
Cppless: A single-source
programming model for

high-performance serverless

Bachelor Thesis

L. Möller

September 8, 2022

Advisors: Prof. Dr. T. Hoefler, M. Copik

Department of Computer Science, ETH Zürich

Abstract

Serverless functions have lately been getting traction in the world of
high-performance applications where the dynamic scheduling features
that serverless cloud environments exhibit can be used to offload CPU-
intensive work to the cloud. This is especially advantageous for work-
loads where dynamic parallelism is required. However, using server-
less platforms for this purpose remains difficult in languages like C++
which is traditionally used for high-performance application. To solve
this problem we introduce cppless, a single-source programming model
for high-performance serverless applications. Cppless allows users to
write serverless functions together with the code that uses them to al-
low transparent offloading. This allows us to provide a common ab-
straction layer for serverless platforms and enables composable, mod-
ular architectures that make use of serverless functions. We evaluate
Cppless using several high-performance problems. The results show
that Cppless provides a low-overhead interface for serverless applica-
tions.

i

Contents

Contents iii

1 Introduction 1
1.1 Organization of the Thesis . 2

2 Background 3
2.1 Prior Work . 3

2.1.1 Lithops . 3
2.1.2 Crucial . 4
2.1.3 Kappa . 5

2.2 Comparison to Existing Frameworks 6
2.3 Serverless Environment . 7

2.3.1 AWS . 7
2.4 C++ . 8

2.4.1 Lambda Expressions . 8

3 Design 9
3.1 Language Extensions . 11

3.1.1 Alternative Entry Points 11
3.1.2 Lambda functions . 16
3.1.3 Identification . 17
3.1.4 Serialization . 18

3.2 Low-level dispatcher API . 19
3.2.1 Dispatcher . 20
3.2.2 Task . 21
3.2.3 User-facing API . 22

3.3 High-level graph API . 23

4 Implementation 25
4.1 Language extensions . 25

iii

Contents

4.1.1 Alternative entry points 26
4.1.2 Lambda Functions . 29
4.1.3 Identification . 31

4.2 User-space library . 32
4.2.1 Tasks . 32
4.2.2 Graph Interface . 33

4.3 Cloud Provider Support . 33
4.3.1 Local Dispatcher . 33
4.3.2 AWS Lambda . 34

5 Evaluation 39
5.1 Benchmark Methodology . 40
5.2 Fibonacci . 40
5.3 Floorplan . 41
5.4 Knapsack . 43
5.5 N-Queens . 44
5.6 CPU-Raytracer . 48

5.6.1 Overhead analysis . 50
5.6.2 Serialization . 53

5.7 Pi-Estimation Benchmark . 53
5.7.1 Overhead analysis . 54

5.8 Micro-Benchmarks . 55
5.8.1 Serialization . 55
5.8.2 AWS Lambda Client . 57

6 Discussion 59
6.1 Further Work . 59

6.1.1 Partial Serialization . 59
6.1.2 Advanced Communication Patterns 60
6.1.3 Detached Execution . 60
6.1.4 Advanced high-level API 61

7 Conclusion 63

Bibliography 65

iv

Chapter 1

Introduction

Serverless computation is a new cloud paradigm focused on the execution
of stateless and short-running functions in dynamically allocated execution
environments such as containers. The main focus is on abstracting away the
infrastructure required for execution and allowing transparent scaling.

Serverless has gained significant traction as a backend for websites, data an-
alytics platforms, machine learning inference serving, and all tasks that can
benefit from elastic resource allocation and pay-as-you-go billing. Lately,
serverless has also gained attention in the world of high-performance ap-
plications where the dynamic scaling features that serverless environments
exhibit can be used to offload CPU-intensive work to dynamically allocated
workers. This is especially advantageous for workloads where the amount of
parallelism changes throughout its execution or where the required amount
of parallelism is not known ahead of time. For these use cases, serverless
functions implementing parts of the algorithm can be deployed to the cloud
provider of your choice.

As serverless functions typically follow a request-response model for data
interchange it is the user’s responsibility to serialize and deserialize all data
that is required for remote execution. Furthermore, multiple separate appli-
cations have to be written which read and write the payload from the cloud
provider, these different programs have to be compiled and deployed. This
limits modularity and composability making it difficult for libraries to use
serverless functions for acceleration. Lastly, the cloud provider has to be
interfaced with to schedule invocations of the serverless function - this inter-
face differs for each serverless platform resulting in the user being locked
into a specific provider. These issues result in a high barrier of entry for
serverless functions in the world of high-performance applications.

Cppless intends to solve these problems by providing a unified way in which
generic serverless functions can be defined and invoked in the same code

1

1. Introduction

base as the code using these serverless functions. This brings along a variety
of advantages: Functions can be implemented without relying on the inter-
face of a single cloud provider, cppless abstracts away the interface using
an elegant high-level API allowing transparent usage of standard library
container types to transfer data. Furthermore, functions, once deployed,
can be invoked seamlessly through a familiar interface that is both generic
and extensible, but at the same time provides opportunities for optimiation.
This allows users of the cppless framework to use serverless platforms eas-
ily without having to care about the details of how the data is transferred.
At its core, this creates another level of abstraction around execution where
the same code can be executed using different serverless platforms. Further-
more, the proposed framework makes accelerated programs more modular
and composable, allowing libraries to use serverless functions for accelera-
tion.

1.1 Organization of the Thesis
We start by analyzing the prior work in this area of research in section 2.1.
We then discuss the main challenges that Cppless has to face, comparing
our solution to existing work in section 2.2. In chapter 3 we go over the
design of the cppless: Because cppless is by itself split into two parts, one
that integrates into the compiler implements language extensions and one
that builds on top of these language extensions, this chapter along with its
succeeding one is split similarly. Once the design is discussed, chapter 4
covers the implementation of the cppless framework. Next, we discuss the
performance and efficiency of the cppless framework in chapter 5. Here, we
also discuss the limitations and outline further work in this area of research
in section 6. Finally, we present the conclusions of this thesis in chapter 7.

2

Chapter 2

Background

2.1 Prior Work

2.1.1 Lithops

Lithops, first presented in [9], is an ‘extensible, multi-cloud framework for
transparently scaling regular and multiprocess Pythonic programs in the
cloud’. At its core Lithops allows users to write programs utilizing serverless
functions in a massively parallel fashion. It provides users with a familiar
interface, similar to that of the built-in multiprocessing library. Once an
action that normally would spawn a new process is invoked by the user,
the executor part of Lithops will analyze the module tree of the current
program and serialize all modules that the function which shall be offloaded
needs to execute. This package of modules is uploaded together with the
required data to the storage backend. The Code is then fetched together
with its associated data by a serverless worker which communicates with
the Lithops host using a Redis server. Once the data is deserialized, the
function is executed and the data is written back into the storage backend.
The host is notified using the Redis server once the result is uploaded.

Interprocess communication objects provided by Python’s multiprocessing
module are reimplemented through implementations backed by the com-
mon Redis instance. It should be noted that Lithops advocates for using a
generic worker: A single serverless function is deployed ahead of time, this
worker will then download the required code from the storage backend once
it is notified of a new invocation. This eliminates the potential overhead of
function registration at runtime. Furthermore, the authors argue that this
mitigates cold starts because the generic worker function can be used for
different offloaded python functions because it downloads the relevant code
itself from the storage backend.

Figure 2.1.1 demonstrates the usage of Lithops to compute an estimation

3

2. Background

1 from lithops.multiprocessing import Pool
2 import random
3

4 def is_inside(n):
5 count = 0
6 for i in range(n):
7 x = random.random()
8 y = random.random()
9 if x * x + y * y < 1:

10 count += 1
11 return count
12

13 np, n = 96, 15000000000
14 part_count = [int(n/np)] * np
15 pool = Pool(processes=np)
16 count = pool.map(is_inside, part_count)
17 pi = sum(count)/n*4
18 print("Estimated Pi: {}".format(pi))

Figure 2.1: A simple example of how to use the lithops multiprocessing module

of pi using a classic Monte-Carlo approach: The function is inside is of-
floaded to a serverless worker and executed in parallel. The results are then
aggregated and the final result is computed. The interface of Lithops is
transparent and elegant: It doesn’t require any changes to the code that is
offloaded. The user can directly offload functions without having to worry
about the underlying infrastructure. This is especially useful for users who
are not familiar with serverless platforms.

2.1.2 Crucial
Crucial, presented in [1], is ”a system for the development of stateful dis-
tributed applications with serverless architectures”. Function invocations
are abstracted as threads that execute Runnables, similarly to how built-in
Java Threads execute Runnable instances. Just like in Lithops, a generic
serverless function is used, which, when invoked, initializes the Runnable
class and runs the code with the supplied parameters. Due to the limitation
that only Runnable is supported no data can be returned directly from the
offloaded task, instead synchronization mechanisms have to be used.

Crucial uses a distributed shared object (DSO) layer for managing mutable,
shared state. DSO objects are identified by a shared key and can be modi-
fied using atomic operations, allowing imperative algorithms to be ported
seamlessly. Method calls on DSO objects are executed on DSO servers, thus
allowing fine-grained updates.

Shared data, in the case, that it is immutable, can also be shared using object
storage, the authors mention that this is especially relevant for the case of

4

2.1. Prior Work

input data which is often immutable.

1 public class PiEstimator implements Runnable {
2 private final static long ITERATIONS = 100_000_000;
3 private Random rand = new Random();
4 @Shared(key = "counter")
5 crucial.AtomicLong counter = new crucial.AtomicLong(0);
6

7 public void run() {
8 long count = 0;
9 double x, y;

10 for (long i = 0 L; i < ITERATIONS; i++) {
11 x = rand.nextDouble();
12 y = rand.nextDouble();
13 if (x * x + y * y <= 1.0) count++;
14 }
15 counter.addAndGet(count);
16 }
17 }
18

19 List<Thread> threads = new ArrayList<>(N_THREADS);
20 for (int i = 0; i < N_THREADS; i++) {
21 threads.add(new CloudThread(new PiEstimator()));
22 }
23 threads.forEach(Thread::start);
24 threads.forEach(Thread::join);
25 double output = 4.0 * counter.get() / (N_THREADS * ITERATIONS);

Figure 2.2: A simple example of how to use of Crucial

Figure 2.1.2 demonstrates the usage of Crucial, once again by computing an
estimation of pi. The Crucial library provides a shared atomic long which is
used to aggregate the results of the offloaded tasks. The Crucial library is a
bit more verbose than Lithops, but it provides a more powerful interface.

2.1.3 Kappa

Kappa, presented in [13], allows users to utilize serverless functions using a
familiar concurrency API by providing implementations for common prim-
itives such as tasks and futures which offload work to a serverless environ-
ment. A process called checkpointing allows the use of long-running tasks
on time-bounded serverless platforms. For this purpose, Kappa uses a com-
piler to add code that automatically commits checkpoints. These save a con-
tinuation of the current frame to the storage solution of the cloud service
provider. Concurrency is provided using an API modeled after Python’s
built-in multiprocessing package which thus should be familiar to users.

5

2. Background

2.2 Comparison to Existing Frameworks

The major difference between Cppless and the prior work presented here is
the programming language supported by the framework. Both Python and
Java provide built-in mechanisms with which the internal byte-code of func-
tions and classes can be extracted, which facilitates remote execution as the
required metadata can simply be extracted, serialized, and send over to the
cloud provider. Furthermore, the dependencies such as globals and libraries
can be analyzed using runtime reflection features. The cross-platform com-
patible byte-code can thus easily be transferred at runtime from the host
machine to the serverless environment.

This mechanism can’t be ported directly to C++: The compiled machine
code isn’t portable and offloading all functions can lead to code-size issues:
Different functions might require different dependencies and different cloud
provider configuration options. Thus in cppless, functions that are offloaded
at runtime have to be annotated in the source code indirectly such that the
required code can be compiled for the target architecture of the serverless
environment. This means that in cppless the execution packages for the
offloaded code can be produced ahead of time, requiring the use of compile-
time programming features to select functions for remote execution. How-
ever, this limits the behavior of Cppless compared to the other frameworks
mentioned here but is expected due to the less dynamic nature of C++.

The compile-time integration of the architecture results in Cppless support-
ing a diverse set of host and offloading architecture combinations.

Furthermore, due to raw pointers and other low-level data structures, data
in C++ programs can’t be serialized and deserialized generically. Thus the
task of providing serialization methods is left up to the user of the frame-
work. The serialization library used for Cppless already provides imple-
mentations for most standard library types, thus these types can be used
straightforwardly. Cppless also provides a generic serialization method for
closure types which allows these types to be used without any additional
effort.

Similar to Lithops, cppless models remote invocations in a similar way to
how threads are represented locally. Given a sufficient invocable, task in-
vocations can be started and waited upon. However, in contrast to the
three frameworks presented here, cppless only provides shared-nothing par-
allelism so far. Adding support for shared operations should be possible
using the existing language extensions and is left to further work.

In addition to the thread-style low-level interface, Cppless also provides a
task-graph interface with which multiple task invocations can be connected
at runtime using an elegant interface.

6

2.3. Serverless Environment

2.3 Serverless Environment

The general concept that we present here can be applied to a large majority
of serverless environments and only minimal restrictions are enforced. To
provide an overview of the inner workings of a serverless environment, we
will go over the architecture and interface of AWS. Most other serverless
environments follow a similar architecture and interface, thus the concepts
presented here can be applied to them as well.

2.3.1 AWS

AWS offers a serverless environment through AWS Lambda. Developers can
upload code to AWS Lambda in multiple languages which AWS supports
itself, but they also support the use of a custom runtime where all pro-
gramming languages which are supported on the target architecture can be
used. Specifically, the user can upload a ZIP file (either directly or through
AWS S3) that contains an independent executable. Once uploaded an AWS
Lambda function can be invoked through an HTTP endpoint where the re-
quest data of the invocation is passed to the code of the Lambda function.
Once the code of the Lambda terminates the return value of the invocation
is sent back to the API client as the HTTP response.

Internally, AWS allocates a dynamic number of micro-VMs in which the
code is executed. Due to the overhead of creating such a VM, instances are
reused and kept alive for this matter. The amount of instances existing in
parallel depends on the concurrency of the incoming requests. In general,
we distinguish between warm and cold invocations: warm invocations are
invocations that are handled by VMs which were created previously, cold
invocations on the other hand exhibit a higher latency because a new micro-
VM has to be started.

Runtime

AWS doesn’t execute the uploaded executable each time a request has to
be processed instead, the code has to interface with the runtime interface:
The process is kept alive for the full duration that the instance is active.
When new requests need to be handled an invocation-id is transferred to
the user process through the standard input. The user process is responsible
for retrieving the payload and sending the response by interfacing with an
HTTP API available on a local endpoint.

Because the process itself survives multiple invocations the value of global
variables persists as well in some cases. This process can also be used to our
advantage in some cases.

7

2. Background

2.4 C++
We generally assume high-level knowledge of C++ and thus don’t go into
detail about the language itself. The following section will explain some
details about lambda expressions which should clear up the notation used
in the following sections.

2.4.1 Lambda Expressions
Lambda expressions in C++ work in a similar way to how they work in
many other languages, allowing users to defer the execution of a block of
code while allowing the block to use variables from the outer scope. For this
thesis specifically, some terminology and their internal representation are
of importance. The result of a lambda expression is an object on which an
overload of the call operator is defined. The body of the overloaded operator
is the body as defined in the lambda expression itself. Internally the lambda
expression, therefore, creates a stack-allocated instance of an anonymous
record declaration which is called the closure type of the lambda expression.

Lambda expressions can reference variables from the outer context, through
a process called capturing and there are two options for how this capturing
should be done: Either by value or by reference - in both cases, a hidden,
inaccessible field is created in the closure type which is used to store that
value or reference. When constructed through the lambda expression the
values are either copied into these fields or references to the local variables
are created. By default all fields are const, but they can be collectively made
non-const by applying the mutable operator to the lambda expression.

Although the closure type is anonymous it is possible to refer to the under-
lying closure type through the use of decltype, however, the closure type
can only be default-constructed if no variables are captured and no default-
capture is specified.

Lambda functions can also be generic: If this is the case the method that
overloads the call operator for the closure type is generic.

8

Chapter 3

Design

The concept of serverless is at its core the following: Users can upload a
program to the cloud provider and that program can then be invoked with
different parameters. Usually, the code is submitted directly, some cloud
providers also allow containers or executables to be uploaded. This program
is associated with some form of id, which later can be used to communicate
to the cloud provider that you want the function to be executed with a
specific set of inputs. Once the execution terminates the caller of the function
gets the result back and the execution environment is destroyed eventually,
destroying the state of the program.

Cppless is a single-source programming model for serverless computing,
which means that both the serverless functions themselves and the host code
calling them are authored in the same set of source files. A simple example
can demonstrate this:

1 int bar(int x) {
2 return x + 42;
3 }
4

5 int foo(int y) {
6 cppless::task baz = [=](int x) { bar(x); };
7 return cppless::dispatch(baz, y);
8 }

To indicate that the function should be offloaded, the function bar is wrapped
in a task object. Each task type corresponds to a single serverless function,
which is deployed at compile time. Calls to cppless::dispatch are trans-
lated into function invocations on the serverless platform. The argument x
and the return value are transparently serialized and deserialized between
the host and serverless platform. The overall process is depicted in figure
3.1: foo is compiled to an executable using a standard C++ compiler. The
task wrapping bar is compiled to an executable for the serverless platform

9

3. Design

Figure 3.1: Overview of the architecture

int foo(int x)

int bar(int y)

task baz

Compilation Unit

Host
Executable

Serverless
Function

Compilation Result

Host Process

Deployment
Script

Serverless
Environment

Compile Time Run Time

code

code &
metadata

id &
Deployment Package

id &
serialized
arguments

serialized
result

and is deployed. foo, when called computes the id of the serverless function
for baz and invokes it using the API of the serverless platform. The result is
deserialized and returned to foo.

Cppless has a two-part design: It consists of a set of proposed language
extensions, implemented as changes to the llvm compiler infrastructure as
presented in [6], and a user-space interface written as a header-only library
that uses the language extensions to provide an elegant API. These two parts
are complemented by a set of tools that aid in the development of software
using cppless. The language extensions are vital to the communication be-
tween the user-space library and outside tools and thus are discussed first.

Language extensions are used to achieve automatic compilation of serverless
functions once they are declared in the source code as such, furthermore,
the proposed language extension enable seamless serialization and one-way
communication between the source code and the deployment script. The
runtime library is used to provide serialization support and implements
abstractions over cloud-provider APIs.

Compared to similar work for other programming languages, cppless does
more work at compile-time, thus reducing the overhead that is incurred at
runtime. This requires the analysis of which functions have to be offloaded
at compile time. Cppless does this by requiring the user to wrap offloaded
work in a task type: Wrapping the work that we want to offload in a task
type indicates that we want to create a serverless function from it, to which
we can then dispatch invocations.

10

3.1. Language Extensions

3.1 Language Extensions

The main goal of cppless is that the process of offloading work should be
seamless and easy. It becomes evident rather quickly that C++ itself doesn’t
offer an interface suitable to implement transparent offloading, thus lan-
guage extensions are required. First of all, a way to annotate a function
to be offloaded is required such that the corresponding resources for the
serverless environment can be created after compilation. Furthermore, a
method for handing over metadata from the C++ executed during compile
time to the deployment script is required, this enables us to generate ids
and configuration parameters using the same source code. As a result of
the architecture of cppless, the same identifier for a function has to be gen-
erated both at compile time when deploying the function and at run time to
invoke the function using the cloud provider API. Finally, the data required
for the execution has to be serialized and deserialized between the host and
the serverless platform. To make this seamless for certain types a language
extension is required.

3.1.1 Alternative Entry Points

A major novelty of cppless is that it is a single-source programming model,
i.e., the fact that a user can define serverless functions in the same compila-
tion unit in which your host code is defined, allowing transparent integra-
tion. This poses the question of how this code is separated and packaged
into units that can be deployed to a serverless function provider. Cppless
solves this problem by introducing the concept of alternative entry points:
Regular programs only have one entry point from which the program starts
executing. A function, usually called main, is the entry point of a program
and only one main function is allowed. On the other hand, programs mak-
ing use of cppless have multiple entry points, one for the host program and
multiple alternative entry points which the serverless functions will start
once they are invoked. That means that effectively multiple programs are
defined in a single compilation unit. Each compilation unit can have an ar-
bitrary number of alternative entry points, but the completed program must
only have a single main function. The proposed language extension allows
functions to be annotated with an attribute attribute((entry)), marking
the annotated function as an alternative entry point.

Whereas the compilation of regular programs only results in a single exe-
cutable, the result of the compilation of programs using cppless is a collec-
tion of multiple executables, one for each alternative entry point in addition
to the main executable. The alternative executables are an exact clone of
the main executable, but with the main function replaced by the alternative
entry point which the executable was generated for.

11

3. Design

Figure 3.2 shows the compilation process for two compilation units. main.o
is the output when the two source files are compiled for the host system
where additional entry points are ignored. When applying a compiler flag
additional entry points are respected and two additional files are generated.
These can then be read by a separate deployment tool to deploy the server-
less functions. In addition to that the compiler also emits a file that we will
refer to as a manifest file - the specific format of this file is discussed later in
this section.

Figure 3.2: Overview of the compilation process with an alternative entry point

main.cpp

a.cpp

input files

res.out

res.json

res-alt-0.out

clang output
for serverless

main.out

clang output
for host

deployment
script

clang
-cppless

-falt-entry

clang
-cppless

Compilation

On the language level, alternative entry points are globally declared func-
tions or static methods in your code that result in a separate executable
binary. In their bare form, alternative entry points are declared as specially
annotated functions, annotating a function has the following implications:
The function is compiled when its surrounding template context is instanti-
ated even if the static function itself is not used. This is necessary because
the alternative entry point in most cases isn’t called in the host program di-
rectly, but emitting it when the closest template context is instantiated allows
other methods of the same class to assume that the alternative entry point
is available. Furthermore, alternative entry points are treated as the main
function and as such have to return an int and have two parameters acting as
argc and argv with their respective types. These parameters are used to start
the serverless function, the actual payload data is usually available using an
API through which rich data can be exchanged. For serverless platforms
which don’t allow users to provide an executable directly, workarounds can
be used where a shared library is generated and the main function of that
library is called by the serverless platform through a custom wrapper that

12

3.1. Language Extensions

is added by a deployment script.

Lastly, when the source file is compiled and the cppless options are enabled,
an additional object file is created for each one of the alternative entry points.
These object files have their original main function - if any - replaced by the
function which was declared as an alternative entry point.

A minimal application making use of the alternative entry point feature
could look like this:

1 __attribute((entry)) auto alt_entry(int argc, char* argv[]) -> int
2 {
3 std::cout << "Hello alt_entry" << std::endl;
4 return 0;
5 }
6

7 auto main(int argc, char* argv[]) -> int
8 {
9 std::cout << "Hello main" << std::endl;

10 return 0;
11 }

This compilation unit has two entry points: One main entry point denoted
by the main function and one alternative entry point defined by a function
called alt entry. Once compiled this would result in an additional binary
file called a alt 0.out in addition to a.out. This object file, once linked and
executed, would output ”Hello alt entry” while running a.out would output
”Hello main”.

The resulting object files are numbered consecutively. This poses another
question: How can we identify the different alternative entry points once
they are in their compiled form? To solve this problem the compiler emits
a manifest file in addition to the main object file and the enumerated object
files of the alternative entry points. This manifest file which encodes meta-
data about each alternative entry point. This metadata is simply a list of
objects containing the path of the emitted object file and the mangled name
of the function that was annotated. Furthermore, because some data can’t
be fully determined by the function name itself, the cppless language exten-
sions also provide users with the ability to pass opaque text through to the
metadata file.

For this purpose we introduce a second annotation: metadata(data) - the
metadata attribute can only be applied to alternative entry points and sets
the opaque user-defined metadata for the entry point. data can be an ar-
bitrary expression that is evaluated at compile time. The result has to be a
fixed-string - a string with static storage containing a sequence of bytes. This
byte-sequence could also encode structured data, but as the data is treated
in an opaque way this detail is left to the user-space implementation.

13

3. Design

An example of a manifest file could look like this:

1 {
2 "entry_points": [
3 {
4 "original_function_name": "_ZN7cppless4tash...E4mainEiPPc",
5 "filename": "renderer.cpp_alt_0.o",
6 "user_meta": "BAAAAAQCAAAAEWVwa...gX1pUUzhidmhfbm9kZT4="
7 }
8]
9 }

The key original function name contains the name of the function which
was annotated as an alternative entry point in the mangling format of the
target used to compile the compilation unit and thus cannot be used to
identify a function across different architectures or compilation units.

In the above example user meta is the binary encoding for the following
JSON structure, encoding configuration options for an AWS lambda that
should be created for the alternative entry point:

1 {
2 "ephemeral_storage": 64,
3 "memory": 2048,
4 "timeout": 10,
5 "identifier": "./benchmarks/custo..._ZTS4tile, _ZTS8bvh_node>"
6 }

This user-defined metadata is propagated through the compilation process
and can be used by the deployment tool to create the required cloud re-
sources.

Linking

Complex C and C++ programs are mostly made up of multiple different
compilation units, i.e., sets of source files that were compiled independently
from each other only to be linked together either into a library or into an
executable. This helps with incremental compilation and parallelism as com-
pilation units are independent of each other and thus don’t necessarily need
to be recompiled all at once. Cppless thus needs to integrate into this process
in a platform-independent way. As a result of the compiler output chang-
ing from a single output file into multiple output files, the linker input file
format has to be changed too. To be compatible with all linkers which clang
already supports cppless introduces a meta-linker called cppless-ld. It ac-
cepts all the command line arguments that the compiler driver accepts and
in addition to that supports a few custom ones which can be used to con-
figure cppless-ld itself. Cppless-ld is automatically selected as part of the
compiler toolchain whenever the alternative entry point feature is enabled
using the respective flag.

14

3.1. Language Extensions

Cppless-ld takes the output of multiple compiler invocations with the alt-
entry option being applied and merges them together into a new set of
output files. It produces one regular output file, one additional output file
for each alternative entry point included in the input set, and outputs a
concatenated version of all of the manifest files included in the set of inputs.

The output of cppless-ld is - depending on the configuration - a set of bina-
ries or a set of object files that can once again be used by cppless-ld again.
Cppless-ld uses the linker as a black box and doesn’t try to understand the
output of the linker. This makes the process portable across different plat-
forms and linkers.

Figure 3.3: Overview of the linking process of two files: main.cpp and a.cpp.

main.cpp

a.cpp
(has an alt-entry)

input files

clang
-cppless

-falt-entry
main.json

main.o

clang output

a.json

a.o

a-alt-0.o

clang output

clang
-cppless

-falt-entry

ld

ld

cppless-ld

res.out

res.json

res-alt-0.out

cppless-ld output

An example is visualized in figure 3.3: Two files main.cpp and a.cpp are
linked together using cppless-ld, a.cpp defines one alternative entry point.
The result is that three output files are produced: One containing the main
executable, one manifest file, and one executable for the alternative entry
point. Internally two linker invocations are performed: One for the main
executable and one for the alternative entry point.

Deployment

Once all compilation units are compiled and linked together we end up
with one set of output files: The main executable, a set of executables for
the alternative entry points, and a manifest file containing metadata about
the alternative entry points. This data can now be used to deploy the exe-
cutable to a cloud provider, but it is also versatile enough to be used in other
contexts too.

Deployment is not integrated into the compilation flow itself. It is the users
responsibility to write or invoke a deployment script for the serverless envi-

15

3. Design

ronment that they wish to use. The deployment script can simply be invoked
on the output files using a build management tool like make or CMake. The
deployment script can then use the manifest file to identify the alternative
entry points and create the required cloud resources.

3.1.2 Lambda functions
In modern C++, lambda functions are everywhere: They make expressing
callback functions easy by allowing users to define them inline with the
function call that the callback should be passed to. As offloading work to
a serverless platform also requires the user to provide a function that repre-
sents the item of work that should be executed, it is essential that lambda
functions can be used seamlessly. Because serverless functions don’t share
memory with the host, data that is needed for execution has to be serialized
and deserialized to be able to execute the code in the execution environment.
To allow lambda functions to define items of work, they must be serializable
together with their arguments. Once both the task and the arguments with
which it shall be executed are serialized, they can be sent off, deserialized
again, and the task callback can be invoked when the serverless function
itself is triggered.

To serialize and deserialize lambda functions, their captured variables have
to be serialized and deserialized too. This poses a challenge that cannot be
overcome in C++ as it is specified right now because the hidden lambda cap-
ture fields are inaccessible. Thus we propose a language extension that can
be used to write a serialization/deserialization method for arbitrary closure
types. The underlying record declaration of the closure type is extended
with two methods: A static constexpr method which can be used to access
the number of captures that lambda functions of this type have and a second
overloaded method, templated with a non-type-template parameter of inte-
ger type which can be used to access l-value references of the underlying
fields. The non-type-template parameter acts as an index into a sequence of
capture fields. These accessor methods can be used to both read and write
the fields.

The following example visualizes these language extensions:

1 auto main(int argc, char* /*argv*/ []) -> int
2 {
3 double m = 12;
4 auto lambda = [argc, m](int /*q*/)
5 { std::cout << argc << " " << m << std::endl; };
6

7 constexpr int capture_count = decltype(lambda)::capture_count();
8 auto first_capture = lambda.capture<0>();
9 auto second_capture = lambda.capture<1>();

10

16

3.1. Language Extensions

11 std::cout << "first: " << first_capture << std::endl;
12 std::cout << "second: " << second_capture << std::endl;
13

14 lambda.capture<0>() = 13;
15

16 lambda(5);
17

18 return 0;
19 }

The lambda function defined in this example captures two variables from
the surrounding context: argc and m. Thus ::capture count returns the
integer 2 as a constant expression. The accessor .capture<i> () returns the
l-value reference to the underlying fields in a stable, but unspecified, order,
thus two different outputs are viable for this example.

3.1.3 Identification

These alternative entry points can now be deployed to a cloud provider of
your choice, but the problem of how different functions can be identified re-
mains. Once we have an executable that shall be deployed, we need a name
for the function, specifically an identifier is required that the host program
can also compute, as it needs to know which function to dispatch invoca-
tions to. The architecture which the compiled functions use might not be
the same as what the host system is using, thus using the natively gener-
ated mangled name on each platform can result in mismatches. The most
straightforward solution to this problem is using the same mangling scheme
for all platforms to generate this identifier. For this purpose, we introduce a
macro-like function called builtin unique stable name which can be ap-
plied to a type and returns a literal-like string containing the mangled name
of the type under the Itanium mangling scheme.

The mangled names are, however, still not always unique in the resulting
binary, to illustrate this we can consider a simple example:

1 // a.cpp
2 static inline auto get_task() {
3 return []() { return 13; };
4 }
5 auto get_task_a() {
6 return __builtin_unique_stable_nam(decltype(get_task));
7 }
8 // b.cpp
9 static inline auto get_task() {

10 return []() { return 12; };
11 }
12 auto get_task_b() {

17

3. Design

13 return __builtin_unique_stable_nam(decltype(get_task));
14 }

This program will compile and link successfully because both get task dec-
larations will at most result in a symbol with local / internal linkage the
return value of both get task a and get task b is the same. The solution
is once again straightforward: We simply have to prepend the compilation
unit that was used as an entry point to the compiler invocation to the man-
gled name, making the resulting expression unique in most cases. There are
still some obscure cases where a single source file is compiled several times
with different compilation options and then linked together with itself, but
as there is no generic way of solving this problem we are not handling these
cases for now.

Inline namespaces pose a problem as different implementations of a library
might be chosen depending on the host system. This specifically becomes
evident when standard library types like std::string are used, which re-
solves to different templated classes depending on the C++ standard library
implementation used. To avoid ABI problems, standard library implemen-
tations usually nest public symbols in an inline namespace, allowing li-
braries compiled against different C++ standard library implementations
to be linked together. However, this also means that classes containing stan-
dard library types in their template instantiation, result in different mangled
names depending on the standard library implementation used. To avoid
this problem we use a slightly modified version of the Itanium mangling
scheme where inline namespaces are ignored. This change only applies to
the output of builtin unique stable name.

3.1.4 Serialization

All captured variables and the set of parameters passed to a function invoca-
tion have to be serialized to facilitate remote execution. As previously noted,
there is no general way of serializing structured data in C++, especially be-
cause pointers might point to sub-objects of heap-allocated instances.

For example, in the following listing, we would need to serialize the entire
array because it is legal to refer to the preceding element, but there’s no way
of finding all parent objects:

1 auto main() -> int {
2 std::array<int, 3> x;
3 int *b = x[1];
4 auto fn = [&]() {
5 return b[-1];
6 };
7 auto w = offload(fn, {});
8 }

18

3.2. Low-level dispatcher API

The captured type is a plain int *, but accessing elements that occurred in
preceding elements of the parent array is valid.

To solve this problem, serialization is deferred to the user: Cppless uses the
Cereal [4] serialization library, which includes serialization support for most
standard library container types. However, support for custom types has to
be added by the user to be able to use them in remotely-executed tasks.

Because the serialization functions of closure types are created using meta-
programming features, we can require that the serialization functions of
captured types are accessible. This works in an analogous way for argu-
ments too: The user is thus alerted at compile-time when they try to use
non-serializable types as a parameter or capture one in a task created from
a lambda. This is a clear advantage over runtime solutions for single-source
solutions which allows the compiler to catch errors early.

3.2 Low-level dispatcher API
The dispatcher interface provides a low-level abstraction to an underlying
serverless platform. It only puts minimal constraints on the abilities of the
serverless platform and allows the user to define the actual dispatching
mechanism.

The dispatcher interface can be used as follows, assuming that instance
was initialized previously:

1 int a = -1;
2 auto t0 = [=]() { return a + 3; };
3 int t0_result;
4 cppless::dispatch(instance, t0, t0_result, {});
5 instance.wait_one();
6 // t0_result can be accessed

The creation of an alternative entry point is abstracted away: It is created
automatically because cppless::dispatch is instantiated with the concrete
closure type. Internally, when a closure is provided, the default task type
of the dispatcher is instantiated, that task type then exposes an alternative
entry point. As all captured variables are serializable, a serialization and de-
serialization function is synthesized automatically, archiving the captured
variable a. The dispatch function itself serializes the argument and both se-
rialized parts are passed to the serverless environment. There, the task is
executed and the result is transferred back to the host. The result is dese-
rialized into t0 result directly and is available once the task has finished
execution.

This interface is already generic over the specific serverless platform in use
and thus allows the definition of high-level abstractions without the need to
implement the low-level details.

19

3. Design

3.2.1 Dispatcher

Dispatchers act as factories that can be used to create dispatcher instances,
which can be used to offload the actual work and are intended to do the
actual networking. Requiring this factory pattern brings several benefits:
The underlying state of an instance might be opaque and can contain OS-
specific handles that are not transferrable. The dispatcher itself however is
only supposed to store the data which can be used to create connections
to the serverless platform. This distinction allows users to copy, serialize
and transfer the dispatcher itself while creating instances locally. Making
the dispatcher a factory also means that the user can utilize it for creating
different namespaces and to parallelize work by creating multiple instances
providing their own separate thread-safety guarantees.

Once an instance is created, compatible tasks can be dispatched by calling
the dispatch method of an instance, providing it with arguments for the
tasks. Each task invocation, once dispatched, is associated with an identi-
fier unique in the context of that instance. The user is also responsible for
providing the storage space into which the result shall be written once the
task invocation is completed. To await tasks to complete, instances provide
a wait one method, which blocks until an arbitrary task finishes, returning
the id of each dispatched task exactly once.

Once a task invocation id was returned by the dispatcher instance, the result
can be read from the storage space provided by the user. The interface of the
wait one method allows a diverse set of waiting behaviors, such that for ex-
ample, a user could wait for the first one of two tasks to finish. Furthermore,
this event-loop style allows the user to react to every task completion indi-
vidually, which is useful for example when a task invocation is associated
with a callback.

The dispatcher interface is supposed to provide an interface for reliable ex-
ecution: Thus it is expected to handle errors and retry the task if the error
indicates that the task invocation shall be retried. It should also be able
to handle an arbitrary number of concurrently running task invocations.
Furthermore, tasks may be invoked dynamically, even after the wait one
method has been called.

An example of a dispatcher interaction is depicted in Figure 3.4: A client is
dispatching two task invocations using the dispatch method of an instance.
The dispatcher is responsible for serializing the data and communicating
with the serverless platform. Each invocation is associated with a unique id,
which is returned to the client. The client then waits for the first invocation
to finish using the wait one, in this case task 1 finishes first. This is indicated
by the return value of the wait one call. Afterward, the client waits for the
remaining invocation to finish.

20

3.2. Low-level dispatcher API

Figure 3.4: A sequence diagram depicting an interaction with the dispatcher interface
Client Dispatcher Task 0 Task 1

dispatch(A)

task + args

id: 0
dispatch(B)

task + args

id: 1

wait one

res

id: 1

wait one

res

id: 0

3.2.2 Task
Tasks are an abstraction that provides a uniform interface to an underlying
dispatcher. Tasks have to ensure for themselves that an alternative entry
point is created, but have to delegate the actual execution to the dispatcher.
They are the analogue to the std::function type in C++: std::function
instances don’t do anything themselves, but callables can be converted into
std::function instances to retarget the std::function to the callable. The
same holds for cppless::task: Sendable tasks can be converted into cppless::task
instances, but the specific behavior is determined by the implementation.

Tasks can both be sent and received. To allow them to be sent, an implemen-
tation of the serialize method has to be provided, which will be used by
the dispatcher to serialize the task. Furthermore, it has to provide a method
returning the id of the task, this id shall be unique for each different type
of task and is used by the dispatcher to invoke the task using the API of the
serverless platform.

Task implementations are responsible for using the dispatcher to define an
alternative entry point that the corresponding deployment script can process.
The task implementation has to provide a configuration type, a receivable
type that is callable, and an id. These values are passed to the dispatcher
which will wrap the receivable variant of the task using the serverless plat-
form API and will serialize the id together with the configuration into the
user-defined metadata of the alternative entry point.

We provide a lambda task class that, given a dispatcher type, a compile-time

21

3. Design

configuration, and a lambda function implements the task interface. The se-
rialization and deserialization methods are synthesized automatically using
the aforementioned lambda-reflection mechanism. To create lambda task
instances without too much overhead a lambda task factory can be used
which creates instances of the correct type. This indirection allows the user
to write code that is generic over the dispatcher and the configuration.

3.2.3 User-facing API
To use a dispatcher directly the dispatcher type has to be instantiated and
an instance has to be created.

A user-facing interface is provided using global overloads of a cppless::dispatch
function, it handles automatic conversion of lambda functions into tasks and
allows specifying config options which are passed to the lambda function
factory. This means that a user can simply call cppless::dispatch with a
lambda function instance, a reference to a result location, and a set of param-
eters, and under the hood, a task will be created transparently. Once tasks
are dispatched the results can be awaited using cppless::wait(dispatcher,
n), which will wait until n tasks finish.

An example using the low-level dispatcher API is shown below.

1 const int n = 100000000;
2 const int np = 128;
3 double pi_estimate(int);
4 int main(int, char*[])
5 {
6 cppless::aws_dispatcher dispatcher;
7 auto aws = dispatcher.create_instance();
8

9 std::vector<double> results(np);
10 auto fn = [=] { return pi_estimate(n / np); };
11 for (auto& result : results)
12 cppless::dispatch(aws, fn, result);
13 cppless::wait(aws, np);
14

15 auto pi = std::reduce(results.begin(), results.end()) / np;
16 std::cout << pi << std::endl;
17 }

First, we create an instance of the default dispatcher for the AWS platform.
Once we create an instance of the dispatcher we can dispatch tasks to it. The
call to cppless::dispatch is instantiated with the closure type and a task is
created. This task is then invoked np times, the results are stored in a vector
and the cppless::wait function is called to wait for all tasks to finish.

Note that a lambda instance is passed to cppless::dispatch and not simply
a function pointer. This is because function pointers aren’t serializable and

22

3.3. High-level graph API

thus cannot be sent to the serverless platform directly.

3.3 High-level graph API
In addition to the low-level dispatcher API, cppless offers a high-level graph
API where a graph can be dynamically scheduled at runtime. It allows the
user to build a graph where nodes consist of either tasks or initial nodes,
these nodes are then connected to each other using edges representing data
movement. The graph interface is split up into two parts: A builder interface
used to construct the task graph and an executor interface used to execute
the task graph once it is built. As the executor might want to store some state
in the node or edge objects the builder wraps around the executor interface
providing both a base layer on top of which the executor can build upon,
and also provides an interface to the creator such that common behavior
can be written generically and be reused.

Once a graph builder instance is created, initial nodes can be created using
the schedule(builder) function. This creates a sender<void> which can be
used as a timing dependency. Task nodes can be created using then which
takes a set of dependencies that are passed to the task as arguments once all
of them are completed.

An example of a graph builder is shown below.

1 auto a = schedule(builder);
2 auto b = then(a, []() { return 12; });
3 auto c = then(b, [](int m) { return m + 1; });
4 auto f = c->future();
5 builder.await_all();
6 std::cout << f.value() << std::endl;

This example creates an initial node a and then creates two task nodes b and
m. The c node is dependent on b. The result of b is passed as an argument
to c and the result of c is written to the future of c.

Once the graph is executed the f future will be ready and the result of c will
be printed to the console.

By default, a host controller executor is provided which uses a central
dispatcher instance to execute the task graph using the best achievable con-
currency. However, the graph builder interface would also allow more spe-
cialized executors to be used, which for example could use specialized prod-
ucts of a cloud provider to do its job more efficiently.

23

Chapter 4

Implementation

We provide an open-source implementation of the previously presented de-
sign: We implement the language extensions on top of the clang compiler
infrastructure and implement a separate user-space library. Both compo-
nents are published as GitHub repositories. Programs using cppless have to
be compiled using the modified clang compiler to ensure that the language
extensions are supported, otherwise the program will not compile correctly.
The language extensions are however designed to optimize the code-editing
experience by ensuring that an unmodified clangd language server can pro-
vide code completion and other IDE-level features.

4.1 Language extensions
The language extensions are implemented as direct modifications to the
clang compiler. The LLVM-project git repository was forked and modified.
The modifications are required due to the restriction that clang doesn’t pro-
vide any interface with which the existing AST can be modified, thus the
plugin API can’t be utilized. Furthermore, some subtleties required mod-
ifications of some core parts of the clang infrastructure. Specifically, the
alternative entry point feature requires modification to the way the backend
compilation process is invoked, which plugins can’t modify. Furthermore,
this allows for a simple, straightforward interface to the language extensions
through the standard command line interface of the clang driver.

New flags were added to the clang driver using the existing infrastructure
for adding new flags. The clang driver also uses flags to communicate
with the clang compiler itself (cc1). A flag called -cppless allowed both
as an argument to the driver and cc1, enables cppless mode in which the
feature detection macro is enabled and some language extensions are en-
abled. A driver flag -falt entry controls whether alternative entry points
are emitted together with their manifest file. Internally, a different flag,

25

4. Implementation

called -falt entry output, is used to communicate between the driver and
cc1. The flag determines the location at which the manifest file and alter-
native entry points are emitted. The flag is only used internally and is not
exposed as a driver flag.

This flag interface allows for two separate compilation modes: Host mod,
where alternative entry points are valid but not emitted, but cppless fea-
ture detection and serialization are enabled, and an offloading mode where
additionally alternative entry points are emitted.

4.1.1 Alternative entry points

Alternative entry points are an essential feature of the process that cppless
uses to emit the executable binaries for serverless functions. They are iden-
tified by being annotated with a special annotation which also gets passed
through the code generation process as an LLVM function annotation.

Clang uses a table definition file to parse annotations, thus it is sufficient to
add an entry to the annotation table definition to add a new annotation. In
this case, an annotation is added which can be applied to functions declara-
tions and CXXMethods.

Clang uses Decl::isUsed(bool); to check whether a declaration is used in
the current compilation unit. This method was modified such that it also
checks whether the declaration is annotated with the AltEntry attribute.
Furthermore ASTContext::DeclMustBeEmitted was modified to also check
for the new attribute. This ensures that the alternative entry points are
emitted to the LLVM module. During LLVM code generation top-level dec-
larations of alternative entry points are eagerly emitted using CGM.addUsed-
OrCompilerUsedGlobal(var);

Templates

Alternative entry points are especially useful in templated contexts: A com-
mon use case for serverless applications will be to wrap a serializable callable
into a class with an alternative entry point. Templated classes are often de-
fined with in-class definitions of their methods, thus we want to handle
cases where the alternative entry point method is defined in the class itself.

In-class definitions of classes are implicitly defined inline by default and
thus are emitted lazily when they are first used. As alternative entry points
are mostly not called directly by the host code this leads to unexpected
behavior where the alternative entry point is not emitted into the LLVM
module, furthermore, the modifications mentioned previously only handle
top-level-declarations. Children of templated contexts are instantiated lazily
such that instantiation of the surrounding class doesn’t trigger instantiation

26

4.1. Language extensions

of all of its methods. Therefore we treat method declarations annotated as
alternative entry points as being used even if they are not referenced. Clang
already implements an annotation called used which leads to this behavior,
alternative entry points are treated as implicitly used. Thus, we modify the
template instantiation, to eagerly instantiate methods declared as alternative
entry points. In templated contexts, this results in the function being emitted
once the surrounding template context is fully instantiated.

Semantic Analysis

Alternative entry points are type-checked as if they were main function def-
initions. We implement this change by reusing the behavior of the existing
semantic analysis of main function definitions to apply the same checks to
alternative entry points. For example, this means that the following code is
invalid:

1 __attribute((entry)) auto alt_entry(char argc) -> int
2 {
3 return 42;
4 }

Compiling this example will generate the following error:

1 first parameter of 'main' (argument count) must be of type 'int'
2 __attribute((entry)) auto alt_entry(char /*argc*/) -> int
3 ˆ
4 1 error generated.

Furthermore, alternative entry points implicitly return 0 if no return value is
specified. This behavior is implemented to stay consistent with the behavior
of main function definitions.

LLVM CodeGen

The LLVM code generation process is modified to support alternative entry
points. Once it is decided which functions are supposed to be emitted, the
expression associated with the metadata attribute of alternative entry points
can be evaluated as a constant expression: The expression node is evaluated
using EvaluateAsConstantExpr, the result is an APValue which we inspect.
We expect the result to be a fixed string1 of char values, thus we rely on
its internal structure to read out the string value. Internally, fixed string
instances are stored as struct instances with a single fixed-sized array mem-
ber, thus this member is accessed and the result is converted at compile-time
to an std::string available to the compiler program.

1fixed string is a string implementation backed by an array of compile-time known
size, this allows them to be used in constexpr contexts more easily.

27

4. Implementation

This process only needs to be done in the case that alternative entry points
are enabled. The resulting binary string is attached to the LLVM function to
which the current function is emitted, through an LLVM function attribute.
The general fact that a function was generated from an alternative entry
point is also denoted using an attribute.

BackEnd CodeGen

During backend code generation we ensure that the fact that a function is an
alternative entry point is propagated through the compilation pipeline. The
LLVM function created from the instantiated method is annotated with an
LLVM attribute to ensure that it can be treated as such in the backend pass
setup. Once the LLVM module is generated by the CodeGen module, the
module is cloned for each alternative entry point, the entry point function
itself is renamed to main and the original main function is removed in the
case that there is one. We trigger code generation for each one of these
modules, resulting in separate object files in the target object file format for
each alternative entry in addition to an original, unmodified binary. At this
point, we also output the manifest file.

Linking

The main interface to clang is its driver, which provides a command line
interface to the underlying compiler. Its main job is to parse the command
line arguments and invoke the appropriate tools to perform the desired task,
it does this in a two-step process: At first, the arguments are passed and a
list of tool invocations is computed, afterwards, the tool invocations are exe-
cuted in topological order. The driver is both used to compile C / C++ files
to object files, but also to link object files into executables. Build tools will
usually use the driver to link the compiled files due to the uniform inter-
face which it provides, thus the driver planning process has to be modified
to produce multiple output files when the input file contained alternative
entry points. Because the specific linker invocations which are required are
only known once the compiler invocation is completed, we have to defer the
process of planning the linking phase by delegating the task to a separate
tool.

To implement alternative entry points we introduce a new tool called cppless-ld
which acts as a cross-platform wrapper for the underlying linker, linking
multiple alternative entry output files together. This executable is repre-
sented internally as a linker tool and it is used by the driver to link when
the appropriate command line argument is passed.

Internally in clang, different platforms are supported by selecting between
toolchains, toolchains are a list of tools that provide different functionality

28

4.1. Language extensions

for each required step, the most important ones being compilation, assem-
bling, and linking. To provide support for cross-platform linking cppless-ld
accepts the same command line interface as the clang driver itself, thus the
driver will simply proxy its arguments to cppless-ld, adding several addi-
tional flags to instruct cppless-ld what to do. cppless-ld, implemented as
a separate executable, starts by reading the manifest files of the input files
and proceeds by invoking the original clang driver to link the different entry
points together. One regular output file is produced which is the result of
linking together the main object files of each input argument. In addition to
that, one additional output file is produced for each alternative entry point
in the set of inputs. Furthermore, the manifest files are merged and written
to the output file.

The method for implementing alternative entry points presented here is fo-
cused on correctness and platform compatibility. Because the object files
are treated as opaque data and no new data is added to them, the pro-
cess should be compatible with any platform which clang supports. This
means that host-platform executables like Mach-O and ELF are supported
and tested, but in theory, WebAssembly and LLVM-Bitcode files2 should
also work with this approach.

4.1.2 Lambda Functions
As proposed in the design chapter, we introduce a compile-time reflection
mechanism for inspecting and accessing the captured variables of closure
types. We implement the proposed mechanism by adding methods to the
anonymous record declaration of lambda expressions. Internally, after pars-
ing a lambda function the method BuildLambdaExpr is called with informa-
tion from the parser. This method creates a new anonymous record decla-
ration in which the captured variables are saved as fields. This record type
previously only had an operator overload for the () operator, which is used
to invoke the lambda expression. In addition to that, several conversion op-
erators are conditionally added, allowing some closure types to be converted
to function pointers.

An example of the AST returned previously is shown below, the AST shown
here is simplified:

1 TranslationUnitDecl
2 |-VarDecl cinit
3 | `-ExprWithCleanups
4 | `-CXXConstructExpr noexcept' elidable
5 | `-MaterializeTemporaryExp xvalue
6 | `-LambdaExpr
7 | |-CXXRecordDecl

2clang uses bitcode files as its output format to implement link-time-optimization

29

4. Implementation

8 | ` ...
9 `-CXXRecordDecl

10 |-DefinitionData lambda
11 `-CXXMethodDecl operator() 'int () const' inline
12 `-CompoundStmt
13 `-ReturnStmt
14 `-IntegerLiteral

The anonymous record declaration is constructed in BuildLambdaExpr. For
cppless two methods were added: A static capture count() method which
returns the number of captured variables and a capture<I>() method which
returns the captured variable with the given index.

capture count() is implemented as a static method on the record type
which contains a compiler-generated body returning an integer constant.
The method body is made up of a return statement that returns the number
of captured variables as determined by BuildLambdaExpr.

capture<I>() is implemented as a function template declaration with a sin-
gle non-type template parameter named I, returning auto. This return type
of auto is required because the different overloads might return different
types. The template parameter is used to indicate the index of the captured
variable to be returned. For each capture variable, an explicit specialization
is added to the template declaration, these overloaded specializations return
an l-value reference to the captured variable by referring to the field of the
anonymous record declaration.

We’ll demonstrate this using the following example:

1 int main(int argc, char* argv[])
2 {
3 int a = 5;
4 double b = 4;
5 auto x = [=](int q) {
6 return a + b + q;
7 };
8 std::cout << x(42) << std::endl;
9 x.capture<0>() = 4;

10 std::cout << x(42) << std::endl;
11 }

The lambda expression is treated internally similar to the following C++
code:

1 struct lambda
2 {
3 lambda(int a, double b): m_a(a), m_b(b) {}
4 auto operator()(int q) {
5 return m_a + m_b + q;
6 }

30

4.1. Language extensions

7 constexpr static int capture_count() {
8 return 2;
9 }

10 template<int I>
11 auto& capture();
12 template<>
13 auto& capture<0>() {
14 return m_a;
15 }
16 template<>
17 auto& capture<1>() {
18 return m_b;
19 }
20 private:
21 int m_a;
22 double m_b;
23 };
24

25 int main(int argc, char* argv[])
26 {
27 int a = 5;
28 double b = 4;
29 lambda x(a, b);
30 std::cout << x(42) << std::endl;
31 x.capture<0>() = 4;
32 std::cout << x(42) << std::endl;
33 }

Similar code-generation methods are already used for the implementation of
lambda expressions, thus this way of implementing the language extension
comes naturally. Please note that explicit specializations are not valid in
non-namespace scopes per language specification - clang however accepts
this code without issuing any warnings. An alternative approach could use
constexpr if statements to implement the capture<I>() methods in case
the generated code becomes invalid in the future.

4.1.3 Identification

As proposed in the design chapter, a way to identify types across the differ-
ent platforms is required to allow seamless offloading.

A macro-like function taking a type as an argument and returning a literal-
like string used to identify the type was added. Internally, this function is
backed by the clang implementation of builtin sycl unique stable name,
a feature added for the sycl support of clang, which has a similar use-case.
A keyword named builtin unique stable name was introduced which is
activated when the cppless extension is enabled. When it is parsed, a spe-
cial expression AST node is created using ActOnSYCLUniqueStableNameExpr.

31

4. Implementation

The AST node computes the mangling of the type and returns it as a string.
A slightly modified mangling scheme is implemented by modifying the in-
terface of the Itanium mangler. Specifically a boolean parameter Ignore-
InlineNamespaces is added mangleCXXRTTIName: void mangleCXXRTTIName-
(QualType T, raw ostream &, bool IgnoreInlineNamespaces);. The change
to the mangling scheme itself is implemented in manglePrefix where inline
namespaces are skipped, removing them from the mangling prefix.

4.2 User-space library

The user-space library is set up as a CMake-project which requires the custom
version of clang to be built. Several benchmarks and examples are included
in the repository. The library is set up as a header-only library, due to the
heavy reliance on template metaprogramming. Dependencies are managed
using the CMake integration of the Conan package manager.

4.2.1 Tasks

The task interface is implemented as a wrapper around a std::unique ptr
to an object extending the task base abstract base class. task base defines
the abstract interface which task implementations have to provide: A se-
rialization method used for serializing the task when sending it from the
host to the serverless platform and a method identifying the task type. This
interface is implemented by the lambda task class which allows wrapping
an instance of a capture class into a class providing the task interface. A
lambda task can thus be converted into a task which removes the generic
dependence on the capture class type. This implementation is similar to the
implementation of the STL std::function class, although less optimized.

Most functions in cppless take a task as an argument, which comes with the
overhead of a virtual function call. An additional non-virtual layer could
have been added in cases where the virtual function call can be avoided, but
this would result in additional complexity.

Tasks interface with the dispatcher when serializing their configuration op-
tions and when defining an alternative entry point. For this purpose, dis-
patcher types have to expose a certain type-level interface providing access
to the archive used for serialization and methods for wrapping the alterna-
tive entry point and for serializing the config. The configuration object has
to be handled as opaque data: Tasks have to pass a valid configuration type
to the serialization method of a dispatcher.

32

4.3. Cloud Provider Support

4.2.2 Graph Interface

The graph interface provides a high-level interface for building task graphs
dynamically. The API to the graph interface is available through graph
builder instances. Graph builders use executors to execute the graph once
it is built. The general internal structure of the graph is as follows: The
graph is represented as a vector of nodes that extend the node core abstract
base class. Nodes can be senders, which inherit from sender core and re-
ceivers, which inherit from receiver core. Receivers contain a tuple of
receiver slot instance into which senders can connect. Senders can con-
nect to multiple receiver slots, the receiver slots a sender is connected to are
stored in a vector. Senders can be turned into a future, if a future is extracted
from a sender the result has to be sent to the host.

This basic graph interface is implemented as an extensible assortment of
classes: For each of the above classes, a base class is defined which a graph
executor implementation can inherit from. Generic wrappers for these classes
are provided which allows the graph builder interface to depend on a com-
mon interface.

Two types of nodes are defined by default: source node which is a sender
of type void, providing an entry point into the graph, and task node which
takes a tuple of variadic dependencies and produces a single value. New
nodes can be defined by executors by inheriting from the base classes and
implementing the required methods.

A host controller executor is implemented which has a compile-time depen-
dency on a dispatcher: The dispatcher creates lambda tasks for each task
node. The graph is executed using the generic dispatcher interface. For
each node, the number of remaining dependencies is tracked. Once a node
has no remaining dependencies, the task is executed and the result is sent
to the host. Successor nodes are triggered once the result is received. Once
all nodes have been executed, the execution is terminated.

4.3 Cloud Provider Support

So far cloud provider support is limited to AWS Lambda. Furthermore,
for local testing, a dispatcher which executes tasks in a separate operating
system process is provided.

4.3.1 Local Dispatcher

The local dispatcher serves as the reference implementation for the dis-
patcher interface. When created, the manifest file is read from the disk and
the dispatcher is initialized with the information contained in the manifest.

33

4. Implementation

When a task is submitted, the dispatcher creates a new operating system pro-
cess using the fork system call, using the executable that is specified in the
manifest. Furthermore, pipes are created such that they can be used to com-
municate with the child process. Once the child process is initialized, the
task data along with the arguments is serialized and sent through the pipe
to the standard input of the child process. The child process deserializes
the task data, executes the task, serializes the result and sends it back to the
parent process. The parent process waits for the child process to terminate,
deserializes the result and returns it to the caller.

Internally a new thread is created in the host process for each task that is
dispatched to watch the child process. This allows for several tasks to be
executed in parallel.

The local dispatcher has little use in a production environment, but it is
useful for testing and debugging.

4.3.2 AWS Lambda

To add support for a cloud provider two main things have to be imple-
mented: A dispatcher and a deployment tool. The dispatcher has to pro-
vide a wrapper around a generic callable implementation, furthermore, a
dispatcher has to provide an implementation of the dispatch impl method
which is used for invoking an offloaded task.

The offloading wrapper for AWS Lambda is built on top of the aws-lambda-cpp
project maintained by AWS itself. It provides a straightforward interface
to deploy AWS Lambda functions using C++ by implementing the custom
runtime interface which the executable uses to communicate with the AWS
Lambda runtime. The request and response objects can be used to pass data
to and from the function.

Serialization

AWS Lambda restricts the data that is passed to lambda invocations using
the request body to valid JSON. This leaves two main options for serializa-
tion: Either the data can be directly serialized to structured JSON or the
data can be serialized to some other string and then base64 encoded. Both
options are implemented and can be reused for other dispatchers, by de-
fault the binary archive is used, but the user can choose to use structured
serialization if desired for debugging purposes.

The lambda invocation response can be an arbitrary string of bytes, thus any
archive can be used to serialize and deserialize the response. Once again, the
binary archive is used as the default, but the user can choose to use other
provided serialization methods.

34

4.3. Cloud Provider Support

Dispatching

Two dispatchers for AWS Lambda are implemented: Either an HTTP/2-
based implementation building on nghttp2 [12] or an HTTP/1.1-based im-
plementation using the boost.beast [3] library. Both have different trade-
offs: HTTP/2 is generally faster and more efficient in cases where many dif-
ferent requests are to be sent at the same time while the boost-beast-based
implementation is more flexible and portable. Furthermore, the overhead
of HTTP/1.1 is negligible compared to HTTP/2 in the case that only a few
requests are to be sent, which makes it more useful for recursive invocations.

The nghttp2-based dispatcher uses round-robin scheduling to assign re-
quests to a pool of HTTP/2 connections to the AWS Lambda API. This
allows for a high number of concurrent requests, allowing it to use the avail-
able concurrency. Furthermore using a pool of connections decreases the
probability of head-of-line blocking problems that HTTP/2 can exhibit. Fur-
thermore, a naive resending strategy is used.

The boost-beast-based implementation is rather straightforward and is issu-
ing a TCP-backed HTTP request for each invocation. This means that the
number of concurrent requests is limited by the number of file descriptors
available to the process.

Deployment

To deploy a lambda function, a ZIP file containing the executable itself and
its required dependencies has to be created. The executable itself has to
be compiled to the architecture of the lambda function, currently, x86 64
and arm64 are supported. Because the target architecture for the lambda
function isn’t necessarily the host architecture, cross-compilation is needed.
This requires a toolchain with a linker, assembler, and a sysroot for the
target architecture. The sysroot is extracted from a docker image which is
built from a Dockerfile in which essential packages are installed. This allows
for portable cross-compilation.

When building on a Linux system we also provide support for native com-
pilation, leveraging the default sysroot and toolchain,

Once a compiled binary is available, a python script is used to create the
deployment packages and upload them to AWS. At first, the manifest file
is inspected and the different binaries are located. The ldd tool is used
to find the libraries which are dynamically linked against and the binary,
together with the libraries are copied into an in-memory zip file. The zip
file is then uploaded to AWS. In the case that the binary is cross compiled,
the commands can be run in the docker container from which the toolchain
was extracted to ensure that tools like ldd and strip work correctly on the
binary. This behavior can be controlled using a command line flag. For

35

4. Implementation

Linux systems, we generally recommend the native versions to be used, to
maximize compilation speed.

The deployment script is integrated into the build system using a set of
CMake functions. The application has to be built effectively twice: Once
for the host architecture and once for the target architecture. The flags
and configuration values used for these two different targets might differ,
thus different CMake configurations are created. This is achieved by hav-
ing a separate build configuration for each target which does the cross-
compilation. Specifically, the root configuration created by the user adds
itself as a dependency to a special target by using ExternalProject Add.
These details are abstracted away from the user using a CMake function
aws lambda serverless target($target name), given a target name it will
create an additional target serverless ${target name} which when built
will trigger a cross-compilation build and afterwards deploy the result to
AWS. This allows users to easily integrate cppless into their build system.
An example could look like this:

1 add_executable("some_target" main.cpp)
2 target_link_libraries("some_target" PRIVATE cppless::cppless)
3 aws_lambda_target("some_target")
4 aws_lambda_serverless_target("some_target")

First, a target is created from a source file, the target is linked against the
cppless library. Furthermore cppless-specific options are added using the
aws lambda target($target name) function and the special serverless tar-
get is created by using aws lambda serverless target$target name. This
allows the user to trigger a full build of both the host program and the
offloaded parts by building the target serverless ${target name}. When
changes only occur in the host program, the target ${target name} can be
built directly.

Configuration

AWS Lambda functions can be configured to run with different resource lim-
its and timeouts, our dispatcher implementation allows these values to be
specified for each task individually at compile time, meaning that heteroge-
neous task configurations become possible while sane defaults are applied.
To pass the config from the language level to the deployment script the user
metadata feature of alternative entry points is used. The lambda dispatcher
uses a custom binary format to serialize structured compile-time data into
a flat binary fixed-string buffer. This fixed-string is then base64 encoded
and attached to the alternative entry point using the metadata annotation.
After linking this user-meta is read once again, deserialized, and then used
to configure the lambda function.

An example of a lambda with a non-default configuration is:

36

4.3. Cloud Provider Support

1 int result = 0;
2 auto task = [] { return fib(42); };
3 using config = lambda::config<lambda::with_memory<512>,
4 lambda::with_ephemeral_storage<64>>;
5 cppless::dispatch<config>(instance, task, result);

Once deployed this will create a lambda function with a memory limit of
512 MB and an ephemeral storage limit of 64 MB.

The result of lambda::config is a record declaration type with public cons-
texpr static members, resembling the following:

1 struct config
2 {
3 constexpr static unsigned int memory = 512; // MB
4 constexpr static unsigned int ephemeral_storage = 64; // MB
5 constexpr static unsigned int timeout = 10; // seconds
6 };

Due to the timeout not being set in the creation of the config using lambda::-
config this value is set to the default as configured in dispatcher::default -
config.

To be able to distinguish between different functions with different config-
uration values the configuration values are hashed together with the name
of the task to create a unique identifier for the function. Furthermore, the
lambda function names share a prefix which is useful for identifying which
program a lambda function belongs to. By default, the AWS CMake library
sets this prefix to the name of the target which builds the application.

Due to the limitations of fixed string, a standard encoding like JSON or
BSON is difficult to implement, thus a custom encoding is used which was
developed with these constraints in mind. The encoding is made up of
different values, each one representing either an unsigned integer, a signed
integer, an array, a dictionary, or a string. Arrays can contain heterogeneous
values and maps map a key of arbitrary type to a value of arbitrary type.
In C++ the values are represented using variadic data containers, resulting
in their total size being known at compile-time, thus strings also have to
be of type fixed string. The resulting data structure can then be encoded
to a single fixed string by applying the serialize function. The result
is a binary string and thus has to be base64 encoded. For this purpose,
the base64 encoding method of the beast library was ported to support the
custom fixed string implementation.

An elegant constexpr-safe interface is provided, which makes it simple to
construct values of this custom format. The following is an excerpt of
the meta-data serialization code of the dispatcher implementation for AWS
Lambda.

37

4. Implementation

1 template<unsigned int N>
2 constexpr static auto serialize(basic_fixed_string<char, N> identifier)
3 {
4 using namespace cppless;
5 return encode_base64(serialize(
6 map(kv("ephemeral_storage", Config::ephemeral_storage),
7 kv("memory", Config::memory),
8 kv("timeout", Config::timeout),
9 kv("identifier", identifier))));

10 }

Metrics

Traces utilizing the AWS Lambda dispatchers contain the request-id of the
invocation, the function name, and the function version. This allows users
to inspect the metrics of all invocations made by a program using cppless.
To aid in the analysis of metrics we also provide a tool called aws trace
which given a trace file will extract the invocation ids, function names, and
function versions to retrieve the AWS reports from the log files. This can be
used to analyze the cost of invocations.

38

Chapter 5

Evaluation

Cppless was evaluated using a variety of benchmarks, mainly targeting the
performance of the runtime implementation. This was done both using
micro-benchmarks targeting the overhead of specific parts of the runtime
and also using scientific benchmarks, which are closer to real-world applica-
tions.

The set of problems to which a serverless accelerator framework can be ap-
plied and performance improvements are to be expected is quite specific:
First of all, the problems have to be massively parallelizable, while at the
same time the algorithm shouldn’t exhibit too much data movement as com-
munication results in additional overhead. The benchmarks presented here
are supposed to cover a diverse set of problem types, demonstrating differ-
ent use cases for cppless.

We start with a recursive Fibonacci implementation that offloads invocations
to the cloud recursively, i.e., the body of the serverless function invokes other
serverless functions. Although not practical, this is an interesting example
of how the framework can be used. Next, we will analyze the implementa-
tion of a solver for floorplan, an NP-hard optimization problem. Afterward,
we will discuss the implementation of the classic Knapsack problem. We
will also analyze the performance of an implementation of the N-Queens
problem.

Next, we will analyze the implementation of a distributed CPU-raytracer
and use that benchmark to provide an in-depth analysis of the impact of
different parts of the runtime on the performance of the benchmark. Finally,
we will discuss a pi-estimation algorithm, which is a good example of a
problem that is well suited for parallelization.

The benchmark suite presented here is primarily based on the Barcelona
OpenMP Task Suite (BOTS) as described in [2].

39

5. Evaluation

5.1 Benchmark Methodology

All benchmark data points presented here were produced on an isolated vir-
tual machine on AWS. The benchmarks were run with the following settings:
A t3.medium EC2 instance was used, which features 4 GiB of RAM and 2
VCPUs, furthermore, they feature a network interface with a 5 Gigabit con-
nection. Both the EC2 instance and the deployed AWS Lambda functions
are located in the eu-central-1 region of AWS.

Each benchmark was compiled as an isolated binary, using the O3 optimiza-
tion setting of clang. Neither the compilation time nor the time that it takes
to upload the AWS Lambda deployment packages to the cloud was taken
into account. The resulting binary, once it runs, executes one iteration of
the benchmark. The default AWS Lambda dispatcher configuration is used,
which configures the memory limit of a Lambda function to be 1 GiB. An
exception to this is the N-Queens benchmark where the memory limit is set
to 2 GiB.

A command line tool called hyperfine [7] was used to measure the execution
time of these binaries, and its JSON output option was used to get access to
the individual measured times. Generally, 3 warmup runs were performed,
which did not contribute to the measured times - this ensures that the disk
pages containing the executable are loaded into the filesystem cache of the
virtual machine. Furthermore, for the benchmarks using cppless it ensures
that warm instances of the serverless function are created. Following these
warmup runs, timed runs were performed until a statistically significant
amount of timing data was collected. The time measured is ‘real time’ and
not ‘CPU time’, when referring to ‘user time’ or ‘system time’ we will explic-
itly refer to this fact.

The benchmark JSON data was used for post-processing, which was done
using several Python scripts. The raw data and the analysis results are avail-
able on the GitHub repository of this thesis.

5.2 Fibonacci

The Fibonacci benchmark aims to demonstrate the basics of recursive task
invocations using cppless, but has little practical use. The benchmark pro-
gram consists of a single task that recursively invokes itself twice, mimicking
a naive recursive implementation of the classic Fibonacci problem. Once the
recursive tasks are dispatched the function waits for both tasks to complete
and then returns the sum of the two results.

40

5.3. Floorplan

fib(8) fib(9) fib(10) fib(11) fib(12) fib(13) fib(14) fib(15)
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Se
co

nd
s p

er
 R

un

 =0.15
 =0.01
 n=20

 =0.17
 =0.01
 n=18

 =0.18
 =0.01
 n=17

 =0.20
 =0.01
 n=15

 =0.22
 =0.02
 n=12

 =0.24
 =0.01
 n=13

 =0.38
 =0.31
 n=10

 =0.30
 =0.01
 n=10

Figure 5.1: Execution times for different values of the parameter n for the Fibonacci benchmark.

The benchmark program was executed for different parameter values, and
the results of the benchmark are represented in figure 5.1. As can be seen,
the execution times roughly follow a linear trend, although the total compu-
tational complexity for this implementation follows the Fibonacci sequence.
This shows one of the advantages of the framework: Due to the scalability
of the serverless platform, it is possible to scale spontaneously to a large
number of tasks, which up to a certain bound can lead to improved time
complexity.

5.3 Floorplan

This benchmark, derived from the BOTS suite of parallel benchmarks, is con-
cerned with the placement of boxes in a two-dimensional grid, minimizing
the area of the bounding box.

The input data is a set of boxes that are to be placed in the grid. The
single-threaded implementation is a simple brute-force algorithm that uses
a branch and bound search to place the individual boxes: It starts with the
first box, placing it in a corner and succeeds by placing the next box adjacent
to one of the boxes which are already placed on the grid. Once all boxes are
placed, the area of the bounding box is calculated. To speed up the computa-
tion, search tree pruning is used to avoid unnecessary computations: If the
area of a partial solution is already larger than the area of the best complete
solution found so far the algorithm aborts the search in the current branch
and continues.

The cppless-based implementation calculates a list of prefixes on the host
machine and offloads a task invocation for each prefix to AWS Lambda.
Here, AWS Lambda instances with 1024 MiB of memory are used, and the
available vCPU count scales linearly with this memory limit. The results

41

5. Evaluation

of these invocations are awaited and the optimal result of the search is re-
turned. The individual task invocations rely on search tree pruning in their
respective subtree, but no communication is used to share intermediate re-
sults between the invocations.

serial dispatcher
prefix=0

dispatcher
prefix=1

dispatcher
prefix=2

dispatcher
prefix=3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Se
co

nd
s p

er
 R

un

 =1.35
 =0.02
 n=10

 =2.39
 =0.02
 n=10

 =0.73
 =0.01
 n=10 =0.43

 =0.01
 n=10 =0.14

 =0.02
 n=17

2 1 21 23 25 27 29

Number of dispatched Tasks

20

22

24

26

Sp
ee

du
p

serial
dispatcher
prefix=0

dispatcher
prefix=1

dispatcher
prefix=2

dispatcher
prefix=3

Figure 5.2: Execution times for different configurations of the floorplan benchmark for an input
of size 15.

serial dispatcher
prefix=1

dispatcher
prefix=2

dispatcher
prefix=3

0

2

4

6

8

Se
co

nd
s p

er
 R

un

 =6.73
 =0.10
 n=30

 =3.40
 =0.05
 n=30

 =2.90
 =0.06
 n=30

 =0.85
 =0.04
 n=30

2 1 21 23 25 27 29

Number of dispatched Tasks

20

21

22

23

24

25

26

27

Sp
ee

du
p

serial

dispatcher
prefix=1

dispatcher
prefix=2

dispatcher
prefix=3

Figure 5.3: Execution times for different configurations of the floorplan benchmark for an input
of size 15.

The benchmark program was executed for different input sizes, and the
results of the benchmark are represented in figure 5.2 and 5.3. The number
of tasks created is not monotonic in the specified prefix length as inviable
solutions are already eliminated in the host program.

As can be seen, the configurations relying on cppless only achieve a speedup
of around 8 in both cases, even when creating around 500 tasks that execute
in parallel. This is to be expected, as the branch-and-bound implementa-
tion that was used here requires communication between different tasks to

42

5.4. Knapsack

eliminate search paths that are not promising. The original BOTS imple-
mentation relied on a shared variable between tasks which was used to
store the best solution found so far. Cppless currently only supports the
request-and-response model which makes it difficult to implement this kind
of communication.

5.4 Knapsack
The knapsack problem is a classic optimization problem: Given a set of
items, each with a weight and a value, the task is to determine which items
to include in a collection so that the total weight is less than or equal to a
given limit and the total value is as large as possible. The problem is NP-
hard and requires little data to be transferred, therefore was deemed to be a
good candidate for the framework.

We use a naive recursive implementation based on a backtracking approach
for the serial version of the benchmark. The items are sorted by decreas-
ing value to weight ratio. This allows for efficient search tree pruning by
computing an upper bound on the optimal result in a certain subtree, thus
making this a branch and bound algorithm.

For cppless we follow a similar approach for splitting the problem into
smaller tasks as in the floorplan benchmark: We use a simple recursive im-
plementation that uses creates task invocations at a certain recursion depth.
Pruning is applied locally in each task invocation, but the different workers
don’t communicate with each other.

serial dispatcher
prefix=7

dispatcher
prefix=9

0

5

10

15

20

25

30

35

40

Se
co

nd
s p

er
 R

un

 =30.26
 =0.76
 n=30

 =10.12
 =0.02
 n=30

 =10.86
 =0.21
 n=30

2 1 21 23 25 27 29

Number of dispatched Tasks

20

21

22

23

24

25

Sp
ee

du
p

serial

dispatcher
prefix=7 dispatcher

prefix=9

Figure 5.4: Benchmark results for the knapsack benchmark applied on input with 40 items.

The benchmark program was executed for different input sizes, and the re-
sults for an input of size 40 are represented in figure 5.4. As can be seen,
the speedup that is achieved with the cppless-based implementation is in-

43

5. Evaluation

significant. This can be attributed once again to the missing communication
between the workers, resulting in fewer subtrees being eliminated early on.

21 22 23 24 25 26 27 28

Parallelism

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fu
nc

tio
n

Ca
lls

1e6 Knapsack Simulation

Figure 5.5: Function calls to a recursive knapsack function with pruning enabled when process-
ing the knapsack item of size 24 from the bots suite.

This behavior was simulated using a Python script for certain cases, the
results of which can be used to illustrate the problem as depicted in fig-
ure 5.5. Here, the number of function calls that occur in each subtask is
plotted against the parallelism used. These function calls relate directly to
the latency of the task invocations, thus we can use this to make statements
about the performance of the serverless tasks. Specifically, we can conclude
that although the average work per worker is reduced when the amount of
parallelism is increased, the overall speedup is still limited by the longest-
running task. For the problem size used here, the maximum achievable
speedup using this algorithm only begins to get significant after around 64
tasks are executed in parallel. Even then, the speedup is still limited to a
factor of around 2, leading to subpar performance.

We can thus conclude from this benchmark that although this benchmark
seemed like a possible candidate for the framework, it is not. The reason
here is that the benefits of early pruning overweight the benefits of paral-
lelism, making parallelism without communication ineffective.

5.5 N-Queens
The N-Queens problem is concerned with placing N queens on an NxN
chessboard, specifically, we are interested in the number of different solu-
tions for a given problem size N. The problem is NP-hard, meaning that
there are no known polynomial time algorithms for solving it. This variant
of the N-Queens algorithm is part of the BOTS benchmark suite, however
here we are using a modified implementation resulting in a considerable per-

44

5.5. N-Queens

formance improvement. N-Queens is typically implemented using a back-
tracking approach where the queens are placed incrementally row by row,
once a queen can no longer be placed in a given row, the algorithm back-
tracks and tries to place the previous queens at different positions.

Sequentially, this can be done by representing the board as an array of length
N, where each element stores an integer representing in which column the
queen is placed at that row. The algorithm then has to look at the different
indices of the array to determine the positions where the next queen can
be placed. In practice, this data representation is thus rather inefficient,
as determining where a queen can be placed requires a linear search over
the entire array. Instead, we want to make sure that the locations where
a queen cannot be placed are available in a performant way, which makes
it easy to find the location where a queen can indeed be placed. Richards
introduced an efficient backtracking algorithm in [8] which elegantly solves
the problem using bit patterns. Instead of denoting the positions of the
queens, we represent the current state of the board using three different
bitmasks: One for tracking vertical collisions and one for each of the two
diagonal directions, i.e. one for the upper left direction and one for the
upper right direction. A valid solution is found once all bits in each bitmask
are set.1

The core of the serial implementation is the following:

1 using u64 = unsigned long;
2

3 template <unsigned char n>
4 void nqueens(u64 &res, u64 min_diag, u64 maj_diag, u64 vertical) {
5 constexpr u64 mask = (1 << n) - 1;
6

7 if (vertical == mask) {
8 res++;
9 return;

10 }
11 u64 bitmap = mask & ˜(min_diag | maj_diag | vertical);
12 while (bitmap) {
13 u64 bit = (˜bitmap + 1) & bitmap;
14 bitmap ˆ= bit;
15 u64 new_min_diag = (bit | min_diag) >> 1;
16 u64 new_maj_diag = (bit | maj_diag) << 1;
17 u64 new_vertical = bit | vertical;
18 nqueens<n>(res, new_min_diag, new_maj_diag, new_vertical);
19 }
20 }

This recursive version of the algorithm first checks if the current state is a

1There exist optimized implementations which do not rely on recursion but manage a
fixed-size stack directly, However, no appropriately licensed version was found.

45

5. Evaluation

valid solution, if that is the case it increments the result counter, otherwise,
it recursively tries to place a queen in each of the available positions. The
bitmap is used to track the remaining valid solutions, that is, the positions
which are not out of bounds (mask) and which do not collide with any other
queen. We extract the highest bit in the bitmap and use it to place a queen at
that position. The bitmap is then updated to remove the bit which was used
to place the queen. A recursive call is performed with the updated masks.

To parallelize the algorithm we create tasks where the location of the first
p queens is fixed. We call this a prefix. This method of splitting up an
instance of the N-queens problems into subtasks is commonly used in high-
performance computing as seen in [5]. These prefixes are computed using a
serial recursive implementation, similar to the one above. For each of these
prefixes, the resulting masks are computed.

Cppless is utilized by locally computing prefixes up to a specific depth and
creating task invocations from each of these prefixes. These invocations
are offloaded to the cloud where the serial implementation is executed to
determine the number of possible solutions in the part of the search tree
the task is responsible for. The partial results are then accumulated on the
host machine. The length of the prefix determines the number of tasks that
are offloaded and thus the parallelism that is achieved. The overhead of
calculating the prefixes is linear to the number of tasks that are offloaded,
making this problem embarrassingly parallel.

The same approach is used for the multi-threaded implementation, here the
prefix is chosen such that at least a task is created for each thread of the
machine. For the t3.medium instance, this is equivalent to using a prefix
length of 1.

serial threads dispatcher
prefix=1

dispatcher
prefix=2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Se
co

nd
s p

er
 R

un

 =0.25
 =0.00
 n=30

 =0.19
 =0.01
 n=30

 =0.09
 =0.01
 n=33

 =0.09
 =0.02
 n=30

2 1 21 23 25 27

Number of dispatched Tasks

20

21

22

23

24

25

Sp
ee

du
p

serial

dispatcher
prefix=1

dispatcher
prefix=2

Figure 5.6: N-queens benchmark results, computing nqueens(14)

46

5.5. N-Queens

serial threads dispatcher
prefix=1

dispatcher
prefix=2

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Se
co

nd
s p

er
 R

un

 =1.63
 =0.00
 n=30

 =1.18
 =0.00
 n=30

 =0.18
 =0.01
 n=30

 =0.09
 =0.02
 n=31

2 1 21 23 25 27

Number of dispatched Tasks

21

23

25

27

Sp
ee

du
p

serial

dispatcher
prefix=1

dispatcher
prefix=2

Figure 5.7: N-queens benchmark results, computing nqueens(15)

serial threads dispatcher
prefix=1

dispatcher
prefix=2

0

2

4

6

8

10

12

Se
co

nd
s p

er
 R

un

 =10.54
 =0.01
 n=30

 =7.85
 =0.01
 n=30

 =0.80
 =0.02
 n=30

 =0.21
 =0.06
 n=30

2 1 21 23 25 27

Number of dispatched Tasks

21

23

25

27

29

Sp
ee

du
p

serial

dispatcher
prefix=1

dispatcher
prefix=2

Figure 5.8: N-queens benchmark results, computing nqueens(16)

serial threads dispatcher
prefix=1

dispatcher
prefix=2

0

20

40

60

80

100

Se
co

nd
s p

er
 R

un

 =77.04
 =0.13
 n=30

 =56.02
 =1.16
 n=30

 =5.04
 =0.05
 n=30

 =0.47
 =0.03
 n=30

2 1 21 23 25 27

Number of dispatched Tasks

21

23

25

27

29

211

Sp
ee

du
p

serial

dispatcher
prefix=1

dispatcher
prefix=2

Figure 5.9: N-queens benchmark results, computing nqueens(17)

47

5. Evaluation

serial threads dispatcher
prefix=2

dispatcher
prefix=3

0

100

200

300

400

500

600

700
Se

co
nd

s p
er

 R
un

 =563.66
 =1.61
 n=30

 =413.72
 =0.30
 n=30

 =2.71
 =0.09
 n=30

 =0.63
 =0.03
 n=30

2 1 21 23 25 27 29 211

Number of dispatched Tasks

21

23

25

27

29

211

213

Sp
ee

du
p

serial

dispatcher
prefix=2

dispatcher
prefix=3

Figure 5.10: N-queens benchmark results, computing nqueens(18)

The results for the N-queens benchmark are depicted in figure 5.6, 5.7, 5.8,
5.9 and 5.10. We can see that the speedup is indeed significant, but isn’t
always in the order of magnitude of the parallelism used to achieve the
speed. We can see that the speedup achieved per dispatched task decreases
significantly with increased parallelism. This can be attributed to the initial
connection latency, which stays significant, especially for larger values of p.
The initial connection latency also explains the poor speedup achieved for
nqueens(14).

This method of parallelizing the algorithm is quite effective, but it can be
observed that there is some variance in the workload that each task is re-
sponsible for, this fact is also demonstrated in [5] in figure 3. The execution
time depicted in the benchmark results is limited by the longest-running
task and the overhead in the host machine. In this case, there’s little seri-
alization overhead and the suboptimal speedup can mostly be attributed to
the fact that the longest-running task has to be awaited.

However, the heterogeneous task workload should not be interpreted as a
downside of the approach. Due to the pay-as-you-go pricing model, the
cost of running a task is directly proportional to the amount of work that
the task has to do. Thus, waiting for the longest-running task to finish does
not incur any additional cost, thus there is no need to combine small tasks
to have fewer tasks in total.

5.6 CPU-Raytracer
This benchmark implements a basic Monte-Carlo raytracer utilizing the CPU.
The implementation is derived from the ‘Ray Tracing in One Weekend’ book
series (see [10]). In addition to that, the bounding volume hierarchy mecha-
nism was implemented as outlined in [11]. Modifications are implemented

48

5.6. CPU-Raytracer

Figure 5.11: CPU-Raytracer rendered image

which increase the usage of AVX2 vector instructions as supported by the
Haswell architecture2. The benchmark generates a random scene3 and then
renders it using a renderer backend implementation depending on a com-
mand line flag. An example of a generated image is shown in figure 5.11.

Currently, three different backends are supported: A single-threaded imple-
mentation, a multi-threaded implementation using worker threads and a
cppless-backed implementation utilizing AWS lambda to offload the render-
ing to the cloud.

The multi-threaded renderer and the cppless-backed renderer both use tiles
to split the rendering into smaller pieces. The viewport is divided into a grid
of equally sized tiles. For the multi-threaded renderer, a dynamic number
of worker threads is created4 and shared memory is used to allocate tiles
to a worker thread, thus resulting in less overhead than spawning a new
thread for each tile. This way of splitting up the work also optimizes the
memory access pattern as the individual workers tend to stay in one region
of the image while rendering a tile, thus it is more likely that the objects are
already loaded in the cache.

To offload work using cppless the bounding volume hierarchy is computed
once on the host machine and the image is split up into tiles. A task is
created for each tile, and the tile location along with the bounding volume
hierarchy and the rendering settings is passed to the cloud using captures

2For x86 64 Lambda function AWS guarantees that the AVX2 ISA extension is available:
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-avx2.html

3A seeded random generation process was used to ensure consistency between runs.
48 worker threads were used for the EC2 instance.

49

https://docs.aws.amazon.com/lambda/latest/dg/runtimes-avx2.html

5. Evaluation

of a lambda function. Thus the bounding volume hierarchy along with the
objects containers and the associated materials has to be serializable using
the cereal library. Due to the inheritance structure of the object and material
classes, the support of cereal for polymorphic types is used. This allows the
entire scene to be efficiently serialized for the task invocation. The result of
each task invocation is a small image, which contributes to the final image.

Cppless is especially advantageous here due to the heterogeneous nature
of the individual tasks: The computation time required for a task heavily
depends on the objects that are contained in the tile. As the scheduling of
the tasks is left to the cloud provider the programmer doesn’t have to worry
about efficient, equal work distribution. Furthermore, the benchmark can
make use of the massive parallelism provided by the cloud environment.

serial threads dispatcher
32x32

dispatcher
16x16

0

10

20

30

40

50

Se
co

nd
s p

er
 R

un

 =43.79
 =0.14
 n=10

 =35.33
 =0.06
 n=10

 =1.29
 =0.03
 n=10

 =1.61
 =0.04
 n=10

2 1 21 23 25 27 29

Number of dispatched Tasks

21

23

25

27

29
Sp

ee
du

p

serial

dispatcher
32x32 dispatcher

16x16

Figure 5.12: CPU-Raytracer benchmark results, rendering a 500x500 image

The benchmark results are illustrated in figure 5.12. Once again the speedup
is limited by the longest-running task, which determines the achievable
speedup. Analysis of the individual tasks showed that the mean task work-
load scales almost perfectly with the tile size. On the other hand, the maxi-
mum workload size only decreases by around 40% whenever the tile size is
halved. This can be attributed to heterogeneous per-pixel workloads, result-
ing in the tiling process not splitting up the work evenly.

5.6.1 Overhead analysis

The raytracing benchmark was used to further analyze the overhead of the
framework, both in terms of the cost of the computation, but also the per-
formance overhead that the framework introduces. The cost overhead was
estimated by running a scene configuration using different tile sizes which
directly correlates with the amount of parallelism that is used. This bench-
mark is especially suited to analyze further as the amount of parallelism

50

5.6. CPU-Raytracer

that is used can be varied to arbitrary values. We executed the benchmark
for various tile sizes resulting in 4 to 2048 lambda functions being used con-
currently. The cost of the computation was analyzed using the aws trace
tool, which outputs the billed duration as determined by AWS. Enabling
tracing support when running a cppless program slightly increases its over-
head, thus different runs were analyzed to keep the timing data as accurate
as possible.

The first metric that was analyzed is the total number of memory-GB sec-
onds as billed by AWS Lambda. The amount of memory-GB seconds di-
rectly correlates with the cost, generally, there is a fixed multiplier, although
discount rates are applied at some point. Each benchmark configuration was
run 16 times, afterwards, the trace files were analyzed using the aws trace
tool to determine the cost of individual runs.

4 8 16 32 64 128 256 512 1024 2048
Number of concurrent invocations

0

25

50

75

100

125

150

175

M
em

-G
B

se
co

nd
s p

er
 ru

n

 =168.35
 =0.69
 n=16

 =169.19
 =0.82
 n=16

 =169.87
 =0.54
 n=16

 =168.68
 =0.43
 n=16

 =168.40
 =0.28
 n=16

 =168.11
 =0.16
 n=16

 =168.15
 =0.47
 n=16

 =166.54
 =0.39
 n=16

 =166.65
 =2.93
 n=16

 =166.15
 =2.95
 n=16

Figure 5.13: Cost dependence on the number of parallel tasks

As can be seen in figure 5.13, the cost of the computation is barely affected by
the number of parallel tasks. Although the result is available more quickly,
the cost stays almost constant as long as the number of tasks stays within
reasonable bounds. Specifically, for this benchmark, the data showed that
the task duration for the smallest tile size varied between 8ms and 150ms.
Even with invocations in the milliseconds range the cost of the computation
is dominated by the productive work that is done in the function invocations.
This benchmark result shows that the overhead on the side of the AWS
lambda function is relatively small.

In this example, however, the serial work that has to be done to split up
the work is insignificant, dividing the work into tiles doesn’t add much
overhead. However, the host machine is also required to handle serialization
and network communication, which adds additional cost.

We conclude that the main factor limiting the latency for this benchmark is

51

5. Evaluation

the host platform which is responsible for offloading the work to the cloud.
The host machine has to serialize the data, resulting in around 88 KiB for
each invocation and transferring it to the AWS lambda API through their
HTTP API. The result takes up another 32 MiB of memory, due to the high
dynamic range format which is only normalized on the host machine.

Further analysis of the traces showed that for a tile size of 8x16 (resulting
in 2048 tasks) around 40% of the time was spent on serialization of the
BVH tree and the objects. Furthermore, around 2% of the time was spent
computing the computation of the BVH tree and another 2% of the time
was spent deserializing the response messages. The rest of the time on the
host machine was spent on network communication, leaving around 0.91
milliseconds for networking per invocation.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of requests

102

103

Ob
se

rv
ed

 L
at

en
cy

 (m
s)

4
8
16
32
64
128
256
512
1024
2048

Figure 5.14: The latency overhead distribution of all invocations when a certain level of paral-
lelism is used. The latency overhead times were sorted in each group and plotted against the
number of invocations.

As the serialization of the data takes up the CPU core of the host machine,
the latency overhead5 of the benchmark program increases as the number

5The latency overhead is the duration between the invocation of a task and its result,
excluding the actual computation time as billed by AWS

52

5.7. Pi-Estimation Benchmark

of parallel tasks increases. The latency overhead distribution and its de-
pendence on the parallelism in use are shown in figure 5.14. The observed
latency decreases until a certain point as the overhead of the initial connec-
tion establishment dominates the latency if only a few tasks are dispatched.
At some point, the result of the tasks can’t be processed quickly enough
anymore and the latency increases again. This explains why the speedup
doesn’t increase anymore at some point as the host is busy with deserializ-
ing and merging the results.

5.6.2 Serialization

Serialization results in a major overhead in this case, possibly due to the re-
cursive layout of the bounding volume hierarchy. Furthermore, the bound-
ing volume hierarchy stays the same for all invocations but is serialized for
each invocation individually. Currently, cppless only supports serializing
the entire task together with its arguments, meaning that it cannot easily
reuse the results of previously serialized tasks. There are however manual
optimization techniques that can solve this issue partially. Specifically, we
can manually serialize the BVH tree into a buffer with contiguous memory,
thus making it much easier to use that serialized result. This method also
requires manual deserialization in the task body:

1 auto bvh_serialized = cppless::binary_archive::serialize(bvh_root);
2 // In the task body:
3 bvh_node world;
4 cppless::binary_archive::deserialize(bvh_serialized, world);

This change results in an end-to-end performance increase of around 7% by
reducing the ‘user time’6 from 1.56 s to 1.10 s.

5.7 Pi-Estimation Benchmark

The pi-estimation benchmark uses a classic Monte-Carlo implementation
to estimate the value of pi. To get a rough estimate a Mersenne Twister
pseudo-random number generator is used to generate random points in a
unit square. The number of points that fall within the unit circle is counted
and the ratio of points in the circle to the total number of points is used
to estimate pi. The benchmark is executed for various numbers of parallel
tasks, ranging from 1 to 2048.

6‘user time’ is referring to the amount of time a process spent in user mode, the time
during which the process is blocked or is waiting on a system call is not included.

53

5. Evaluation

n = 100k
p = 1

n = 200k
p = 2

n = 400k
p = 4

n = 800k
p = 8

n = 1.6M
p = 16

n = 3.2M
p = 32

n = 6.4M
p = 64

n = 12.8M
p = 128

n = 25.6M
p = 256

n = 51.2M
p = 512

0

2

4

6

Se
co

nd
s p

er
 R

un
 =3.61
 =0.02
 n=30

 =3.61
 =0.02
 n=30

 =3.67
 =0.06
 n=30

 =3.71
 =0.05
 n=30

 =3.68
 =0.02
 n=30

 =3.82
 =0.37
 n=30

 =3.77
 =0.10
 n=30

 =3.76
 =0.14
 n=30

 =3.88
 =0.37
 n=30

 =3.98
 =0.38
 n=30

2 1 21 23 25 27 29

Number of dispatched Tasks

23

27

211

Sp
ee

du
p

1 2 4 8 16 32 64 128 256 512

Figure 5.15: Pi-Estimation benchmark results, n specifies the number of total iterations, p
specifies the number of tasks that are dispatcher.

The benchmark was parallelized with cppless using the dispatcher API. The
tasks individually calculate an estimate of pi, the different values from the
tasks are then combined by calculating the average. The results of the bench-
mark are shown in figure 5.15. The results show that near-perfect scaling is
achieved. Furthermore, the results also show that the overhead on the side
of the host machine is negligible as very little serialization has to be per-
formed.

5.7.1 Overhead analysis

1 4 16 64 256 1024
Number of concurrent invocations

0

5

10

15

20

25

30

M
em

-G
B

se
co

nd
s p

er
 ru

n

 =28.34
 =0.04
 n=30

 =28.55
 =0.04
 n=30

 =28.28
 =0.05
 n=30

 =28.10
 =0.12
 n=30

 =27.25
 =0.32
 n=30

 =22.86
 =0.99
 n=30

Figure 5.16: The Memory-GB seconds as billed by AWS Lambda for the pi-estimation bench-
mark.

The dependence of the total cost of the computation on the number of par-
allel tasks is shown in figure 5.16. The cost of the computation is dominated
by the productive work that is done in the function invocations. The over-

54

5.8. Micro-Benchmarks

head on the side of the AWS lambda function is relatively small. We can
furthermore see that the cost slightly decreases as the number of parallel
tasks increases. This could be explained by AWS calculating the billed time
inaccurately for very short invocations, favoring the customer in this case.

These results show that cppless adds very little overhead both on the side of
the host system and on the side of the cloud provider. The overhead that can
be seen in the benchmark results is mostly a result of inefficient serialization
and suboptimal speedup can be attributed to task workload heterogeneity
and algorithmic constraints.

5.8 Micro-Benchmarks
We used Micro-Benchmarks to analyze the performance of two essential
parts of the runtime part of the framework: We evaluate the performance
of different serialization methods and measure the performance of the AWS
lambda client that the dispatcher uses to invoke tasks.

5.8.1 Serialization
As mentioned above, serialization can become a major overhead in certain
cases when a lot of data has to be serialized and deserialized. Furthermore,
certain serverless environments like AWS put additional constraints on the
data that can be transferred, making some serialization techniques unusable.
In the serialization microbenchmark, we analyzed the additional overhead
that comes along with these constraints. Specifically, AWS requires the data
that is provided to an invocation of an AWS Lambda function to be valid
JSON. With this constraint two different archive formats are implemented:
One based on the JSON archive of cereal and a second one, based on the
binary archive of cereal, the output of that archive most likely isn’t valid
JSON, thus base64-encoding is used to encode the data and delimiters are
added to the data to make it valid JSON.

As a baseline, we compare both results against the plain binary serialization
of cereal. The benchmark data presented here is the result of running a
custom benchmark library, that uses the monotonic clock to measure the
time spent in a function. We ensure that the result is not optimized away by
issuing a volatile write. Both the decoding and the encoding of data were
measured separately.

Array Serialization This benchmark measures the time spent in the serial-
ization of an array of unsigned integers of 64 bits. An std::vector with
1000000 elements was repeatedly serialized and deserialized using the dif-
ferent serialization methods. One run of the benchmark represents one seri-
alization/deserialization round.

55

5. Evaluation

Time per Run Throughput

ms σ GiB/s

binary
Encode 5.90 0.597 1.32
Decode 3.18 0.315 2.46

binary json
Encode 13.03 0.162 0.60
Decode 28.63 0.192 0.27

structured json
Encode 462.40 6.806 0.02
Decode 144.15 1.408 0.05

Figure 5.17: Benchmark results for serializing an array of unsigned integers.

The results as shown in 5.17 show that the binary archive of cereal is much
faster than the plain binary archive of cereal. The overhead of the binary json
format is slightly higher and can be attributed to the base64 encoding that
has to be executed. On the other hand, the JSON archive performs much
worse than the other two options. The JSON archive has to do much more
work: Find the correct key to decode, transform the basis of numbers, dy-
namically allocate memory, and so on. Thus it is much slower than the
binary archive. For these reasons, the binary json format was used as the
default format for the AWS Lambda dispatcher implementation.

The std::vector takes up around 8 MiB of memory, which means that
the binary archive can achieve a serialization throughput of around 1.324
GiB/s and a deserialization throughput of around 2.458 GiB/s. The binary-
JSON archive achieves a serialization throughput of around 0.600 GiB/s
and a deserialization throughput of around 0.272 GiB/s. The JSON archive
achieves a serialization throughput of around 0.017 GiB/s and a deserializa-
tion throughput of around 0.054 GiB/s.

Struct Serialization In this benchmark, instead of serializing an std::vector
of unsigned integers, each element of the vector contains a struct with two
signed integers and a string. The struct has a custom serialization method.
The data that is serialized is similar to the first benchmark: We vary the val-
ues for the integers, but the string content is constant, but as an std::string
instance, the memory for the string is allocated elsewhere.

56

5.8. Micro-Benchmarks

Time per Run Throughput

ms σ GiB/s

binary
Encode 97.35 0.280 0.3061
Decode 81.48 0.191 0.3658

binary json
Encode 131.62 11.150 0.2264
Decode 158.62 0.412 0.1879

structured json
Encode 726.51 3.493 0.0410
Decode 650.27 3.000 0.0458

Figure 5.18: Benchmark results for serializing an array of structs.

As can be seen in 5.18, the serialization of the struct performs much worse
compared to the vector of integers. This can be explained by the fact that
the struct contains a string, which implies worse cache performance. Fur-
thermore, the first benchmark benefits from a fast path in cereal: Vectors of
arithmetic types are directly serialized as a binary blob. For the cereal binary
archive, this means that the data pointer of the vector is used as the input
to an sputn operation on the underlying stream. This results in a near zero-
overhead serialization. As the JSON-based archive can’t take advantage of
this optimization it already had to do the same work in the first benchmark.
This explains why the difference between the binary archive and the JSON
archive isn’t that exaggerated compared to the vector of integers.

5.8.2 AWS Lambda Client

In this microbenchmark, we analyzed the end-to-end latency of the custom
AWS Lambda client that is used for all benchmarks presented here, the only
exception being the Fibonacci benchmark7. The main goal of the custom
client is to support a lot of parallel executions, furthermore, we wanted to
avoid the use of a separate operating system thread for each task invocation,
thus the client makes use of boost ASIO’s operating system abstraction. We
evaluated the latency for different numbers of invocations. In the configura-
tion used for the benchmark, the same pool of 16 HTTP/2 connections that
the dispatcher makes use of is used. Each of these HTTP/2 connections is
limited to 100 concurrent, active requests, thus resulting in a total of 1600
possible concurrent invocations.

7The HTTP1 client is used for the Fibonacci benchmark, as the HTTP2 client is not sup-
ported for recursive function calls.

57

5. Evaluation

The client program is targeting an AWS lambda function hosted on an ac-
count with an unreserved account concurrency of 1000. The function itself,
written in Node-JS, is a simple function with a constant output that the client
verifies. This limits the overhead introduced on the side of the AWS Lambda
service to the minimum.

21 23 25 27 29 211

Number of AWS Lambda Invocations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

To
ta

l D
ur

at
io

n
(s

)

HTTP2 AWS Lambda Client Benchmark

=0.15
=0.04
n=30

=0.10
=0.05
n=34=0.07

=0.01
n=38

=0.06
=0.01
n=42

=0.06
=0.01
n=43

=0.06
=0.00
n=55

=0.50
=0.02
n=30

Figure 5.19: Latency of the AWS Lambda client for different numbers of invocations.

As depicted in 5.19, the latency for 1 invocation starts at around 50ms and in-
creases linearly to around 150ms until the limit of the client itself is reached.
At this point, invocations are not dispatched directly anymore, but instead,
have to wait until the response of other invocations arrives. This results in a
significant increase in latency.

We conclude, that the client can theoretically dispatch invocations at a rate of
around 10 invocations per millisecond, with an initial latency of around 50
milliseconds, in its current configuration. However, restrictions of the AWS
account that the client dispatches to limit the number of concurrent invoca-
tions, resulting in a considerable slowdown at some point. In the optimal
case around 1000 to 2000 tasks should be created concurrently, resulting in a
throughput of around 6 tasks per millisecond. For decently sized tasks, this
eliminates the client implementation as a bottleneck.

More concurrent invocations could be dispatched by increasing the size of
the HTTP/2 connection pool, but this would require manual adjustments
by the user. Furthermore, the request limit for individual connections could
be increased, but this results in more situations where head-of-line blocking
becomes a problem.

58

Chapter 6

Discussion

The novel programming model presented in the thesis allows users transpar-
ently make use of serverless environments. Although there are some unique
restrictions, we believe that the generic implementation through alternative
entry points provides a decent trade-off between flexibility and simplicity.
The low-level dispatcher interface provided a sufficient abstraction layer for
most benchmarks, but might not be well-suited for more complicated sce-
narios. The graph interface on the other hand has a certain threshold after
which it becomes useful, which is why we chose not to use it for most bench-
marks.

The benchmark results suggest that there is a class of algorithms for which
cppless indeed is advantageous. On the other hand, it also shows the need
for more diverse communication methods as several benchmarks could ben-
efit from point-to-point communication allowing for a more efficient imple-
mentation.

6.1 Further Work
In the current state, we see two main problems with cppless: Its inability to
support something we call ‘partial serialization’ and its missing support for
advanced communication patterns.

6.1.1 Partial Serialization

Currently, cppless serializes all data at once when the task is dispatched
using an instance of the dispatcher class. This is not a problem when the
data that is to be serialized is small or when only a few tasks are dispatched,
but it can become a problem when the data is large, especially when the
task is invoked a lot. In a lot of scenarios the task invocations, if created
from the same task, will share the same data, which would allow the data to

59

6. Discussion

be serialized only once and shared between all the task invocations. How-
ever, simply serializing the data when the task is created doesn’t solve the
problem completely either because there might small amounts of data that
are not shared between the task invocations. For example, a task invocation
might include a dataset itself and an index into the data set. The resulting
task invocations are different, thus the serialized data could not be shared
between the task invocations. What we propose would be a container class
using which data can be wrapped - when constructed the wrapper would
serialize the underlying data and store the serialized data in a buffer. When
the task is invoked, the task would use the data that is already serialized.

However, the interface would have to ensure that the data is also only de-
serialized once, meaning that its state, serialized or not, is saved internally.
This is not possible in the current implementation.

A utility class that implements this interface would allow for reducing the
overhead that is required to serialize the data. Different nested loops could
reuse the same serialized object, allowing a transparent interface for partial
serialization.

6.1.2 Advanced Communication Patterns

Cppless currently supports only a naive request-response communication
pattern. To speed up a variety of use-cases communication between tasks is
required. To this end, we propose the introduction of a channel-based com-
munication pattern. A channel, as made popular by the Go programming
language, is a shared object allowing different threads to communicate with
each other by sending and receiving messages. Channels could be created
with different underlying message types that are serialized and deserialized
transparently.

The implementation of channels could be platform dependent. For example,
a channel could be implemented using a cloud provider product, but imple-
mentations relying on a central serverless function acting as an orchestrator
could be used as well.

Channels would be added as a low-level interface that can be used to im-
plement more advanced communication patterns. For example, shared vari-
ables using a merge operation could be implemented using a channel.

6.1.3 Detached Execution

The dispatcher interface forces the user to wait for a task to complete, keep-
ing the current execution unit active, even for recursive implementations.
In some use cases, however, it might make sense to allow the task invoca-
tion to continue execution on its own, especially when it can communicate

60

6.1. Further Work

with other task invocations using channels. Specifically, this would entail
extending the dispatcher interface to support the concept of detached exe-
cution. Detached task invocations cannot be waited for, but should execute
independently from their caller.

6.1.4 Advanced high-level API
These primitives would allow for a much richer high-level API. For example,
task graph executions could run independently, without the need for a host
machine orchestrating the execution. We envision that an independent task
graph executor could allow more data to be transported between tasks as
the host machine would not be required to serialize the data, thus reducing
the dependence on the host machine. This would allow more algorithms to
be implemented efficiently using cppless.

61

Chapter 7

Conclusion

In this thesis, we have proposed a novel way of defining serverless functions
in the C++ programming language and present a user-space library that
facilitates this new programming model. Although the concept of defin-
ing serverless functions in the same source file as the code using it, is not
new, C++ has additional constraints that had to be dealt with. Cppless al-
lows users to elegantly define programs that offload work transparently to
a serverless service, placing only minimal restrictions on the serverless plat-
form. This makes it a viable alternative to the current state of serverless
programming in the C++ programming language, lowering the barrier to
entry for serverless programming.

The compilation pipeline is well-designed and allows users to specify a set of
serverless function definitions at compile time which are then compiled and
deployed independently for a serverless platform. The meta-programming
features of C++ allow a majority of the work that had to be done at runtime
in the previous work to be done at compile time. This allows for efficient of-
floading and reduced the serialization overhead as only the task parameters,
but not the code itself has to be transferred at runtime.

The pipeline seamlessly integrates into the regular C++ compilation process
and makes programs that make use of serverless function for acceleration
composable: Libraries can expose templated functions that instantiate tasks
which are then automatically compiled for the targeted platform. This al-
lows high-level libraries to build on top of cppless. Furthermore, the com-
pilation pipeline is designed to be extensible, allowing users to add support
for new serverless platforms by implementing a few simple interfaces.

The benchmark results showed that different types of algorithms can make
use of cppless with different degrees of effectiveness: For embarrassingly
parallel programs that require little communication, cppless achieves near-
perfect scaling and only adds very little overhead both to the host and to the

63

7. Conclusion

serverless worker. At the same time, we showed that even when the speedup
is limited by the host process or uneven workload distribution, cppless still
is a cost-effective solution.

We admit that the request-response communication model that cppless cur-
rently enforces requires careful planning to minimize the overhead. Most
of these limitations can be addressed by extending upon the current model,
necessary changes were outlined in the previous chapter.

64

Bibliography

[1] Daniel Barcelona-Pons, Marc Sánchez-Artigas, Gerard Parı́s, Pierre Su-
tra, and Pedro Garcı́a-López. On the faas track: Building stateful dis-
tributed applications with serverless architectures. In Proceedings of the
20th International Middleware Conference, Middleware ’19, pages 41–54,
New York, NY, USA, 2019. Association for Computing Machinery.

[2] Alej Duran, Ro, Xavier Teruel, Roger Ferrer, Xavier Martorell, and Ed-
uard Ayguade. Barcelona openmp tasks suite: A set of benchmarks
targeting the exploitation of task parallelism in openmp, 2009.

[3] Vinnie Falco. Beast: C++ http and websocket built on boost.asio. https:
//github.com/boostorg/beast, 2016.

[4] W. Shane Grant and Randolph Voorhies. cereal - a c++11 library for
serialization. http://uscilab.github.io/cereal/, 2017.

[5] Kenji Kise, Takahiro Katagiri, Hiroki Honda, and Toshitsugu Yuba.
Solving the 24-queens problem using mpi on a pc cluster. Graduate
School of Information Systems, The University of Electro-Communications,
Tech. Rep, 2004.

[6] Chris Lattner and Vikram Adve. LLVM: A compilation framework for
lifelong program analysis and transformation. pages 75–88, San Jose,
CA, USA, Mar 2004.

[7] David Peter. Hyperfine: A command-line benchmarking tool. https:
//github.com/sharkdp/hyperfine, 2022.

[8] Martin Richards. Backtracking algorithms in mcpl using bit patterns
and recursion. Technical report, Citeseer, 1997.

65

https://github.com/boostorg/beast
https://github.com/boostorg/beast
http://uscilab.github.io/cereal/
https://github.com/sharkdp/hyperfine
https://github.com/sharkdp/hyperfine

Bibliography

[9] Josep Sampe, Pedro Garcia-Lopez, Marc Sanchez-Artigas, Gil Vernik,
Pol Roca-Llaberia, and Aitor Arjona. Toward multicloud access trans-
parency in serverless computing. IEEE Software, 38(1):68–74, 2021.

[10] Peter Shirley. Ray tracing in one weekend, December 2020.

[11] Peter Shirley. Ray tracing: The next week, December 2020.

[12] Tatsuhiro Tsujikawa. nghttp2 - http/2 c library. https://github.com/
nghttp2/nghttp2, 2013.

[13] Wen Zhang, Vivian Fang, Aurojit Panda, and Scott Shenker. Kappa:
A programming framework for serverless computing. In Proceedings of
the 11th ACM Symposium on Cloud Computing, SoCC ’20, pages 328–343,
New York, NY, USA, 2020. Association for Computing Machinery.

66

https://github.com/nghttp2/nghttp2
https://github.com/nghttp2/nghttp2

	Contents
	Introduction
	Organization of the Thesis

	Background
	Prior Work
	Lithops
	Crucial
	Kappa

	Comparison to Existing Frameworks
	Serverless Environment
	AWS

	C++
	Lambda Expressions

	Design
	Language Extensions
	Alternative Entry Points
	Lambda functions
	Identification
	Serialization

	Low-level dispatcher API
	Dispatcher
	Task
	User-facing API

	High-level graph API

	Implementation
	Language extensions
	Alternative entry points
	Lambda Functions
	Identification

	User-space library
	Tasks
	Graph Interface

	Cloud Provider Support
	Local Dispatcher
	AWS Lambda

	Evaluation
	Benchmark Methodology
	Fibonacci
	Floorplan
	Knapsack
	N-Queens
	CPU-Raytracer
	Overhead analysis
	Serialization

	Pi-Estimation Benchmark
	Overhead analysis

	Micro-Benchmarks
	Serialization
	AWS Lambda Client

	Discussion
	Further Work
	Partial Serialization
	Advanced Communication Patterns
	Detached Execution
	Advanced high-level API

	Conclusion
	Bibliography

