the Google Cloud service and operation.
Furthermore, properties like event ID, queue name, or bucket name are read
to find the inbound request identifier.

3Such as AWS Cloud Front, AWS CloudWatch, AWS DynamoDB, AWS S3, AWS SNS,
AWS SQS, AWS SES, AWS Code Commit, and AWS Kinesis

44

5.1. Instrumenter for Python

Determination of the Tracing Context Similar to AWS requests, the location
of the tracing context is highly dependent on the request type and the event
reason. Again, the request headers and payload are used to find the tracing
context. In the case of queue messages, the context may be in the meta-data.

5.1.3 Patchers

The Python version of the FaaS-Profiler implements the patching frame-
work presented in the design chapter (Section 4.2.5). The client uses the
open-source package wrapt by Graham Dumpleton et al., which wraps arbi-
trary functions with a wrapper function [6]. The tool was developed with a
focus on transparency, correctness, and low overhead and thus ideally fits
the characteristics required in Section 4.2.5.

The client has several patchers provided out of the box. In the following, we
would like to discuss the patching strategy of the Cloud Provider SDKs.

AWS SDK for Python

The AWS SDK for Python, called Boto3, lets you create, configure, and
manage services in an object-oriented way [58]. For example, the library can
call a Lambda function, upload files to S3 or create a new entry in DynamoDB.
Boto3 is automatically installed with all Lambda functions.

The Python client of the FaaS-Profiler defines a patcher for botocore, on
which Boto3 is based, and provides a low-level interface to AWS services
[59].

It takes advantage of the fact that in Boto3, each client for all services in
AWS inherits from a basis client. When performing an outbound request,
it invokes the same method, which is excellent as a target method for the
function patcher. Based on the client and the arguments, the requested AWS
service and the operation to be performed can be inferred. Also, using the
arguments and the service’s return values, the request’s identifiers can be
inferred.

GCP SDK for Python

Unlike the Python SDK for AWS, Google Cloud does not have one SDK
that can be used to request all services. Google divides the kit into different
packages, each of which controls one service. No inheritance hierarchy
could be found between the packages, so FaaS-Profiler defines a separate
patcher for each library4. Since there is a patcher for each service library,
determining the service and operation of the outgoing request is trivial.

4There are patchers for Pub/Sub, Cloud Functions, Cloud Tasks, and Cloud Storage.

45

5. Implementation

Again, the function arguments and function results are used to determine
the identifiers.

5.1.4 Measurements

The current version contains some predefined measurement routines, which
can be activated in the configuration if required.

All following the interface in Listing 7. Recall that we distinguished between
periodic and simple measurements. Periodic measurements collect more points
over a metric during the execution of the function at a user-defined interval.
Simple measurements measure at the beginning and the end of the function.

FaaS-Profiler provides measurements to determine CPU, memory, disk,
and network consumption during the execution of the instrumented function.
There is also the possibility to read information about the runtime and the
system.

Most measurements are based on the Python package psutil, which we
will briefly introduce in the following. After that, the working measurement
routines are presented.

The Package psutil

psutil is an open-source Python package developed by Giampaolo Rodola
et al [7]. It provides a Python interface to receive information about pro-
cesses and systems. The interface was designed as a cross-platform tool and
supports most common platforms through a common API. As we will see in
the following sections, in the case of a Linux system, the /proc filesystem is
used to get information about the running process. The process filesystem,
procfs for short, is a virtual filesystem. Under most Unix-like systems,
it is dynamically generated by the kernel and provides data and process
parameters [3].

Memory Consumption

The FaaS-Profiler contains two different measurement routines to mea-
sure the memory consumption of a function. The routine named
memory::LineUsage gives the current total memory usage for each line of the
source code and the difference to the last line. In contrast, memory::Usage
provides a time-dependent measurement that reflects the memory usage
throughout function execution.

Both approaches use psutil, to fetch memory information for a process. The
proc file proc/pid/statm is read out, which provides information about the
memory usage measured in pages. We use the value resident set size (RSS),
which is the part of the memory that the process occupies in RAM [61].

46

5.1. Instrumenter for Python

Memory Consumption per Line The idea to implement how to measure the
memory usage per line was taken from the Python package memory-profiler
[55] by Fabian Pedregosa et al. The approach uses Python’s ability to set
custom code trace methods, which are called on various events during code
execution, for example, when a block or a new line is executed or a block
returns [10]. The line profiler takes advantage of this to be notified if a
new line is executed. If this happens, the new line is recorded, and the
memory usage is recalculated using the method described above, from which
the difference from the previous line can be calculated. A fine-grained
reconstruction of the memory usage is created.

Memory Consumption over Time The measurement routine memory::Usage is
a periodic routine that queries and records the memory usage of the process
in which the instrumented method runs at one millisecond intervals. The
method described above with psutil is used for the query.

CPU Consumption

The client provides a periodic measurement named cpu::Usage to measure
the CPU usage in percent over the time of function execution. Recall that
periodic measurements are executed in a child process and get as an argument
the process ID of the main process in which the instrumented serverless
function is executed.

psutil is used to read the proc file /proc/pid/stat, which outputs various
values for the process with the given ID. It contains the values utime and
stime, which represent the CPU’s time in user and kernel modes, respectively
[50]. To determine the percentage of consumption, we compares the CPU
time with the last query to calculate the percentage difference.

The measurement routine cpu::Usage now uses the method measure, which
is called in a time interval of one millisecond, to record the CPU consumption
in the way written above.

Disk Consumption

The measuring routine disk:IOCounters allows monitoring of the disk I/O
counters during the execution of the function. The routine works according
to the snapshot principle. Before the immediate start of the instrumented
method, the current I/O counters plus the number of read and written bytes
are read out. The same is done after the end of the execution so that the
difference between the start and end snapshots can be returned.

To read the I/O counters of a process, we read the proc file /proc/pid/io,
which contains the values syscr, syscw, read bytes and write bytes for
the given process. syscr and syscw specifies the number of I/O write and

47

5. Implementation

read accesses respectively. read bytes and write bytes gives the number of
bytes read and written respectively [50].

Network Connections and Consumption

FaaS-Profiler provides two measurement routines to record network I/O
counters and network connections, respectively.

Network Connections To record the network connections made during the
function’s execution, the client provides the periodic measurement routine
network::Connections. This uses psutil’s support to read the /proc/net

folder. This contains different files to read information about the network
layer [50]. The function reads the socket table for the different network
protocols to get a list of currently open and active connections. Since this list
contains only open connections, the client implements this measurement as
periodic, so this list is updated intermittently. To avoid recording connections
twice, the routine uses the socket descriptor to detect if a connection has
occurred. This is feasible because the socket descriptor under Linux is
equivalent to file descriptors, which are unique per process.

In the end, the measurement returns a list of performed connections. Each
connection is described by the remote address, connection type, and number
of connections to one remote address.

Remark This measurement has its limitations. The /proc/net system re-
turns only the active connections. Therefore the polling delay of the periodic
measurement must be small to reflect all connections of the function. We
will see in Chapter 6 about the evaluation that we can catch most of the
connections with a delay of one millisecond. We, therefore, point out that the
measurement is not perfect.

Network I/O Counters Similar to the I/O counters for the hard disk, the
measuring routine network::IOCounters also works according to the snap-
shot principle. It used the proc file proc/net/dev to get network device
status information. Readable is the number of sent and received bytes and
packets. Also, the number of errors during send and receive and the number
of incoming and outgoing dropped packets are returned [50].

The measuring routine makes a snapshot at the instrumented function’s
beginning and after the execution’s end. The difference between these
records is returned and thus represents the network I/O counters during the
execution of the function.

48

5.1. Instrumenter for Python

System & Runtime Information

FaaS-Profiler also includes measurements to gather information about
the system and the runtime. For example, the operating system, Python

compiler, or CPU architecture can be read out. Furthermore, a measurement
determines whether a container is warm and, if so, for how long. For this, a
file is stored in the container. If this exists at a subsequent call of the function,
then the container is warm. The creation time of the indicator file indicates
how long the container was kept warm.

Summary

All measurements described here have been shown to work with AWS
Lambda and Google Cloud Functions.

In addition to reading performance metrics via the procfs file system, we
also tried to read hardware counters via PAPI. PAPI [1], short for Perfor-
mance Application Programming Interface is a tool to read the performance
hardware counters of a microprocessor. In general, PAPI allows more precise
and concrete metrics, such as the number of executed instructions. It was
not possible to retrieve these values on both platforms. We assume that the
MircoVM in which the function was executed does not have the rights to
query these hardware counters or does not support PAPI.

5.1.5 Captures

As the design chapter highlights, captures record calls to specific functions.
FaaS-Profiler currently has two specific capture routines for AWS: one
that records every action to an EFS file system and one that records every
operation to AWS cloud storage S3. The capture results can be viewed as
cloud-specific performance metrics so that analysis can be undertaken on
time spent on S3 or EFS.

In the Python implementation, the recording of the calls is realized by
patching.

EFS Access

Recall from the background chapter that a file system can be attached to an
AWS Lambda function to provide persistent storage across function calls. The
NFS (Network File System) based AWS service Elastic File System, EFS for
short, offers the possibility to mount a flexibly scalable file system through a
local mount point to the runtime of the Lambda function [60]. For example,
if the file system is mounted at the /mnt/efs point, the Lambda function can
interact with the system through normal I/O operations. The mount point is
a configuration parameter before the function is deployed. This means that

49

5. Implementation

the mount point is fixed and known before execution for each execution of
the current version of the function. The capture routine uses this property
for EFS.

Since the filesystem interacts with normal I/O functions and not with an
SDK, a patcher for Python’s built-in function open was defined. The open

function is used to open data, whether it is being read or written [8]. By
patching, we are notified if someone performs file access. By filtering the
accesses that go to an EFS mount point, we can thus record EFS accesses.
Besides information about file name, type and size, it also records how long
the access takes. The capture routine aws::EFSCapture exports a list of file
accesses to specific EFS mount points.

S3 Access

To record operations with the AWS S3 service, the AWS Python SDK Boto3 is
patched, see Section 5.1.3. Therefore, we registered the S3 capture routine
aws::S3Capture as an observer of the botocore patcher, so we will be notified
if an operation is performed. After filtering non-S3 operations, we can export
a list of S3 operations and record which objects were accessed and how long
the process took.

5.1.6 Exporters

The Python client includes three simple export routines and supports for-
matting the record data in JSON and YAML. JSON is preferred, and ad-
ditional formatting can be easily added. The exporter common::Console

outputs the data in the standard output. The upload exporters
common::AWSVisualizerUploader and common::GCPVisualizerUploader

upload the data to the respective cloud storage of the provider. For this
purpose, the FaaS-Profiler provides a standard interface, Record Storage, so
the offline tool Visualiser can reliably find it. Both exporters must be passed a
bucket for uploading, to which the function has access.

5.2 Visualizer and CLI

The Visualizer offers the user the possibility to visualize and analyze data
collected via the client. Furthermore, it offers a rudimentary command line
interface to deploy and profile functions. Application notes can be found in
Appendix A.3. In the following, we will briefly discuss the Visualizer.

One of the main tasks is to post-process the record data uploaded through the
Record Storage interface. For this purpose, the package implements the algo-
rithm presented in Section 4.2.6 to establish the partial order between records.
During post-processing, the algorithm also combines multiple traces into

50

5.2. Visualizer and CLI

Profiles. Profiles represent the repeated invocation of a particular serverless
function and are intended to allow analysis across different requests.

FaaS-Profiler offers a Dash-based web application that can be run locally for
visualization. Dash is an open-source Python package for easy visualization
and analysis of data [49]. It is based on the web framework Flask, the charting
library Plotly and the interface framework React. It is provided free of charge
by the company Plotly.

The visualizer dashboard has a graph algorithm to represent the recon-
structed partial order. The graph shows which function made which outgo-
ing requests and which function is executed as a result. The latency between
the execution of the outgoing request and the start of the triggered function
is calculated and visualized.

Besides the graph, the dashboard has analyzer routines. These can subscribe
to specific data in the records, analyze them and subsequently output a chart
with the help of Plotly. Analyzers have been defined for all measurements
and captures presented above.

In Chapter 6 case studies, the visualizer can be seen in action.

51

Chapter 6

Evaluation

In this chapter, we will present and evaluate the results of the Python

implementation of the FaaS-Profiler applied to serverless functions and
applications. As in the previous Chapter 5 about the Python implementation,
we focused our evaluation on functions deployed on the Google Cloud
Platform and Amazon Web Services. We provided the source code and
serverless deployment configuration to a repository. Details of the source
code can be found in Appendix A.1.

In the first Section 6.1 we evaluated the tool using smaller micro-benchmarks
to determine the upcoming overhead of certain parts of the profiler. In the
second Section 6.2 we present longer-running and more complex server-
less applications and show how the distributed tracer of FaaS-Profiler

reconstructs these workflows.

6.1 Micro-Benchmarks

To examine the FaaS-Profiler in terms of overhead, we tested it with simple
functions. All functions were run with Cloud Functions from Google and
Lambda from Amazon. After presenting our methodology for the following
time and memory measurements in Section 6.1.1, we start Section 6.1.2 with
a No-op function to determine the pure overhead of the instrumenter without
active measurements and tracing. Section 6.1.3 evaluates the cost incurred
when the FaaS-Profiler actively intercepts and records outgoing requests.
Section 6.1.4 analyzes the additional cost of collecting function metrics during
the function run.

6.1.1 Methodology

For AWS Lambda, we chose the region eu-central-1 in Frankfurt. We gave
each function 1024 MB of maximum memory and a timeout of 10 seconds.

53

6. Evaluation

The FaaS-Profiler was statically added as a Lambda layer to each function.
AWS Lambda reports the maximum memory used in megabytes, the exact
execution time in milliseconds after each function execution, and the time to
initialize the container if it was the first call to the function. We collected all
these values for our evaluation and performed our analysis based on them.

We used the europe-west3 region in Frankfurt for Google Cloud functions.
Again, we gave each function a maximum RAM of 1024 MB and a timeout
of 10 seconds. FaaS-Profiler was specified as code dependency directly
and, as explained in Background, automatically installed and compiled
during deployment. Google reports the execution time in milliseconds after
each function execution. We collected this data for time validation. Unlike
Amazon, Cloud Functions does not return the maximum used memory after
each execution. Instead, an average value for the consumed memory can be
queried and sampled in 60-second intervals1. We used these average values
to analyze memory behavior.

All functions were executed on the x86 64 architecture.

Each function was performed 100 times in a row on a cold container. The
overhead for the cold start was only experienced on the first call.

Figure 6.1: Memory consumption and execution time of the No-op function with and without
FaaS-Profiler for AWS Lambda. Memory consumption increased by 30.63% and execution
time by 129% on average.

1Information about Function metrics: https://cloud.google.com/monitoring/api/

metrics_gcp#gcp-cloudfunctions

54

https://cloud.google.com/monitoring/api/metrics_gcp##gcp-cloudfunctions
https://cloud.google.com/monitoring/api/metrics_gcp##gcp-cloudfunctions

6.1. Micro-Benchmarks

6.1.2 No-op Function

To obtain a initial baseline for the following measurements, we first performed
an No-op function without and with FaaS-Profiler. No-op is an empty
function that does not perform any calculations and returns immediately.
The profiler was run in ”idle” mode, so no measurement captures or tracers
were activated. The goal is only to show how much overhead is created when
the tool does nothing but resolve the payload and initiate a trace record at
the end. The trace record was created but not exported.

AWS Lambda Results

Figure 6.1 shows the results of the No-op function for AWS Lambda after
100 runs. FaaS-Profiler raises the mean memory consumption by 30.63%
on an Empty function from 40.32 MB to 52.67 MB. The mean execution time
recorded an increase of 129% from 0.996 ms to 2.284 ms.

Google Cloud Functions Results

Figure 6.2: Memory consumption and execution time of the No-op function with and without
FaaS-Profiler for Google Cloud Functions. Memory consumption increased by 25.53% and
execution time by 96.86% on average.

Figure 6.2 visualizes the results after 100 runs of the No-op method for Google
Cloud. On average, the execution time increases by 96.86%, from 5.87 ms
to 11.56 ms. Memory consumption increases by 25.53%, from 56.52 MB to
70.94 MB.

55

6. Evaluation

6.1.3 Functions with Tracing

Function Description

Storage Write 50 consecutive writes to a cloud bucket.
Message Publish 50 consecutive publications of messages.
Queue Publish 50 consecutive publications of tasks to a queue.

Table 6.1: Micro-benchmarks to evaluate tracing overhead in FaaS-Profiler.

In the following, we will evaluate simple functions that make outbound
requests captured, evaluated, and exported by the FaaS-Profiler using
patching. The functions are intended to show the overhead that the tracer
and the patching framework incur in terms of additional execution time and
memory consumption.

We present three functions: Cloud Storage Write, Message Publishing, and Task
Publishing, summarized in Table 6.1. In the first case, the function uploads a
small file (18 B) 50 times to a cloud storage bucket. The messaging function
publishes a message 50 times to a message queue. The task function queues
50 jobs into a job queue. The S3, SNS, and SQS services were used for the
AWS Lambda function. We used the Cloud Storage, Pub/Sub, and Cloud
Tasks services for the Google Cloud function. Again, all functions were
executed 100 times in a row.

FaaS-Profiler successfully intercepts and records all 50 outgoing requests
and, if possible, modifies the request payload with the current trace informa-
tion. A trace record was created for each function execution and exported
via a cloud bucket.

(a) Memory consumption increased by
13.55% and 15.5%.

(b) Execution time increased by 3.41% and
15.5%.

Figure 6.3: Overhead in memory consumption and execution time for functions with active
patching in AWS Lambda.

56

6.1. Micro-Benchmarks

AWS Lambda Results

Figure 6.3 shows the overhead caused by FaaS-Profiler with active patching
for AWS Lambda.

For SNS messages, memory consumption increased by 15.37%, from an
average of 66.67 MB to 76.92 MB. On average, execution times were raised by
3.41%, from 792.05 ms to 819.08 ms.

In the case of SQS publications, both memory consumption and execution
time increased by approximately 15.5%, from 65.30 MB to 76.68 MB and
404.00 ms to 466.82 ms on average, respectively.

Tracing the S3 uploads resulted in a memory increase of 13.55% and an
execution time of 8.02%, respectively. On average, memory usage increased
from 73.2 MB to 83.12 MB, and execution time from 1132.74 ms to 1223.53 ms.

Based on the micro-benchmarks, intercepting and tracing outbound requests
from AWS results in a mean increase in memory consumption of 13.55%
- 15.5% and an increase in compute time of 3.41% - 15.5%. The cost per
GB-second increased by 25.5% on average.

(a) Memory consumption increased by 8.53%
and 20.26%.

(b) The execution time increased by a maxi-
mum of 24.7% on average

Figure 6.4: Overhead in memory consumption and execution time for functions with active
patching in Google Cloud Functions.

Google Cloud Functions Results

Figure 6.4 shows the overhead caused by FaaS-Profiler with active patching
for Google Cloud Functions.

Catching and storing 50 Pub/Sub messages increased memory usage by
20.26%, from 97.24 MB to 116.94 MB. The execution time increased on average
by 24.7%, from 988.83 ms to 1233.24 ms.

57

6. Evaluation

For Cloud Tasks, we recorded an increase of 8.53% in memory consumption
from 105.69 MB to 114.72 MB. No growth was noted in the execution time.
On the contrary, the time with instrumentation was 2028.64 ms and without
2058.25 ms. The number of active instances at 100 invocations was one for
both measurements.

Tracing the upload of the cloud storage files increased the memory consump-
tion from 104.97 MB to 118.47 MB by 12.87%. Similar to the cloud task, the
execution time did not increase. With instrumentation, it averages 6239.93 ms
and without 6275.97 ms Again, the number of active instances is the same for
both experiments. Google reported two active instances during execution.

Based on the micro-benchmarks, intercepting and tracing outbound requests
from GCP results in a mean increase in memory consumption of 8.53% -
20.26%. The execution time increased by a maximum of 24.7% on average.
The cost per GB-second increased by 24.6% on average.

6.1.4 Functions with Profiling

Function Description

Website Download Download HTML content from example.org.
Path Finding Path finding with obstacles using a potential field.
S3 to EFS Load images from a bucket to EFS (only on AWS).

Table 6.2: Micro-benchmarks to evaluate profiling in FaaS-Profiler.

We test FaaS-Profilers on various functions below to determine the overhead
incurred by collecting metrics. We will first briefly introduce what operations
the function undertakes and what we want to measure with it. Then we
present the results on Google Cloud and Amazon Web Services and show
the induced overhead.

The Website Download function makes an HTTP request to example.org

to download the HTML content. It then calculates and returns the size
of the content in megabytes. The profiler was set for the function of de-
termining all network connections and network I/O counters. The web-
site has a size of HTML content of 1305 bytes (1,305 KB), in addition to
overhead caused by the headers and establishment of the HTTP connec-
tion. At the time of the measurements2, a DNS lookup, for example.org,
gave an A record on 93.184.216.34 (ipv4) and an AAAA record on
2606:2800:220:1:248:1893:25c8:1946 (ipv6). The website was made via
an HTTP request responding on port 80.

201 October 2022

58

6.1. Micro-Benchmarks

Path Finding is a serverless function to find a collision-free path using a
potential field. The function code was written by Atsushi Sakai et al. [56]
and adapted to the serverless environment. The function was implemented
with the Python library NumPy, which aims to measure memory and CPU
consumption with the FaaS-Profiler.

Last, we use the S3 to EFS3 function (only on AWS) to evaluate the capture
functionality. The function downloads images from a bucket and stores them
in an attached EFS store. FaaS-Profiler measures the time and memory of
S3 and EFS requests.

For all functions, trace records were exported to AWS S3 and Google Cloud
Storage, respectively.

AWS Lambda Results

(a) Recorded average sent and received bytes.

(b) Recorded network connections.

Figure 6.5: FaaS-Profiler visualization of network I/O and connection for Website Download
on AWS Lambda.

Website Download Figure 6.5 shows the results of the FaaS-Profiler for the
Website Download function. The function was called 50 times. A stable rate of
bytes sent and received can be seen. We also measured the network I/O to
verify the results counters of the No-op method. A constant rate of 1.3 kB sent

3Elastic File System (EFS) is a network-attached storage that can be configured for Lambda
functions.

59

6. Evaluation

bytes, and 0.45 kB received bytes was recorded. FaaS-Profiler thus correctly
records the more bytes consumed in network access. In terms of network
connections, it should be noted that AWS Lambda makes connections to the
local IP addresses 127.0.0.X and 169.245.X.X every time it is called, both
in the No-op function and in the Website Download function. In addition,
HTTPS requests to S3 (52.129.47.53) were captured even though no explicit S3
requests were made. We assume that importing the AWS Cloud SDK (boto3)
and creating the S3 client triggers a request. The FaaS-Profiler later used
this client to export the data, but only after it stopped recording connections.
Also, the IP address of example.org (93.184.216.24) was recorded in majority
of the HTTP calls.

Collecting I/O counters and network connections for AWS Lambda increased
average memory consumption by 59%, from 44.86 MB to 71.3 MB. Execution
time increased by 10.37%, from 359.41 ms to 396.67 ms. The cost per GB-
second increased by 75.49% on average.

(a) Recorded average memory consumption. Blue shows the total consumption and red the
consumption only by the function itself. The sampling rate was 0.001s

(b) Recorded average CPU consumption in percentage. The sampling rate was 0.1s

Figure 6.6: FaaS-Profiler visualization of memory and CPU consumption for Path Finding
on AWS Lambda.

Path Finding Figure 6.6 shows the memory and CPU consumption of the
Path Finding function of the 100 calls ordered by start time. Note that the
red line shows the consumption of the function itself; previous consumption

60

6.1. Micro-Benchmarks

has been subtracted, while the blue line shows the total consumped memory.
Only the consumption of the process in which the instrumented method is
executed is monitored.

Collecting this information increased memory consumption by 37.0% from
75.33 MB to 103.21 MB and execution time by 3.9% from 2181.09 ms to
2266.31 ms. The cost per GB-second increased by 42.36% on average.

(a) Recorded bandwidth for Get and Head operation for S3 in Mbps.

(b) Recorded bandwidth for EFS write accesses in Mbps.

Figure 6.7: Visualization of the FaaS-Profiler for EFS bandwidth and S3 Access performance
through the S3-to-EFS function.

S3 to EFS Using the S3 to EFS function, we captured cloud-specific metrics
for AWS. Figure 6.7 shows the bandwidth in Mbps for write accesses to
EFS and read accesses for S3. For writes to EFS, we determined a mean
bandwidth of 171.76 Mbit/s after 100 executions of the function. For API
reads to S3, we recorded a mean bandwidth of 647.84 Mbit/s. Note that get
requests in S3 are split into a head request executed first, followed by a get
request.

Recording the cloud performance metrics produced a 12.37% from 430.06 ms
to 483.28 ms increase in execution time and a 6.80% from 269.02 MB to
287.32 MB increase in memory usage. The cost per GB-second increased by
20% on average.

61

6. Evaluation

Google Cloud Functions Results

(a) Recorded average sent and received bytes.

(b) Recorded network connections.

Figure 6.8: FaaS-Profiler visualization of network I/O and connection for Website Download
on GCP Functions.

Website Download Figure 6.8 shows the results of the Website Download
function executed on the Google Cloud Platform. The process was performed
50 times. Like Amazon, a stable network I/O rate can be measured, which
is slightly about 0.5KB, lower than that on AWS Lambda. Running the
I/O network counter measurement on the No-op showed that the empty
function does not receive and send bytes. FaaS-Profiler records the more
bytes consumed for the HTTP connection, even on Google Cloud. It is
noticeable that Google uses an IPv6 connection by default, although the same
source code was used for Lambda and GCP Function. The IPv6 address for
example.org could be recorded in the majority of the calls.

Collecting the I/O counters and the network connections for GCP Function
increased the average memory consumption from 82.12 MB to 127.16 MB by
54.85%. The execution time increased from 176.8 ms by 78.06% to 314.82 ms.
The cost per GB-second increased by 175% on average.

62

6.2. Applications

(a) Recorded average memory consumption. Blue shows the total consumption and red the
consumption only by the function itself. The sampling rate was 0.001s

(b) Recorded average CPU consumption in percentage. The sampling rate was 0.1s

Figure 6.9: FaaS-Profiler visualization of memory and CPU consumption for Path Finding
on GCP Functions.

Path Finding Figure 6.9 shows the memory and CPU consumption of the
Path Finding Method over 100 calls sorted by call time. Also, the red line
shows the consumption of the function itself; previous consumption was
subtracted. The blue line shows the total consumption. Only the consumption
of the process in which the instrumented method is executed is monitored.
You can also see a peak in the graph of memory consumption; this occurred
at the time when a new instance was created.

Reading the CPU and memory consumption did not increase the execution
time for Google Cloud Function. Memory consumption increased by 61.79%,
from 87.19 MB to 141.0 MB. The cost per GB-second increased by 61.014% on
average.

6.2 Applications

The following section presents three different serverless applications to which
the FaaS-Profiler has been applied. The goal is to evaluate longer running
applications and show how the tool reconstructs the temporal dependencies
between function calls. We will first discuss the Image Processing Pipeline
application that computes thumbnails of various images using asynchronous

63

6. Evaluation

calls. We then we discuss a longer running and more complex application
that uses message queues and tasks to extract and store data from an API.
In the last section, we present an implementation of a distributed matrix
multiplication using AWS StepFunctions.

We will present visualizations of the workflow’s FaaS-Profiler for each
application. Here, the directed graphs are to be analyzed: The green round
nodes symbolize serverless functions. These are labeled with the function
key, the execution time in milliseconds, and the record ID. The size of a node
indicates the execution time relative to the other nodes. An outgoing edge
indicates that the function has made an outgoing request that FaaS-Profiler

has recorded. The edge can point directly to another function or be connected
to an intermediate service node. Service nodes are the gray rectangular nodes.
These are labeled with the outgoing request type (service and operation)
and the incoming request type. In the latter case, FaaS-Profiler recognized
that another service is called another function. The thickness of the edge
symbolizes the latency of the call. The thickness of an edge pointing to
a service node indicates how long the function node took to upload a file
or queue a task, for example. An outgoing edge from the service node
indicates how long after the outgoing request is completed, another function
is triggered4.

The following section uses several cloud services integrated with serverless
functions. We want to give a brief overview of them:

SQS [33, 22] is a distributed queuing service in AWS. It can send,
store and receive messages and workloads between services. Messages
can stay in SQS for up to 14 days; the default is four days. SQS is a
polling-based service, though this is automatically taken care of when
integrating with Lambda. Messages are not deleted until the consumer
has successfully processed them. No messages are sent twice. The
pooling mechanism usually results in higher latency, as notifications
are stored and picked up later.

SNS [15, 22] is a distributed publish/subscribe service in AWS. A pub-
lisher sends messages to a topic, which many subscribers of that topic
then consume. There can be many publishers and many subscribers.
SNS generally has a short latency because messages are forwarded
according to the fan-out principle. Messages are forwarded according
to the push principle. SNS has no retention of messages; there is no
guarantee that a message has been delivered. However, there are retry
mechanisms in case the downstream service is unavailable.

4We assume that all the services’ clocks are synchronized, which is not the case in reality.
Therefore, the calculation is subject to uncertainty.

64

6.2. Applications

Cloud Tasks [46, 36] is a distributed task queue and, in many ways,
comparable to Amazon’s SQS. Cloud Tasks allows tasks to be queued
and, unlike Pub/Sub, allows more control over the messages. Reception
is guaranteed, and retry controls can be implemented. Compared to
Pub/Sub, in Cloud Task, a function is called explicitly, while Pub/Sub
functions are called implicitly.

Pub/Sub [45, 36] is Google’s equivalent to SNS. It also works with the
publisher-subscriber pattern based on topics. Publishers send messages
to the service without knowing when and how the messages will be
processed. Pub/Sub also generally has low latency, and all messages
are forwarded to all subscribers according to the fan-out principle.

The default configuration was used for all services.

6.2.1 Image Processing

Figure 6.10: Structure of the image processing application

Figure 6.10 shows the schematic structure of the application for AWS. A
folder in a bucket is passed to the Distribute Work function. A Process Image
function is triggered asynchronously for each image in the folder. This
triggers the Thumbnail Image function for various thumbnail ratios. Thumbnail
Image calculates the image’s thumbnail and stores it in a bucket. The Save
Image function runs automatically when a new image is uploaded to this
bucket. The function loads the image from the bucket and saves it as a backup
in an EFS storage. This workflow was developed in parallel for Google Cloud
Functions, omitting the last step due to the lack of EFS. To call the function
asynchronously, we used a cloud task queue.

65

6. Evaluation

We run the application 20 times a row and let the FaaS-Profiler reconstruct
the execution path.

AWS Lambda Results

Figure 6.11: Visualization of FaaS-Profiler of Distribute Work for one execution reconstruc-
tion on AWS Lambda.

Figure 6.11 shows the reconstructed execution graph for AWS Lambda. In
this case, Distribute Work commissioned three images to be processed. Process
Image again ordered the image to be resized in ratios 5 and 10.

It can be seen that the trigger by S3 is significantly longer than the asyn-
chronous call of a lambda function.

Overhead Recording this workflow has increased the average execution time
of all functions. Distribute Work ran 41.2% (117.77ms to 166.37ms), Process
Image 36.86% (65.78ms to 90.03ms), Thumbnail Image 11.83% (634.49ms to
709.57ms) and Save Image 3.95% (176.09ms to 183.03ms) slower. The memory
consumption increased between 5.77% and 14.16% by a maximum of 11.1MB
more.

Google Cloud Function Results

Figure 6.12 shows the reconstructed execution graph for Google Cloud
Function. As with AWS Lambda, Distribute Work commissioned three images
for processing, which were then ordered by Process Image to scale the image
in ratios of 5 and 10. Thumbnail Image processes these images and stores the
result in a bucket.

66

6.2. Applications

Figure 6.12: Visualization of FaaS-Profiler of Distribute Work execution reconstruction on
Google Cloud Platform.

It is noticeable that the latency of cloud tasks in Google Cloud is much
higher than Lambda functions’ asynchronous calls. The bottleneck in this
workflow is the time spent to trigger all necessary functions. In Google,
there is also the possibility to trigger a function directly through the Google
Cloud Function API, but this is provided with a meager limit [42]. Based on
the documentation, an asynchronous pattern must be implemented through
queues [35].

Overhead The average execution time for tracing and exporting this applica-
tion to Google Cloud increased from 7.56% to 43.18%. Distribute Work slowed
down by 7.56%, from 209.5 ms to 225.35 ms. Process Image slowed 43.17%
from 100.13 ms to 143.36 ms. Thumbnail Image time became 14.24% slower
from 1519.06 ms to 1735.42 ms.

In terms of memory consumption, an increase of 8.45% to 10.10% on average
was recorded. Distribute Work used 10.10% more memory from 112.78 MB pre-
viously to 124.18 MB. Process Image used 9.39% more memory from 111.15 MB
to 121.59 MB. Thumbnail Image saw an 8.45% increase from 166.36 MB to
180.41 MB.

6.2.2 Quotes Event-Processing

Figure 6.13 shows the simplified schematic structure of the Quotes Appli-
cations. The application aims to retrieve quotes from a free API and store
them in a database. We want to show the FaaS-Profiler’s ability to track
function calls through event queues. The workflow was inspired and adapted
from Nietzsche written by Abhishek Maharjan [53]. The entry point of the

67

6. Evaluation

Figure 6.13: Structure of the Quotes application

application is the function Dispatch Scrappers. This contains ten different
categories of citations. Each of these categories is published to a message
queue. Scrap Quotes is triggered by one of the messages and asks a public
API api.quotable.io to return all quotes of this category. The responses are
packed into batches of size ten and published to a task queue. Save Quotes
is triggered by one of these tasks and saves the batch to a database. Note
that the API does not return quotes for every category. The goal was to
show that FaaS-Profiler recognizes when an execution thread ends at Scrap
Quotes. The application was tested on Amazon Web Services and Google
Cloud Platform. For AWS, we took SNS and SQS as message and task queues,
respectively. For GCP, we used Pub/Sub and Cloud Tasks. DynamoDB was
used as the database in AWS and Datastore in GCP.

AWS Lambda Results

Figure 6.14: Part of the visualization of the FaaS-Profiler for the Quotes application on
Amazon Web Services.

Figure 6.14 shows a portion of the reconstructed execution thread on Amazon
Web Services. Based on the calculated latencies between the calls, it is

68

6.2. Applications

noticeable that SNS has less latency than SQS. As mentioned at the beginning,
this difference is due to the way SNS and SQS work. While SNS passes
messages directly with little latency, SQS has more overhead, for example,
due to guaranteed delivery and storage of messages.

Overhead The recording and exporting of the executions increased the
execution time by 21.95% to 53.70%. Dispatch Scrappers became 53.70% slower
from an average of 176.19 ms to 270.81 ms. Scrap Quotes slowed down 23.94%
from 306.59 ms to 379.99 ms; Save Quotes by 21.96% from 57.64 ms to 70.29 ms.

In terms of memory consumption, an increase from 19.94% to 22.05% was
recorded. Dispatch Scrappers consumed 22.05% more memory from 70.3 MB
before to 85.8 MB, Scrap Quotes consumed 22.04% more from 70.14 MB to
85.6 MB and Save Quotes consumption increased by 19.94% from 73.49 MB to
88.15 MB.

Google Cloud Functions Results

Figure 6.15: Part of the visualization of the FaaS-Profiler for the Quotes application on
Google Cloud Platform.

Figure 6.15 shows a partial visualization of the FaaS-Profiler for the Quotes
application performed on Google Cloud Platform. Similar to the execution
on Amazon, one can see that the latency between calls by Pub/Sub is smaller
than by Cloud tasks.

Overhead Overall, the average execution time increased between 8.31% and
57.89%. The execution time for Dispatch Scrappers increased by 8.31% from
356.6 ms to 386.2 ms. For Scrap Quotes it increased by 10.90% from 611.07 ms

69

6. Evaluation

to 677.70 ms. For Save Quotes, the time increased by 57.89% from 269.43 ms
to 425.4 ms.

In terms of average memory consumption, we recorded an increase of
10.90% and 14.0%. The consumption for Dispatch Scrappers increased by
14.0% from 113.05 MB to 128.98 MB. For Scrap Quotes it increased by 10.90%
from 108.51 MB to 120.34 MB. For Save Quotes, it increased by 12.54% from
105.19 MB to 118.39 MB.

6.2.3 Matrix Multiplication on AWS

Figure 6.16: Structure of the matrix multiplication application

Matrix multiplication is a serverless function implemented using AWS Step-
Function. Figure 6.16 shows the setup. Function Make Matrix creates two
random matrices and stores them in a bucket. Schedule Work divides these
matrices into submatrices based on the requested number of workers. Multi-
ply Parallel loads the allocated submatrices, calculates the product, and stores
the result in the bucket. Combine Results loads all sub-results into the result
matrix.

Figure 6.17 shows the reconstructed graph of the FaaS-Profiler for matrix
multiplication on AWS performed with step functions. Tracing was imple-
mented by injecting the tracing context into the result of each step function.
Note that the functions Multiply Parallel were declared parallel branches in
AWS step functions, which do not return any results. For this reason, there is
an edge from Schedule Work to Combine Result instead of edges from Multiply
Parallel to Combine Result. It is also visible that the latency of this edge is
visibly higher since Combine Result is called only after all Multiply Parallel
nodes have completed. Tracing an application based on step functions has

70

6.2. Applications

Figure 6.17: Visualization of FaaS-Profiler of Matrix Multiplication workflow on AWS.

the difficulty that the functions do not know each other, and none of the
functions make an outgoing request to be combined later. Therefore we chose
the approach to inject the return values with the tracing context.

71

Chapter 7

Conclusion & Outlook

This thesis introduced FaaS-Profiler a framework to profile and trace
serverless functions in the execution environment. We presented an open
and easily extensible profiling format allowing serverless functions to be
characterized, tracked, and populated with metrics independent of the pro-
gramming language and FaaS platform. We also developed a system to
perform measurements in the serverless execution environment to gain in-
sight into a running function and to read performance metrics. This allows
us to quantify code optimizations, and to identify bottlenecks.

FaaS-Profiler implements a tracer of serverless function calls to analyze
dependencies and latencies between functions and services, to perform
measurements across function boundaries, and to aggregate them. For this
purpose, we introduce the notion of a request context, which generalizes
incoming and outgoing requests of a function to a common denominator, to
be able to make statements about this later and to reason about dependencies.
We showed what information about incoming and outgoing requests needs to
be collected to link them later temporally. Using the presented applications,
we proved the ability of the distributed tracer to track and connect both
synchronous and asynchronous invocations and triggers through services.
We try to create a new approach for a basis to reconstruct execution graphs
independent of the platform and the used event, which previous solutions
could not do or were only applicable to one platform.

To prove the design, we implemented FaaS-Profiler in the form of a Python

library with support for cloud providers Amazon Web Services and Google
Cloud Platform. Following the high-level design presented, it provides all the
functionality to port the library to another platform. With the implementation,
we also showed which metrics can be provided in a serverless environment
and presented a way to collect performance metrics via the virtual file system
procfs. In addition to this process information, we showed a way to make
performance statements about API calls to cloud services by presenting an

73

7. Conclusion & Outlook

open and easy-to-use patching framework and function call documentation
engine; this process has been seen in action with AWS S3 and AWS EFS.

In summary, FaaS-Profiler provides a foundation to use as an open frame-
work to perform arbitrary measurements in the serverless environment while
remaining platform independent. The tool first attempts to generalize server-
less functions in a profiling format, making the function of different runtimes
and providers comparable.

FaaS-Profiler can benchmark and experiment with serverless functionality
in the research sector and compare these across platforms. We also see an ap-
plication in production to detect bottlenecks and visualize the dependencies
of a more extensive application. The open design also allows domain-specific
measurement routines to be defined.

In the following, we discuss some limitations of the tool:

Scalability: The current implementation exports a record in JSON format
for each run with a minimum size of about 1KB. This contains all data to
trace and identify the function but no metrics. Currently, these are uploaded
to cloud storage. The throughput of exporting to a bucket could become a
bottleneck with many simultaneous calls. We have also developed a solution
that uses DynamoDB as the export medium, which allows fast exporting,
mainly because the records can already be partitioned by trace ID. In our
experiments, however, using DynamoDB resulted in higher costs.

Dependency of request identifiers: The connection of function calls depends
on the presence of request identifiers, which enforce the unique assignability
of incoming and outgoing requests. This notion can be softened in further
work to relax this strong assumption so that function calls with non-unique
identifiers can still be connected.

Portability: As mentioned, many programming languages are supported in
the serverless environment, while this work has focused only on Python.
Any future library exporting the described format can use the FaaS-Profiler

infrastructure with visualization and postprocessing algorithms. The limiting
factor could be that in the programming language, patching is not possible,
which could complicate collecting API metrics and intercepting outgoing
requests.

In further work, additional Instrumenters can be written in other programming
languages to make FaaS-Profiler applicable there as well. Also, we see not
yet exhausted all possibilities to further reduce the overhead and performance
for the tool.

74

Appendix A

Appendix

A.1 Assets

The Python implementation of the FaaS-Profiler can be found in the
following repository:

github.com/spcl/faas-profiler-python

The visualizer and client line interface is located in the main repository:

github.com/spcl/faas-profiler

Furthermore, there is a helper repository with data structure definition and
constants, which is used by the client and visualizer both:

github.com/spcl/faas-profiler-core

All applications presented in Chapter 6 as well as the result can be taken
from the following repository for reproducibility:

github.com/spcl/faas-profiler/examples

A.2 Setup

This section gives practical advice on how serverless functions can be instru-
mented and analyzed with FaaS Profiler.

A.2.1 Client Deployment

For the profiler to collect data, the client must be installed in the server-
less environment of the function. For Python, there is a package,
faas profiler python, which can be installed via PIP and acts directly
in the execution environment of the function.

75

github.com/spcl/faas-profiler-python
github.com/spcl/faas-profiler
github.com/spcl/faas-profiler-core
github.com/spcl/faas-profiler/examples

A. Appendix

AWS Lambda Amazon provides the ability to define layers that simplify
the deployment of dependencies and reduce deployment time. For FaaS-
Profiler, layers exist with pre-compiled code for x86 64 and is available
under the Amazon Resouce Name:

arn:aws:lambda:eu-central-1:324305201550:layer:faas profiler python:71

Additional layers can be easily created using the Python
script/publish layer.py in the faas-profiler-python repository.

The client is automatically available for Lambda functions with added FaaS-
Profiler-layer.

Google Cloud Functions Google Cloud installs and compiles all extensions
automatically during deployment. For Python, the following dependency
must be added to requirements.txt:

faas_profiler_python @

git+https://{GH_TOKEN}@github.com/spcl/faas-profiler-python

Where GH TOKEN must be replaced with a valid GitHub key.

A.2.2 Instrumentation

To instrument any serverless function, the handler must be modified as
follows:

import faas_profiler_python as fp

@fp.profile(config_file = path_to_file | None)

def handler(*args, **kwargs):

return {

"message": "Hello FaaS-Profiler"

}

A.2.3 Configuration

FaaS-Profiler offers the possibility to configure the framework via YAML
or JSON files and environment variables. Via environment variables, we
experienced the fastest setup time.

YAML/JSON Configuration

profiler:

measurement_interval: 0.1

function_context:

environment_variables: false

76

A.2. Setup

response: false

traceback: false

payload: false

tracing:

enabled: true

inject_response: false

trace_outgoing_requests:

- gcp

- aws

measurements:

- name: cpu::UsageOverTime

- name: cpu::Usage

- name: cpu::UsageByCoresOverTime

- name: cpu::UsageByCores

- name: cpu::Usage

- name: memory::Usage

- name: network::Connections

- name: network::IOCounters

- name: information::Environment

- name: information::OperatingSystem

- name: information::IsWarm

- name: information::TimeShift

captures:

- name: aws::S3Access

- name: aws::EFSAccess

exporters:

- name: common::Console

- name: storage::GCPVisualizerUploader

- name: storage::AWSVisualizerUploader

As shown above, the format is divided into five sections. In the Profiler
section, the global properties of the profiler can be defined. Measurements,
Exporters, and Captures define a list of routines to be loaded and used in the
respective category. Note that the client loads all routines lazy, i.e., the routine
is imported only if requested. Each routine can be given a key-value mapping
for optional parameters. In the section Tracing, the tracer is configured. It
can be defined whether the response should be instrumented and which
outgoing libraries should be traced.

Configuration via JSON follows the same format as YAML and is therefore
omitted here.

77

A. Appendix

A.2.4 Environment Variable Configuration

FP_MEASUREMENTS = "cpu::UsageOverTime,memory::Usage,..."

FP_CAPTURES = "aws::S3Access,aws::EFSAccess"

FP_EXPORTERS = "common::Console"

FP_PROCESS_INTERVAL = 0.1

FP_INCLUDE_VARS = False

FP_INCLUDE_RESPONSE = False

FP_INCLUDE_PAYLOAD = False

FP_ENABLE_TRACING = True

FP_TRACE_OUTGOING = "aws,gcp"

FP_INJECT_RESPONSE = False

The environment variables shown above are available for configuration.
FP MEASUREMENTS, FP CAPTURES, and FP EXPORTERS each define a comma-
separated list of routines to be loaded and used.

A.3 Usage

To visualize and analyze the results of the FaaS-Profiler, the Python

package faas-profiler, which can be installed via PIP, is used. After
installation, commands are available to load the backtracing algorithm and
the dashboard. It is assumed that the local user can access Amazon S3 and
Google Cloud Storage, respectively.

To construct the trace graph the following command must be executed.

fp process_records \

--provider PROVIDER \

--region REGION \

--project_id PROJECT_ID \

--records_bucket BUCKET

PROVIDER must be replaced with either gcp or aws. REGION, BUCKET, and
PROJECT ID must be set so that read and write access to the cloud bucket in
which the records were stored is possible.

To start the dashboard with all analyzers, the following command is used:

fp dashboard \

--host "127.0.0.1"

--provider PROVIDER \

--region REGION \

--project_id PROJECT_ID \

--records_bucket BUCKET

78

Bibliography

[1] Performance application programming interface. https://icl.utk.

edu/papi/. accessed: 14.09.2022.

[2] Jeff Barr. Aws lambda – run code in the cloud. https://aws.amazon.

com/blogs/aws/run-code-cloud. accessed: 20.09.2022.

[3] Terrehon Bowden and Bodo Bauer. The /proc filesystem. https:

//www.kernel.org/doc/Documentation/filesystems/proc.txt. ac-
cessed: 16.09.2022.

[4] Mohak Chadha, Anshul Jindal, and Michael Gerndt. Architecture-
specific performance optimization of compute-intensive faas functions.
In 2021 IEEE 14th International Conference on Cloud Computing (CLOUD),
pages 478–483. IEEE, 2021.

[5] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Podstawski,
and Torsten Hoefler. Sebs: A serverless benchmark suite for function-as-
a-service computing. In Proceedings of the 22nd International Middleware
Conference, Middleware ’21, page 64–78, New York, NY, USA, 2021.
Association for Computing Machinery.

[6] Graham Dumpleton. Wrapt - a python module for decorators, wrappers
and monkey patching. https://github.com/GrahamDumpleton/wrapt.
accessed: 16.09.2022.

[7] Giampaolo Rodola et al. psutil - cross-platform lib for process and
system monitoring in python. https://github.com/giampaolo/psutil.
accessed: 16.09.2022.

[8] Python Software Foundation. Python - built-in functions. https://docs.
python.org/3/library/functions.html#open. accessed: 16.09.2022.

79

https://icl.utk.edu/papi/
https://icl.utk.edu/papi/
https://aws.amazon.com/blogs/aws/run-code-cloud
https://aws.amazon.com/blogs/aws/run-code-cloud
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://github.com/GrahamDumpleton/wrapt
https://github.com/giampaolo/psutil
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/functions.html#open

Bibliography

[9] Python Software Foundation. Python decorator definition. https:

//docs.python.org/3/glossary.html#term-decorator. accessed:
14.09.2022.

[10] Python Software Foundation. sys — system-specific parameters
and functions. https://docs.python.org/3/library/sys.html#sys.

settrace. accessed: 16.09.2022.

[11] Python Software Foundation. unittest.mock — mock object li-
brary. https://docs.python.org/3/library/unittest.mock.html,
note=accessed: 12.09.2022.

[12] The Apache Software Foundation. Open source serverless cloud plat-
form. https://openwhisk.apache.org. accessed: 12.09.2022.

[13] Preston Holmes and Google Inc. Asynchronous patterns for
cloud functions. https://cloud.google.com/community/tutorials/

cloud-functions-async. accessed: 22.09.2022.

[14] John Hunt. Monkey patching and attribute lookup. In A Beginners Guide
to Python 3 Programming, pages 325–336. Springer, 2019.

[15] Amazon Web Services Inc. Amazon sns. https://aws.amazon.com/

sns/. accessed: 04.05.2022.

[16] Amazon Web Services Inc. Aws cloudwatch. https://aws.amazon.com/
cloudwatch. accessed: 20.09.2022.

[17] Amazon Web Services Inc. Aws lambda. https://aws.amazon.com/de/
lambda. accessed: 12.09.2022.

[18] Amazon Web Services Inc. Aws lambda execution envi-
ronment. https://docs.aws.amazon.com/lambda/latest/dg/

lambda-runtime-environment.html. accessed: 21.09.2022.

[19] Amazon Web Services Inc. Aws lambda runtime api. https:

//docs.aws.amazon.com/lambda/latest/dg/runtimes-api.html. ac-
cessed: 21.09.2022.

[20] Amazon Web Services Inc. Aws x-ray. https://aws.amazon.com/xray.
accessed: 20.09.2022.

[21] Amazon Web Services Inc. Aws::lambda::function. https:

//docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/

aws-resource-lambda-function.html. accessed: 19.09.2022.

80

https://docs.python.org/3/glossary.html#term-decorator
https://docs.python.org/3/glossary.html#term-decorator
https://docs.python.org/3/library/sys.html#sys.settrace
https://docs.python.org/3/library/sys.html#sys.settrace
https://docs.python.org/3/library/unittest.mock.html
https://openwhisk.apache.org
https://cloud.google.com/community/tutorials/cloud-functions-async
https://cloud.google.com/community/tutorials/cloud-functions-async
https://aws.amazon.com/sns/
https://aws.amazon.com/sns/
https://aws.amazon.com/cloudwatch
https://aws.amazon.com/cloudwatch
https://aws.amazon.com/de/lambda
https://aws.amazon.com/de/lambda
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtime-environment.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtime-environment.html
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-api.html
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-api.html
https://aws.amazon.com/xray
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html

Bibliography

[22] Amazon Web Services Inc. Choosing between messaging services for
serverless applications. https://aws.amazon.com/blogs/compute/

choosing-between-messaging-services-for-serverless-applications.
accessed: 04.05.2022.

[23] Amazon Web Services Inc. Comparing the effect of global scope.
https://docs.aws.amazon.com/lambda/latest/operatorguide/

global-scope.html. accessed: 18.09.2022.

[24] Amazon Web Services Inc. Deploy python lambda functions with
.zip file archives. https://docs.aws.amazon.com/lambda/latest/dg/
python-package.html. accessed: 22.09.2022.

[25] Amazon Web Services Inc. Deploying lambda functions. https://docs.
aws.amazon.com/lambda/latest/dg/lambda-deploy-functions.

html. accessed: 19.09.2022.

[26] Amazon Web Services Inc. Error handling and automatic retries
in aws lambda. https://docs.aws.amazon.com/lambda/latest/dg/

invocation-retries.html. accessed: 22.09.2022.

[27] Amazon Web Services Inc. How do i give internet ac-
cess to a lambda function that’s connected to an amazon
vpc? https://aws.amazon.com/premiumsupport/knowledge-center/

internet-access-lambda-function/. accessed: 19.09.2022.

[28] Amazon Web Services Inc. Invoking lambda functions. https://docs.
aws.amazon.com/lambda/latest/dg/lambda-invocation.html. ac-
cessed: 22.09.2022.

[29] Amazon Web Services Inc. Lambda runtimes. https://docs.aws.

amazon.com/lambda/latest/dg/lambda-runtimes.html. accessed:
22.09.2022.

[30] Amazon Web Services Inc. Using aws lambda with amazon eventbridge
(cloudwatch events). https://docs.aws.amazon.com/lambda/latest/
dg/invocation-retries.html. accessed: 20.09.2022.

[31] Amazon Web Services Inc. Using aws lambda with aws x-ray. https:
//docs.aws.amazon.com/lambda/latest/dg/services-xray.html. ac-
cessed: 20.09.2022.

[32] Amazon Web Services Inc. Using aws lambda with other services. https:
//docs.aws.amazon.com/lambda/latest/dg/lambda-services.html.
accessed: 22.09.2022.

81

https://aws.amazon.com/blogs/compute/choosing-between-messaging-services-for-serverless-applications
https://aws.amazon.com/blogs/compute/choosing-between-messaging-services-for-serverless-applications
https://docs.aws.amazon.com/lambda/latest/operatorguide/global-scope.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/global-scope.html
https://docs.aws.amazon.com/lambda/latest/dg/python-package.html
https://docs.aws.amazon.com/lambda/latest/dg/python-package.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-deploy-functions.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-deploy-functions.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-deploy-functions.html
https://docs.aws.amazon.com/lambda/latest/dg/invocation-retries.html
https://docs.aws.amazon.com/lambda/latest/dg/invocation-retries.html
https://aws.amazon.com/premiumsupport/knowledge-center/internet-access-lambda-function/
https://aws.amazon.com/premiumsupport/knowledge-center/internet-access-lambda-function/
https://docs.aws.amazon.com/lambda/latest/dg/lambda-invocation.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-invocation.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://docs.aws.amazon.com/lambda/latest/dg/invocation-retries.html
https://docs.aws.amazon.com/lambda/latest/dg/invocation-retries.html
https://docs.aws.amazon.com/lambda/latest/dg/services-xray.html
https://docs.aws.amazon.com/lambda/latest/dg/services-xray.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-services.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-services.html

Bibliography

[33] Amazon Web Services Inc. What is amazon simple queue
service? https://docs.aws.amazon.com/AWSSimpleQueueService/

latest/SQSDeveloperGuide/welcome.html. accessed: 04.05.2022.

[34] Amazon Web Services Inc. What is aws step functions? https:

//docs.aws.amazon.com/step-functions/latest/dg/welcome.html.
accessed: 21.09.2022.

[35] Google Inc. Asynchronous patterns for cloud functions. https://

cloud.google.com/community/tutorials/cloud-functions-async.
accessed: 04.05.2022.

[36] Google Inc. Choose cloud tasks or pub/sub. https://cloud.google.

com/tasks/docs/comp-pub-sub. accessed: 05.05.2022.

[37] Google Inc. Cloud functions. https://cloud.google.com/functions.
accessed: 12.09.2022.

[38] Google Inc. Cloud functions execution environment. https://cloud.

google.com/functions/docs/concepts/execution-environment. ac-
cessed: 19.09.2022.

[39] Google Inc. Cloudevents format - http protocol binding. https://cloud.
google.com/eventarc/docs/cloudevents. accessed: 22.09.2022.

[40] Google Inc. Deploy a cloud function. https://cloud.google.com/

functions/docs/deploy. accessed: 19.09.2022.

[41] Google Inc. Google cloud’s operations suite. https://cloud.google.

com/products/operations. accessed: 22.09.2022.

[42] Google Inc. Quotas. https://cloud.google.com/functions/quotas.
accessed: 04.05.2022.

[43] Google Inc. Supported services. https://cloud.google.com/

functions/docs/concepts/services. accessed: 22.09.2022.

[44] Google Inc. Understand workflows. https://cloud.google.com/

workflows/docs/overview. accessed: 21.09.2022.

[45] Google Inc. What is pub/sub? https://cloud.google.com/pubsub/

docs/overview. accessed: 22.09.2022.

[46] Google Inc. What is pub/sub? https://cloud.google.com/tasks.
accessed: 04.05.2022.

82

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/welcome.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/welcome.html
https://docs.aws.amazon.com/step-functions/latest/dg/welcome.html
https://docs.aws.amazon.com/step-functions/latest/dg/welcome.html
https://cloud.google.com/community/tutorials/cloud-functions-async
https://cloud.google.com/community/tutorials/cloud-functions-async
https://cloud.google.com/tasks/docs/comp-pub-sub
https://cloud.google.com/tasks/docs/comp-pub-sub
https://cloud.google.com/functions
https://cloud.google.com/functions/docs/concepts/execution-environment
https://cloud.google.com/functions/docs/concepts/execution-environment
https://cloud.google.com/eventarc/docs/cloudevents
https://cloud.google.com/eventarc/docs/cloudevents
https://cloud.google.com/functions/docs/deploy
https://cloud.google.com/functions/docs/deploy
 https://cloud.google.com/products/operations
 https://cloud.google.com/products/operations
https://cloud.google.com/functions/quotas
https://cloud.google.com/functions/docs/concepts/services
https://cloud.google.com/functions/docs/concepts/services
https://cloud.google.com/workflows/docs/overview
https://cloud.google.com/workflows/docs/overview
https://cloud.google.com/pubsub/docs/overview
https://cloud.google.com/pubsub/docs/overview
https://cloud.google.com/tasks

Bibliography

[47] Google Inc. Write cloud functions. https://cloud.google.com/

functions/docs/writing. accessed: 22.09.2022.

[48] Microsoft Inc. Azure functions. https://azure.microsoft.com/de-de/
services/functions. accessed: 12.09.2022.

[49] Plotly Inc. Dash - analytical web apps for python, r, julia, and jupyter.
https://github.com/plotly/dash. accessed: 16.09.2022.

[50] Michael Kerrisk. proc(5) — linux manual page. https://man7.org/

linux/man-pages/man5/proc.5.html. accessed: 14.09.2022.

[51] Wei-Tsung Lin, Chandra Krintz, and Rich Wolski. Tracing function
dependencies across clouds. In 2018 IEEE 11th International Conference
on Cloud Computing (CLOUD), pages 253–260. IEEE, 2018.

[52] Wei-Tsung Lin, Chandra Krintz, Rich Wolski, Michael Zhang, Xiaogang
Cai, Tongjun Li, and Weijin Xu. Tracking causal order in aws lambda
applications. In 2018 IEEE international conference on cloud engineering
(IC2E), pages 50–60. IEEE, 2018.

[53] Abhishek Maharjan. Nietzsche. https://github.com/rpidanny/

Nietzsche. accessed: 04.05.2022.

[54] Garrett McGrath and Paul R Brenner. Serverless computing: Design,
implementation, and performance. In 2017 IEEE 37th International Con-
ference on Distributed Computing Systems Workshops (ICDCSW), pages
405–410. IEEE, 2017.

[55] Fabian Pedregosa and Philippe Gervais. Memory profiler. https://

github.com/pythonprofilers/memory_profiler. accessed: 16.09.2022.

[56] Atsushi Sakai, Daniel Ingram, Joseph Dinius, Karan Chawla, Antonin
Raffin, and Alexis Paques. Pythonrobotics: a python code collection of
robotics algorithms. arXiv preprint arXiv:1808.10703, 2018.

[57] Joel Scheuner, Simon Eismann, Sacheendra Talluri, Erwin Van Eyk,
Cristina Abad, Philipp Leitner, and Alexandru Iosup. Let’s trace it: Fine-
grained serverless benchmarking using synchronous and asynchronous
orchestrated applications. arXiv preprint arXiv:2205.07696, 2022.

[58] Amazon Web Services. Boto3 documentation. https:

//boto3.amazonaws.com/v1/documentation/api/latest/index.html.
accessed: 16.09.2022.

83

https://cloud.google.com/functions/docs/writing
https://cloud.google.com/functions/docs/writing
https://azure.microsoft.com/de-de/services/functions
https://azure.microsoft.com/de-de/services/functions
https://github.com/plotly/dash
https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://github.com/rpidanny/Nietzsche
https://github.com/rpidanny/Nietzsche
https://github.com/pythonprofilers/memory_profiler
https://github.com/pythonprofilers/memory_profiler
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html

Bibliography

[59] Amazon Web Services. Botocore documentation. https://botocore.

amazonaws.com/v1/documentation/api/latest/index.html. ac-
cessed: 16.09.2022.

[60] Amazon Web Services. Using amazon efs for aws lambda in your
serverless applications. https://aws.amazon.com/blogs/compute/

using-amazon-efs-for-aws-lambda-in-your-serverless-applications.
accessed: 16.09.2022.

[61] Chris Siebenmann. Understanding resident set size and the rss problem
on modern unixes. https://utcc.utoronto.ca/~cks/space/blog/

unix/UnderstandingRSS. accessed: 16.09.2022.

[62] Vadim Struk. Introduction to serverless architecture in
cloud-based applications. https://relevant.software/blog/

serverless-architecture. accessed: 20.09.2022.

[63] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion,
and Boris Grot. Benchmarking, analysis, and optimization of serverless
function snapshots. In Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems,
pages 559–572, 2021.

84

https://botocore.amazonaws.com/v1/documentation/api/latest/index.html
https://botocore.amazonaws.com/v1/documentation/api/latest/index.html
https://aws.amazon.com/blogs/compute/using-amazon-efs-for-aws-lambda-in-your-serverless-applications
https://aws.amazon.com/blogs/compute/using-amazon-efs-for-aws-lambda-in-your-serverless-applications
https://utcc.utoronto.ca/~cks/space/blog/unix/UnderstandingRSS
https://utcc.utoronto.ca/~cks/space/blog/unix/UnderstandingRSS
https://relevant.software/blog/serverless-architecture
https://relevant.software/blog/serverless-architecture

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that
− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information

sheet.
− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

FaaS-Profiler: Serverless Tracing and Profiling

Wächter Malte

Zurich, 05 October 2022 HalleWicks

	Contents
	Introduction
	Background
	Serverless Computing
	Execution Environment
	Deployment
	Triggers

	Related Work
	Cloud Provider Solutions
	Amazon Webservices
	Google Cloud Platform
	Comparison with FaaS-Profiler

	Research Systems

	Design
	Profiling Format
	Function Context
	Tracing Context
	Inbound & Outbound Contexts
	Record Data

	Instrumenter
	Instrumentation
	Payload
	Function Metrics
	Exporters
	Patching Framework
	Distributed Tracer

	Implementation
	Instrumenter for Python
	Instrumentation & Configuration
	Payload
	Patchers
	Measurements
	Captures
	Exporters

	Visualizer and CLI

	Evaluation
	Micro-Benchmarks
	Methodology
	No-op Function
	Functions with Tracing
	Functions with Profiling

	Applications
	Image Processing
	Quotes Event-Processing
	Matrix Multiplication on AWS

	Conclusion & Outlook
	Appendix
	Assets
	Setup
	Client Deployment
	Instrumentation
	Configuration
	Environment Variable Configuration

	Usage

	Bibliography

