ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

GPUless — Serverless GPU Functions

Master Thesis
Lukas Tobler
Wednesday 19t January, 2022

Advisors: Prof. Dr. Torsten Hoefler, Marcin Copik
Scalable Parallel Computing Lab, ETH Ziirich

Abstract

For many years, serverless has been an emerging computing paradigm,
with Function-as-a-Service (FaaS) being especially popular. When it
comes to GPU-enabled machine learning applications, commercial op-
tions for Faa$S are limited. GPU execution nodes are not typically avail-
able because of their high cost and the difficulty of efficiently sharing
them between tenants in isolated environments.

Multi-Instance GPU (MIG) is a new feature of the NVIDIA A100 device
of the Ampere architecture that provides performance and security
isolation by partitioning one physical GPU into multiple GPU instances
of configurable size. MIG opens up the possibility to build serverless
platforms with stronger isolation than what was possible previously.

We present the GPUless system, a prototype client-server CUDA execu-
tion service based on MIG isolation. The client intercepts the CUDA API
and is compatible with current-generation PyTorch machine learning
applications. The server provides dynamic resource management for
MIG devices of requested size for clients and provides an execution
environment. We present a novel way of transporting CUDA API calls
over the network: Aggregating call traces and only synchronizing with
the remote executor when necessary, reducing network overheads.

We show that in cold-start scenarios, our system can be very effective.
We apply some optimizations to overcome implementation inefficiencies
in machine learning frameworks that lead to a cold-start performance of
our system that is even faster than native execution in some cases. We
can also show that in a hot execution setting (model is pre-initialized),
we can achieve performance close to native execution while still being
orders of magnitudes faster than execution in the AWS (Amazon Web
Services) Lambda environment. An analysis of bandwidth requirements
shows that our system will perform well if at least 1 Gbps of network
bandwidth is available.

Contents

Contents iii
1 Introduction 1
2 Background 3
2.1 Serverless 3
22 GPU Programming Model 5
2.3 NVIDIA Multi-Instace GPU MIG) 7
3 Related Work 9
3.1 CUDA Device Virtualization 9
311 DS-CUDA e 9
312 rCUDA 10
313 Pagoda 10
3.2 CUDA Device sharinginClouds 11
321 KNIX 11
322 GaiaGPU. 11
3.23 GPU Enabled Serverless Computing Framework . .. 12
3.2.4 GPU-Enabled Serverless Workflows for Efficient Multi-

media Processing 12
3.3 Applications of NVIDIAMIG 12
3.3.1 Serving DNN Models with Multi-Instance GPUs . . . 12

3.3.2 Contention-Aware GPU Partitioning and Task-to-Partition
Allocation for Real-Time Workloads 12
333 NVIDIA Triton 13
4 Design 15
41 Goals 15
42 Traceexecution 15

43 Design e 17

CONTENTS

iv

43.1 Resourceallocation
44 Summary

5 Implementation
5.1 Libraryinterception.
52 Kernel submission
5.3 Synchronization requirements
54 Optimizations,
55 PTXanalysis
5.6 Exampleexecution

6 Evaluation
6.1 Evaluation platform
6.2 MIG performance isolation
6.3 Scientific Computing: Rodinia
6.3.1 Benchmarks,
632 Results o
6.4 Machine Learning inference
6.41 Benchmarks
642 Results 0 .

7 Conclusions and Future Work

A Appendix
A.1 Synchronization histograms (vs. transfer size)
A.2 Synchronization trace size ECDF
A3 CUDA APIcoverage

Bibliography

23
23
24
25
26
27
27

29
29
29
30
31
32
32
33
33

39

Chapter 1

Introduction

The serverless computing model has been a big trend for the global IT indus-
try. Serverless is a computing paradigm, where code is run on dynamically
allocated cloud resources, with the goal to lift the burden of managing server
infrastructure from developers. The move towards cloud-based comput-
ing has been accelerating for many years [43]. Function-as-a-Service (FaaS)
is a programming paradigm based on event-driven function execution in
fully dynamically allocated runtime environments. FaaS has become a very
popular model, as it can be very cost-effective: a pay-as-you-go model is
usually applied, where only actual execution time is billed. However, when
it comes to GPU applications, few options are available for FaaS. As of 2021,
none of the big commercial providers (Amazon, Microsoft, Google, and
IBM) offer GPU-enabled FaaS options. GPU nodes are readily available as a
Infrastructure-as-a-Service (IaaS) option, but this is a different paradigm that
negates many of the advantages FaaS can bring: the advantage of providing
computing resources that are fully dynamic, and completely opaque to the ap-
plication developer, meaning that developers have no insight or control over
where their functions are actually run. The reason why GPUs are available
for FaaS computing is that many of the fine-grained sharing and isolation
mechanisms that are available for CPU execution are not available for GPUs.
Sharing GPUs between tenant is not efficient: GPUs have to be attached to
containers and reinitialized frequently. If performance and security isolation
is desired, allowing concurrent use by many tenants is very challenging.

Machine learning (ML) training and inference has become an important
workload across many industries. To efficiently run ML inference in the cloud,
GPUs are required, as they speed up these tasks by orders of magnitude.
The flexible model of serverless is very attractive for machine learning and
has been shown to be cost effective and fast [22]. However, for real world
applications, such as IoT devices that rely on ML inference for making
decisions, there still are challenges. Previous work [21] shows that FaaS is

1. INTRODUCTION

a viable option for machine learning inference, but the latencies involved,
especially in cold start scenarios, still leave a lot to be desired when trying to
meet strict service-level-agreements (SLAs).

A challenge for using GPU accelerator devices in the cloud is that to achieve
high utilization, the devices need to be shared between multiple tenants
fairly and efficiently and with strong isolation. The KNIX platform [40]
provides such a system by virtualizing device access at the CUDA API level.
However, the KNIX system still introduces significant overhead compared
to executing GPU functions natively. Another idea is to use NVIDIAs most
recent technology for concurrent device usage, Multi-Instance GPU (MIG). In
MIG, devices can be physically partitioned, giving strong isolation guarantees.
This work leverages MIG to share a single device among multiple clients,
without software-based virtualization techniques.

In this thesis, we propose GPUless: a GPU-native runtime system for GPU
Faa$S functions, based on intercepting the NVIDIA CUDA API and executing
it on a remote, dynamically allocated GPU environment. GPUless uses
NVIDIAs MIG technology to achieve:

* Low latencies for cold and hot execution of machine learning inference
tasks.

¢ High utilization when sharing GPUs between multiple tenants.

¢ The ability to run native CUDA applications remotely without a real
GPU being installed on the host system.

Chapter 4 outlines the design of the system and its components, chapter 5
gives insight into the implementation details of the system, and chapter 6
will evaluate the system against a set of benchmarks, including a selection of
popular machine learning models.

Chapter 2

Background

In this chapter, we will introduce the concepts of serverless computing in
more detail. We will also discuss the CUDA programming model and
NVIDIAs MIG technology and how to apply it to a FaaS system.

2.1 Serverless

Serverless is an emerging paradigm for cloud computing. The goal is to
remove the responsibility of server deployment and management from de-
velopers and let a cloud provider deal with it. Low-level details (such as
deployment, configuration, and scheduling) are abstracted away, and re-
sources are made available on-demand and with an efficient pay-as-you-go
model. This alleviates the problem of scaling and load-balancing for develop-
ers, who would have to rely on over-provisioning models in the past.

The authors of “The Rise of Serverless Computing” [11] define the Serverless
paradigm as follows:

“Serverless computing is a platform that hides server usage from devel-
opers and runs code on-demand automatically scaled and billed only for
the time the code is running.”

Function-as-a-Service (FaaS) is an immediate application of serverless com-
puting, where small blocks of code (“functions”) are executed on dynamically
allocated environments, with execution triggered by event-driven architec-
tures. Typically, execution time is limited to a few minutes.

There are many commercial FaaS providers, like AWS Lambda [5], Google
Cloud Functions [3], Microsoft Azure Functions [2], and IBM Cloud Func-
tions [4]. Additionally, there are Open Source efforts to build FaaS platforms
such as Apache OpenWhisk [1].

2. BACKGROUND

In the next paragraphs, we will briefly introduce the main components and
characteristics of FaaS.

Execution environment. In FaaS, the developer has no control over where
their code is run. This deliberate abstraction ensures developers do not
have to manage any lower-level resources themselves. The runtime systems
usually execute code in sandboxes built with containers or microVMs. Some
platforms only provide a very high-level API for application development,
and others give users the ability to submit their own container images.
Cold-start latencies tend to be high in FaaS: “Peeking Behind the Curtains
of Serverless Platforms” [44] reports a median for cold start latencies in
commercial platforms of a few hundred milliseconds, with maximums of up
to multiple seconds.

Triggers. In FaaS systems, code is typically pre-registered with the service.
An execution is invoked by triggers as part of an event-driven architecture.
Such triggers can be HTTP API gateways for manual invocation or cloud
event sources. An example of such a cloud event source in the Amazon
ecosystem would be new data appearing in AWS S3 storage, Amazon’s object
data storage service.

State and Storage. FaaS systems use stateless functions because the func-
tions can be run anywhere and can be canceled or migrated at any time for
fault tolerance reasons. However, of course, there is a need for storage for
most applications. Typically, there are three storage options available for
serverless functions:

¢ Embedding of data or libraries in the container image. Very limited in
size (For example in AWS: 50 MB).

¢ Temporary storage (/tmp) on the execution environment. Limited in
size.

¢ External storage systems, such as AWS S3 in the Amazon ecosystem.
Elastic storage size.

There have been efforts to integrate GPUs in such cloud infrastructures (see
sections 3.2.1, 3.2.2), but these have not been especially successful at achieving
the low latencies ML inference tasks usually require.

This work explores the provisioning of GPUs in a FaaS context while reducing
the environment setup to the bare minimum. We can achieve much better cold
start latencies than current commercial offerings by relying on NVDIDIAs
MIG technology for isolated execution environments and forgoing a typical
CPU runtime environment.

2.2. GPU Programming Model

2.2 GPU Programming Model

We will briefly introduce the architecture of NVIDIAs Ampere generation of
computing devices, the A100 in particular. This device was chosen because
it is the only one supporting Multi-Instance GPU (MIG) as of this GPU
generation.

Ampere architecture. NVIDIAs Ampere architecture at the highest level
is composed of Graphics Processing Clusters (GPC) containing Streaming
Multiprocessors (SM). Each SM comprises execution units: CUDA cores
and Tensor cores. On these, so-called kernels are executed in SIMT (Single
Instruction, Multiple Threads) model.

The A100 device has 7 GPCs containing 12 SMs each for a total of 84 SMs.
Each SM contains 128 CUDA cores.

CUDA API. CUDA is NVIDIA’s so-called programming model and in-
terface for interacting with a GPU device. Execution happens in so-called
kernels, which define the parallel work. When launching a kernel, it needs
to be configured with block and grid dimensions. A CUDA thread block is
a group of threads executed on a specific SM. A CUDA grid is a group of
thread blocks scheduled for execution on many SMs on a CUDA-capable
GPU. Generally, an SM can schedule many thread blocks at the same time.

This design makes CUDA kernels scalable: A kernel can be executed on
different size GPUs without prior knowledge of where the code will run due
to partitioning work into thread blocks and grids.

Programming example. To illustrate how the CUDA API is used, we pro-
vide a simple example for vector addition in Listing 2.1. A block size of one
is used in the example, so a thread is spawned in a separate thread block for
every value in the vector. The vadd function is defined as __global__, a C++
extension that marks the function as callable from both host and device. The
CUDA compiler will generate the appropriate machine code for the function
to execute on the device. Note also the vadd<<<N,1>>>(...) special syntax
for launching a kernel with given grid and thread block dimensions in the
triple brackets. This syntax is also a CUDA-specific C++ extension.

CUDA extension libraries. Additionally to the basic CUDA API, NVIDIA
also provides a set of extension libraries that implement many essential
primitives. Necessary for our work are cuDNN [30] and cuBLAS [29] because
they are extensively used in PyTorch [32], a machine learning framework our
benchmarks are based on. cuDNN provides primitives for standard deep
neural network applications such as forward and backward convolution,

2. BACKGROUND

O 0 NI O Ul B W N

W W W W NN DNDNDNDNDRNNDNDNR R = = s e el
W NP O W0V 00 IO Ul WN P O WO N O Uk = O

#define N 8

__global__ void vadd(const float *a, const float *b,
float *c, int n) {
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < n) {
c[il = ali]l + b[il;
3
}

// allocate memory on the host

float *host_a = malloc(sizeof(float) * N);
float *host_b = malloc(sizeof(float) * N);
float *host_c = malloc(sizeof(float) * N);

// allocate memory on the device

float *device_a, *device_b, *device_c;
cudaMalloc (&device_a, sizeof(float) * N);
cudaMalloc (&device_b, sizeof(float) * N);
cudaMalloc (&device_c, sizeof(float) * N);

// initalize host memory
// copy host memory to device
cudaMemcpy (device_a, host_a, cudaMemcpyHostToDevice);

cudaMemcpy (device_b, host_b, cudaMemcpyHostToDevice);

// execute a kernel
vadd<<<N, 1>>>(device_a, device_b, device_c, N);

// copy device memory back to host
cudaMemcpy (host_c, device_c, cudaMemcpyDeviceToHost);

Listing 2.1: CUDA programming example

pooling, normalization, and activation layers. cuBLAS is an implementation
of BLAS (Basic Linear Algebra Subprograms) [9] for the CUDA runtime and
provides implementations for operations such as matrix multiplication. The
benefit of these NVIDIA-provided libraries is that they are highly optimized
and tuned for many generations of accelerator devices.

Typical CUDA applications. To illustrate how typical applications use
CUDA, we analyze the ResNet50 [19] image recognition model implemented
using the PyTorch framework. The following table shows the anatomy of
the application from a CUDA standpoint. There are not just a few kernel
invocations but over two hundred and a substantial number of host-to-device

2.3. NVIDIA Multi-Instace GPU (MIG)

(H2D) memory copies. Another important take-away is that PyTorch makes
heavy use of cuDNN, to the point where most executed kernels are shipped
with cuDNN and not PyTorch. cuBLAS is only used as an auxiliary library
in this example and is only called a few times.

Kernel | Unique cuBLAS | cuDNN
launches | kernels cudaMalloc | H2D | D2H API calls | API calls
219 27 17 321 2 5 1349

2.3 NVIDIA Multi-Instace GPU (MIG)

Multi-Instance GPU (MIG) [31] is a GPU partitioning technology developed
by NVIDIA for the A100 product family of the Ampere architecture. Its goal
is to provide a mechanism for sharing a GPU between multiple users who do
not use the entire device independently. A MIG device partition is supposed
to provide complete fault, performance, and security isolation.

MIG is the latest of NVIDIAs concurrency mechanisms and supplements
CUDA streams [38] and the Multi-Process Service (MPS) [27]. Both streams
and MPS are part of the CUDA API, while MIG is a device-level technology.
This means that MIG can be used in conjunction with the older streams
and MPS features. However, MIG gives stronger isolation guarantees than
previous concurrency mechanisms: Memory protection, memory bandwidth
Quality of Service (Qo0S), and error isolation. There is no error isolation
in MPS, so one failing process can lead to failures of concurrently running
processes [31].

We will assume features and configurations present on the NVIDIA A100
device when discussing MIG because this is currently the only MIG-enabled
device available. Future device generations will likely have some significant
differences.

In MIG, a device can be partitioned into at most seven so-called GPU instances
(GI), one for each Graphics Processing Cluster (GPC). Each GI has a certain
number of streaming multiprocessors (SM) and allocated memory. It does
not share memory bandwidth with other GIs. Figure 2.1 gives an overview of
how a MIG device can be partitioned. Blocks highlighted in green are selected
partitions. A partitioning scheme is only possible if there is no overlap in
selected partitions. Additionally to partitioning into GPU instances, there is
also the ability to further partition these into Compute instances.. Compute
instances do not provide performance isolation and are used for logical
partitioning of applications inside a GPU instance.

Note that compute capabilities are divided into 7t®, but memory is divided
into 8ts. This mismatch is a source of some inefficiency because, in some
configurations, % of memory is left unused.

2. BACKGROUND

8 memory,
7 compute

4 memory,
4 compute

4 memory,
3 compute

2 memory,
2 compute

2 memory,
2 compute

2 memory,
2 compute

N/A

1 memory, || 1 memory, || 1 memory, 1 memory,
1 compute 1 compute 1 compute 1 compute

1 memory, 1 memory, || 1 memory,
1 compute 1 compute 1 compute

N/A

Application to Serverless.

Figure 2.1: Example MIG partitioning scheme

It is easy to see how MIG could be applied

to serverless computing: Tenants could request a partition of the CUDA
device that suits the demands of their applications. Many machine learning
applications will not make use of an entire A100 device, as it is a very large
accelerator with up to 80 GB of memory. Few models require this much

memory.

Chapter 3

Related Work

This section will discuss work related to CUDA device virtualization (Sec-
tion 3.1), GPU device sharing in clouds (Section 3.2), and previous work that
made use of NVIDIA’s MIG technology (Section 3.3).

3.1 CUDA Device Virtualization

3.1.1 DS-CUDA

Distributed-Shared CUDA [23] is a solution for virtualizing a large number
of GPU-equipped nodes in a cluster as a single device as middleware. Virtu-
alization allows running a CUDA application on many GPUs without having
to use frameworks such as MPI, simplifying the deployment of CUDA appli-
cations drastically. An additional goal of DS-CUDA is to increase reliability:
Redundant execution of specific fractions of work is used to detect errors.
Error detection was crucial for accelerator devices of that era because error
rates of up to 10% were reported at the time [18].

DS-CUDA is implemented as a middleware between native CUDA applica-
tions and execution nodes using the LD_PRELOAD library interception technique.
CUDA API calls are intercepted and forwarded to an execution node using
basic TCP or RDMA transport or NVIDIAs GPUDirect RDMA technology.

The downsides of DS-CUDA are that it only supports the outdated CUDA 6.5
API and relies on a custom CUDA extension that requires source code access
to the CUDA application. Source code modification disqualifies DS-CUDA
immediately for machine learning applications, as the majority of these use
frameworks such as PyTorch [32] or Tensorflow [7]. Also, DS-CUDA is not
concerned with GPU device sharing, i.e., multiple applications using one
device, which is a focus of this work considering the considerable size of a
current accelerator like the NVIDIA A100.

3. ReELATED WORK

10

The redundancy features have also become much less relevant, as many
clusters these days use enterprise-grade CUDA devices that support ECC
memory, instead of commodity GPUs.

3.1.2 rCUDA

rCUDA [15] is a middleware solution like DS-CUDA but significantly more
mature. Claimed benefits of rCUDA include:

* More GPUs are available for a single application.

¢ Idle GPU resources in a node can be utilized despite the CPU being
used.

¢ Several VMs can concurrently access the same GPU in a shared manner.

The downsides of rCUDA are similar to that of DS-CUDA: Finer-grained
device sharing is not something that it is concerned with; the main focus
is giving applications access to many accelerator devices. Additionally, it
is unclear how well APIs like cuBLAS and cuDNN are supported, which
are increasingly popular libraries in modern applications. Lastly, the latest
supported CUDA version by rCUDA is 9.0, which is unsuitable for current
machine learning frameworks.

Recent follow-up work [26] to rCUDA applies rCUDA to build an accelerated
serverless computing platform. While similar to our work, it focuses on the
architectural aspects of building a cloud computing system. The downsides
of rCUDA remain: It is concerned with providing heterogeneous access to
many accelerators in a cluster and much less with finer-grained sharing of a
device at a smaller scale.

Also, rCUDA is not concerned about providing platform for hot-invocations
of machine learning applications. Overheads are relatively large for every
function invocation due to model loading costs. It would be desirable to
support keeping models hot and initialized in a GPU environment to achieve
much lower hot-invocation latencies.

A major problem of rCUDA is its nature as proprietary software, limiting its
further research and deployment. It is therefore not evaluated further in this
work.

3.1.3 Pagoda

Pagoda [47] is a system for efficiently sharing a GPU among many “narrow”
tasks, i.e., tasks using fewer than 512 threads. Pagoda implements a full
runtime with a scheduling system written entirely in CUDA kernels. Espe-
cially for workloads that spawn more than 32 tasks (NVIDIAs HyperQ [10]
system supports 32 work queues), Pagoda can improve device utilization

3.2. CUDA Device sharing in Clouds

significantly and claims to achieve a geometric mean speedup of 1.76X over
HyperQ.

The downside of the Pagoda system is that it only supports narrow tasks and
lacks genericity. Additionally, applications need to be specifically adapted to
work with the Pagoda system, so libraries and applications must be ported
to the Pagoda runtime system.

3.2 CUDA Device sharing in Clouds

3.2.1 KNIX

X et al. present an evolution [40] of the SAND/KNIX platform [8], which was
renamed to KNIX. KNIX can execute Python functions in sandboxes using
NVIDIA GPU resources. Isolation is achieved using GPU Manager [17], a
component of the GaiaGPU project, which is based on the LD_PRELOAD API
interception technique. Containers are provided with vGPUs (virtual GPUs)
that can be shared between containers and enables control over memory and
compute ability allocation.

KNIX allows sharing of GPUs between containers without modifications to
Kubernetes code or container images and provides isolated allocations for
functions. However, reported overheads are still significant compared to
bare-metal execution.

The major problem for machine learning inference tasks is that in a serverless
setting, latency can become prohibitive due to having to spin up container
instances for every function execution. This is not fully addressed in KNIX,
and approaches like rCUDA that do not require expensive environment setup
are dismissed on the grounds of “lacking fault tolerance” [40, Section 3.2].

3.2.2 GaiaGPU

GaiaGPU [17] is a project that virtualizes GPUs for shared use by multiple
containers, allowing flexible allocation of memory and compute resources.
The system achieves very low overhead overall and significantly improves
resource allocation.

GaiaGPU is implemented as a device plugin for Kubernetes. The GPU
virtualization is realized using a LD_PRELOAD preload library that acts as a
middleware between applications making CUDA API calls and the actual
device.

The downside of GaiaGPU is that it is unclear if it can compete with the
potentially much stronger properties that NVIDIA MIG can provide, such as
complete memory bandwidth isolation. In exchange, there is more flexibility.

11

3. ReELATED WORK

12

Additionally, GaiaGPU does not concern itself with the concept of function
execution specifically, being more generic.

3.2.3 GPU Enabled Serverless Computing Framework

Kim et al. present a computing framework for serverless [24], that is based
on attaching GPUs to an open source function execution environment. GPUs
are used individually by each execution container, using the NVIDIA Docker
Container Toolkit [28]. This does not address the core challenges for GPU-
enabled FaaS services: sharing devices efficiently and providing isolation for
tenants.

3.2.4 GPU-Enabled Serverless Workflows for Efficient Multimedia
Processing

Risco et al. present a workflow for multimedia processing in serverless
workflows [39]. Comparing to other works mentioned here, it is an entire
system architecture based on the Amazon cloud platform. GPU acceleration
is achieved using Amazon EC2 instances with the AWS Batch system.

3.3 Applications of NVIDIA MIG

3.3.1 Serving DNN Models with Multi-Instance GPUs

“Serving DNN Models with Multi-Instance GPUs” studies approaches to con-
figure MIG partitions for serving DNNs such that throughput is maximized.
The authors define this problem as the Reconfigurabe Machine Scheduling
Problem (RMS) and propose an algorithmic solution. They report that their
algorithm pipeline can save up to 40% GPUs while providing the same
throughput. The work focuses on fulfilling service-level agreements (SLOs)
in production deployments while optimizing throughput at the same time.
Our work differs from this in that we focus on being able to execute arbitrary
GPU functions on MIG partitions of client-requested size, taking the role of a
service provider.

3.3.2 Contention-Aware GPU Partitioning and Task-to-Partition
Allocation for Real-Time Workloads

“Contention-Aware GPU Partitioning and Task-to-Partition Allocation for
Real-Time Workloads” [48] is an application of NVIDIAs MIG technology
for solving timing constraints of modern real-time applications. It gives an
algorithm that decides how to partition a GPU for use by different kernels
such that interference between the different kernels is reduced.

3.3. Applications of NVIDIA MIG

3.3.3 NVIDIA Triton

NVIDIA Triton inference server is an NVIDIA product for serving machine
learning models in production environments. It supports all major machine
learning frameworks and can be used in various deployment settings. From
a research perspective, the downside of this system is its focus on production
systems: It only serves models from a pre-configured model repository.
GPUless aims to support generic CUDA functions.

13

Chapter 4

Design

This chapter will discuss the goals (Section 4.1), an introduction to traced
execution of CUDA (Section 4.2), and an overview of the design (Section 4.3)
of the GPUless system.

4.1 Goals

We set the following goals for our GPU-native runtime for FaaS:

¢ Ability to share current generation GPUs (Ampere and later) among
multiple tenants using hardware-level isolation and sharing mecha-
nisms

¢ Strong performance and security isolation without operating system
level sandboxing.

¢ Transparent API that doesn’t require modifications to existing CUDA
applications.

¢ Improve efficiency by allocation only GPU tasks and avoiding blocking
the GPU when functions use the CPU for preprocessing

4.2 Trace execution

A fundamental problem in previous CUDA API middleware implementations
like DS-CUDA [23] is that every CUDA API call is forwarded, which can
result in tens of thousands of invocations over the network. This design leads
to a large amount of network overhead and is nontrivial to implement if
the exact asynchronous properties of CUDA are supposed to be retained.
In GPUless, we will extend on the basic concepts of CUDA middleware
implementations by introducing the concept of aggregated trace execution.

15

4. DESIGN

16

O 0 NI O Ul B W N

cudaMalloc(...) // sync
cudaMalloc(...) // sync

cudaMemcpy (hostToDevice, ...)
cudaMalloc(...) // sync
cudaMemcpy (hostToDevice, ...)

cudaLaunchKernel (...)

// repeat cudalLaunchKernel 23 times
cudaLaunchKernel (...)

cudaMemcpy (deviceToHost, ...) // sync

Listing 4.1: Trace of hotspot benchmark

The key idea is that not every API call has to be executed immediately to
execute a CUDA application. It is possible to define “synchronization points”,
where execution has to happen because data is written back to the host. API
calls between those points can be recorded, and executed only when required.
This works because only some CUDA API calls have effects that can influence
the flow of the host program, namely those that write back result data. For
an example, see listing 4.1 that is an execution trace of the hotspot thermal
simulation benchmark from the Rodinia [12] suite. There are two CUDA
API calls that will write back data to the host: cudaMalloc (writes back a
pointer to the allocated address), and cudaMemcpy (writes back data to host
memory when using the device-to-host variant). Note that especially the
kernel launches do not write back data, so all of these calls can be recorded
and submitted to the execution environment only when synchronizing on
the last cudaMemcpy. In this example, only 4/31 API calls actually require
synchronization.

Trace analysis of machine learning inference application shows that the
number of such synchronization points is low: In a typical resnet50 [19]
image recognition inference task, only about 3% of API calls need to be
synchronized. Other machine learning tasks like BERT [14] or 3D U-Net [49]
also range from 3-6% synchronized calls. For more details on synchronization
statistics, see Table 6.3 in chapter 6.

For an illustration, see the histogram of synchronization points across the
execution timeline in our system with the amount of data transferred in Fig-
ure 4.1. happen can see that most synchronizations happen at the start, where
memory is allocated, and at the end, where memory is copied back from the
device to retrieve computation results. For synchronization histograms off
all benchmarks evaluated in chapter 6, see appendix A.1.

Of interest is also the size of these aggregated trace executions. Were synchro-
nization points spread uniformly, the “package-size” of a synchronization
would still relatively small. Figure 4.2 shows an empirical cumulative dis-
tribution function (ECDF) plot of the size of the trace at synchronization

4.3.

Design

Histogram of synchronization calls (resnet50)

35 -20.0
30 -17.5
o
Z 25 -15.0
Q
N
% 50 -12.5
-10.0
5 15
—_
)
© -7.5
© 10
(a)
-5.0
5
-25
0 [|
-0.0

0 250 500 750 1000 1250 1500 1750
Timestamp [ms]

Figure 4.1: Histogram of synchronization calls in resnet50 image recognition inference (cold
start)

for a ResNet50 invocation. We see that there are a large number of smaller
synchronizations, with about 80% being smaller than 50 calls. However,
there is also a relatively long tail of larger sychronizations with the largest
containing more than 350 calls.

Note that return values of CUDA API calls (a status flag of cudaError_t)
cannot reasonably be used to drive host computation. Firstly, they mostly
indicate failures that cannot be recovered from (such as failure to initialize
the CUDA driver), and secondly, errors reported by return value often do
not originate from that specific call due to CUDAs asynchronous nature.

For a more detailed description of synchronization requirements of CUDA,
cuDNN, and cuBLAS, see Chapter 5.

4.3 Design

Figure 4.3 gives an overview of the system.
1. A resource request for a device of a certain size is made.

2. One or many trace execution requests are sent directly to a manager
process that owns the device.

17

4. DESIGN

1o ECDF of trace size at synchronization (resnet50)
.]

0.8

Proportion
©
(o)}

©
»

0.2

0.0
0 50 100 150 200 250 300 350
Trace size

Figure 4.2: Histogram of trace sizes in synchronizations for resnet50 image recognition inference
(cold start)

|
Local ' Compute Node
t ° execute
I
: a trace execution request * +
{ > Device Manager 0 ----- Device 0
1 /
| /
° Lallocate Device Manager 1 ----- Device 1
1 o
1 ' . g
Client library <+—— Resource Manager ¢---- Device Manager2 ----- Device 2
| N
° ldeallocate b A . .
| \ * Device Manager 3 ----- Device 3
I %
CUDA application I
e U
|
I
I
I
I Process Process (MIG) Device
|
I

Figure 4.3: GPUless architecture overview

18

4.3. Design

3. CUDA tasks/kernels are natively executed on the device.
4. And the end of the program, resources are deallocated.

Details of how these steps are designed will be be discussed in the following
subsections.

Components. GPUless consists of the following major components:
¢ A client library that interfaces with CUDA applications.

* A server process that manages device partitions and allocations (re-
source manager).

* Secondary server tasks that manages each device partition and executes
CUDA API traces on them (device manager).

* Protocols that enable communication between these components.

Client. There needs to be a generic way of integrating with existing code,
because our client should be compatible with existing frameworks. While we
could modify PyTorch source code directly to achieve our goals, it would not
be portable to other frameworks and a substantial effort. We decide to use
the LD_PRELOAD technique [6], which works by defining symbols of functions
that should be intercepted and overridden and specifying the library in the
LD_PRELOAD environment variable. It This approach has already been used in
DS-CUDA [23] and KNIX [40] for intercepting the CUDA API. A downside
of this approach is that it requires the CUDA library to be dynamically
linked at compile-time, but in frameworks such as PyTorch, this is the default
configuration.

Server. The server consists of two components, one resource manager and
many device managers (see also Figure 4.3), which run the network protocols
discussed next. Each device manager needs to be run as a separate OS
process because CUDA manages its state on a per-process level. Figure 4.4
shows a comparative timeline between a native invocation and an invocation
in the GPUless system. Both applications start with uninitialized CUDA
devices to ensure a fair comparison, allowing us to measure our system'’s
overheads accurately. Note that it is also possible to keep an OS process with
an attached and initialized CUDA device ready in a pool. This approach is
comparable to a “warm” start in serverless.

4.3.1 Resource allocation

For resource allocation the protocol shown in Figure 4.5. It follows the
following basic steps:

19

4. DESIGN

20

Native execution

Application

CUDA . . T i
initialization ML model loading ML inference "_'_'iis_t"“

» time

Remote execution
Application

i : Remote | . o E
Remote allocation CUDA trace recording deallocation Client E
Allocation . !’_ropes_s Deallocation Allocation H
initialization manager
CUDA) . i Device |
initialization ML model loading ML inference E manager E

» time

Figure 4.4: Timeline of execution in the GPUless system compared to a native execution

Client

AllocateRequest (profile)

CUDA host

\ 4

AllocateOffer (session_id, [profiles])

AllocateSelect (session_id, profile)

AllocateConfirm (session_id, ip, port)

DeallocateRequest (session_id)

DeallocateConfirm ()

A

Figure 4.5: Allocation protocol

4.4. Summary

TraceExecutionRequest TraceExecutionResponse
trace: [CudaApiCall] status: Status
new_modules: [CudaModule] trace_top: CudaApicCall

new_functions: [CudaFunction]

Figure 4.6: Structure of trace execution requests and responses

1. Request a session of a given profile. The profile is a MIG instance size.

2. The manager process answers with a list of available instances, accord-
ing to the clients request.

3. The client can then select a suitable profile for the list.

4. The manager confirms the allocation, and issues a port and IP where
the client can submit trace execution requests.

Additionally, a deallocation request is available for terminating the session
before the timeout.

Protocol. To execute CUDA API traces on a remote host, the CUDA kernels
and their arguments contained in that trace need to be packaged and trans-
ferred to it. Additionally, the execution service also needs the GPU device
code. These requirements are implemented with a simple request-response
protocol illustrated in Figure 4.6.

An execution request contains the trace of CUDA API call up until the
current synchronization point. It also has to contain the modules (binary
device code) and functions (symbol names) that should be loaded to execute
that trace. Typically, a CUDA application will call the same kernel many
times. By tracking what module code and functions were already transmitted
previously at the client, bandwidth can be saved compared to deciding
whether a module must be loaded at the server.

The CudaApiCall structures contain all necessary data to execute it on a
native device, and if data is written back, it is stored too. The response will
only include the most recent CudaApiCall because this is the synchronization
point. It has return data required by the client, while all previous calls do
not.

4.4 Summary

In summary, this design requires implementations for the components: Server
processes, communication protocols, and LD_PRELOAD interception libraries

21

4. DESIGN

with trace execution capabilities.

22

Chapter 5

Implementation

Our prototype system is implemented in about 5000 lines of C++. It consists
of a client library that is used as a LD_PRELOAD library and a server. Network
serialization is handled using Flatbuffer [16] schemas, using standard TCP
data transfers. An overview of the essential components is shown in figure 5.1.
At the client-side, there are three API interception modules (see Section 5.1)
for the main CUDA API targets: the CUDA runtime library, cuDNN, and
cuBLAS.

There is an additional binary analysis module (see also Section 5.5) that
provides insight on the types of kernel function parameters. The trace
execution module supports the interception modules and handles serializing
the traces and running the protocols described in Chapter 4.

On the server-side, there is two types of managers: A manager for allocating
resources at the request of clients and device managers that will serve as
execution node for traces. The device manager also holds its CUDA context,
virtual handles for CUDA library structs (see Section 5.4), and registries for
CUDA modules and functions that are referenced by the API calls in the
traces.

In Section 5.2, the mechanism for submitting kernels is discussed. Section 5.3
shows the calls that require synchronization, Section 5.4 shows some opti-
mizations that we applied, Section 5.5 discusses PTX analysis, and Section 5.6
shows an example for a system execution.

5.1 Library interception

At the core of the implementation lies the interception of library calls to
CUDA, cuBLAS, and cuDNN. In its stage as a prototype, GPUless currently
does not aim to provide full coverage of these APIs. For a complete list of
supported APIs, see appendix A.3. Listing 5.1 shows an example of how

23

5. IMPLEMENTATION

CUDA executabIeH APl interception |—| Execution trace

~{ CUDA | Serialization | Device Mgr 0
{wom | L roraen |

cuDNN/cuBLAS
virtual handles

Function registry
Module registry

Device Mgr 1

cuBLAS

Binary analysis

Figure 5.1: Architecture overview

such a library call interception is implemented, using cudaMalloc for an
example. cudaMalloc is a synchronization point because a memory address
is returned to the client, which is then commonly used as a base pointer for
many memory copy operations. First, the call is stored in the current trace,
and then synchronization is performed. The returned data required by the
client (the pointer to device memory) is retrieved from the trace history and
written back to the client using the out-parameter argument.

1 cudaError_t cudaMalloc(void x*devPtr, size_t size) {
2 // store the call in the trace record

3 auto api_call = std::make_shared<CudaMalloc>(size);
4 getCudaTrace () .record(api_call);

5

6 // perform a synchronization

7 getTraceExecutor () ->synchronize (getCudaTrace());
8 auto top = getCudaTrace().historyTop();

9 auto api_call_executed

10 = std::static_pointer_cast<CudaMalloc>(top);
11

12 // write back data to the application

13 *devPtr = api_call_executed->devPtr;

14

15 return cudaSuccess;

16 3}

Listing 5.1: Example CUDA API override

5.2 Kernel submission

An important aspect of a serverless system is submission of executable code.
In the GPU context, this means we need to extract and transfer the GPU

24

O O N3 O U = W N = N U= W N -

—_
o

5.3. Synchronization requirements

typedef struct {
int magic;
int version;
const unsigned long long* data;
void *xfilename_or_fatbins;
} __fatBinC_Wrapper_t;

executable code to the execution host. To extract the code at runtime from a
CUDA application, we intercept the __cudaRegisterFatBinary function from
the CUDA runtime API, which registers binary modules embedded in the
executable by the NVIDIA CUDA compiler.

Fat binary modules are of the following structure:

Note that this structure does not contain the size of the data, but it is
embedded as header and can be extracted like this:

uint64_t *p = (uint64_tx) data;
size_t data_len = ((p[1]1 - 1) /7 8 + 1) = 8 + 16;

Additionally, we hijack __cudaRegisterFunction which contains the fat binary
handle where the function is contained. This is recorded, and once we
intercept a cudaLaunchKernel call, we look up what module contains that
function symbol and attach the module data for loading on the remote
executor at the next synchronization.

5.3 Synchronization requirements

The GPUless project is implemented as a prototype that does not aim to
achieve full coverage of CUDA, cuBLAS and cuDNN. To support our suite of
benchmarks, only a small subset of theoretical synchronization points need
to be supported:

cudaGetDeviceProperties

cudaFuncGetAttributes

cudaMalloc

cudaMemcpy (DeviceToHost)

cudaMemcpyAsync(DeviceToHost)

cudaFree

cudnnGetConvolutionForwardAlgorithm_v7
cudnnGetConvolutionBackwardDataAlgorithm_v7
cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize
cudnnGetBatchNormalizationTrainingExReserveSpaceSize

Some API calls do return data, but synchronization can be avoided. For more
details on this optimization, see the following section.

5. IMPLEMENTATION

26

P O U W N

N O Uk W N =

5.4 Optimizations

Virtualized handles. Some API calls that return data do not require synchro-
nizations, namely API calls that initialize handles to structures in cuBLAS
and cuDNN such as cudnnCreate. Because the implementation details of
these structures are private in the NVIDIA APIs, applications only use their
handles as arguments to API calls but never access their data directly. This
opaqueness allows us to virtualize these handles, generating new virtual
handles in the client library upon their creation and mapping them to real
handles on the server-side. The creation of the following handles are virtual-
ized this way:

cudnnHandle_t
cudnnTensorDescriptor_t
cudnnFilterDescriptor_t
cudnnConvolutionDescriptor_t
cublasHandle_t
cublasLtHandle_t
cublasLtMatmulDesc_t
cublasLtMatrixLayout_t

Using the example of cudnnCreate, handle virtualization is implemented like
this:

cudnnStatus_t cudnnCreate (cudnnHandle_t *handle) {
auto virt_handle = nextCudnnHandle();
*handle = reinterpret_cast<cudnnHandle_t>(virt_handle);
getCudaTrace().record(
std::make_shared<gpuless::CudnnCreate>(virt_handle));
return CUDNN_STATUS_SUCCESS;

Lazy module loading. When using the CUDA runtime API, the CUDA
compiler will package kernels into modules, that contain kernel functions. For
each of these modules and functions, the CUDA compiler will inject a call to
—-cudaRegisterFatBinary or __cudaRegisterFunction. Libraries like PyTorch
include tens of thousands of kernel functions, so significant time is spent
registering these modules and functions during initialization. In the GPUless
system, we intercept these calls but do not forward the registration calls.
Instead, we keep track of the module data and the symbols located within
them, and once a kernel launch call is registered, the module is shipped with
the next synchronization if it is not available at the server yet. Benchmark
evaluation(see chapter 6) shows that this optimization can even lead to a
performance gain compared to native execution.

5.5. PTX analysis

5.5 PTX analysis

A major challenge when serializing a call to a kernel function is that all of its
arguments need to be shipped as well. The CUDA API for launching a kernel
(cudaLaunchKernel) does not include any information about the types of the
arguments or even how many there are. The CUDA provides no public API
for querying the arguments of a kernel function at runtime. To resolve this
problem, we let the user provide our system with the binary that contains
the CUDA code and analyze it using the CUDA binary utilities (cuobjdump).
While this can be an expensive operation, we only need to extract the list of
parameters and their sizes. The results can be cached easily, as libraries such
as PyTorch are not updated frequently.

5.6 Example execution

To illustrate how our prototype system can be used, we show how a Python
machine learning application (such as the example in listing 5.2, an image
classification invocation on ResNet50) can be launched in our system. Ar-
guments are given using environment variables, and most importantly our
client library is preloaded using the LD_PRELOAD environment variable. We
note that the core part of PyTorch interface has not been changed:

MANAGER_IP=127.0.0.1 \
MANAGER_PORT=8002 \
CUDA_BINARY=/usr/libtorch/libtorch_cuda.so \
LD_PRELOAD="/1ibgpuless.so \
python run.py

27

5. IMPLEMENTATION

1 import torch

2 from PIL import Image

3 from torchvision import transforms

4

5 model = torch.hub.load(’pytorch/vision:v0.10.0’,
6 ’resnet50’, pretrained=True)

7 model.eval()

8

9 input_image = Image.open(’dog.jpg’)

10 preprocess = transforms.Compose ([

11 transforms.Resize (256),

12 transforms.CenterCrop (224),

13 transforms.ToTensor (),

14 transforms.Normalize(

15 mean=[0.485, 0.456, 0.406],

16 std=[0.229, 0.224, 0.225]),

17 1)

18 input_tensor = preprocess(input_image)

19 input_batch = input_tensor.unsqueeze (0)

20 input_batch = input_batch.to(’cuda’)

21 model.to(’cuda’)

22

23 with torch.no_grad():

24 output = model (input_batch)

25

26 probabilities = torch.nn.functional.softmax(output[@], dim=0)
27 top_prob, top_catid = torch.topk(probabilities, 1)
28 top_catid = top_catid[@].item()

29 top_prob = top_prob[@].item()

Listing 5.2: Sample python application machine learning application (run.py)

28

Chapter 6

Evaluation

This chapter will evaluate the GPUless system against a set of benchmarks.
We chose a selection of applications from the Rodinia [12] benchmark suite for
scientific computing, and machine learning application from the MLperf [37]
benchmark suite and reference models from PyTorch hub [33]. The evaluation
is split into hot and cold invocations. A cold invocation means that no data is
initialized prior to execution, the client-server system has not negotiated an
allocation yet, and the GPU devices are uninitialized at the server. We also
verify NVIDIAs claims about MIG and show that indeed MIG can provide
sound performance isolation.

6.1 Evaluation platform

All GPU executions, unless stated otherwise, are executed on a node equipped
with an AMD EPYC 7742 64-Core Processor @ 2.25 GHz, 512 GB of main
memory, and 4 NVIDIA A100 GPUs with 40 GB of GPU memory. This node
is used for both native execution benchmarks and for running the GPUless
server. In benchmarks that use the GPUless client to run applications remotely
on the GPUless server, a node with an AMD EPYC 7742 @ 2.25GHz and 512
GB of memory are used. The two nodes are interconnected with a 100 Gbit
network interface. There is no switch between nodes, and TCP/IP ping-pong
latency is about 15 usec.

6.2 MIG performance isolation

To evaluate MIG performance isolation, we use the STREAM [13] benchmark.
Figure 6.1 shows the performance implications of running the STREAM
benchmark concurrently in MIG compute instances, which are not supposed
to provide performance isolation. We use the largest available MIG GPU-
instance partition (spanning the whole device) and configure it with a 1+3+3

29

6. EVALUATION

30

MIG compute instances under concurrent load (STREAM benchmark)
1c+3c+3c configuration vs. compute instances in isolation
Partition NVIDIA A100, n=1000, size=2"27, 95% confidence

1c isolated

1c+3c+3c (1c)

3c isolated

1c+3c+3c (3¢)

no partition

o
N
o
o

400 600 800 1000
Bandwidth [Gb/s]

=y
N
o
o

Figure 6.1: Performance isolation for compute instances in MIG under STREAM benchmark

compute instance configuration. For example, the “1c isolated” row shows
throughput running only a single benchmark in a 1c compute instance, while
“1c+3c+3c (1c)” shows the STREAM throughput in a 1c compute instance,
while STREAM is run concurrently in the other two instances. Throughput
under concurrent load is significantly reduced when sharing the device
using compute instances. We conclude there is no bandwidth isolation when
executing in compute instances.

Figure 6.2 shows the throughput in setting where the device is shared with
GPU instances instead of compute instances, which is supposed to provide
complete performance isolation. Measurements confirm that this holds
to some degree, but we see a slight degradation in performance under
concurrent load, especially in the largest (4g) instance. We conclude that
GPU instance do provide some bandwidth isolation, but there is cases where
there is still measurable impact of running applications concurrently.

6.3 Scientific Computing: Rodinia

For an evaluation of more traditional CUDA applications from the scientific
computing domain, we evaluate a selection of benchmarks from the Ro-
dinia [12] suite in the domains of simulations, graph algorithms, and linear
algebra.

triad
add
scale
copy

6.3. Scientific Computing: Rodinia

MIG GPU instances under concurrent load (STREAM benchmark)
1g+2g+4g or 3g+3g configuration vs. isolated performance

Partition NVIDIA A100, n=1000, size=2"27, 95% confidence
I
1 0t - copy
9 e add
—— W friad
19+2g+49 (10) E—— = scale

2g isolated

1g+2g+4g (29)

3g isolated

39+39 (39)

4g isolated

1g+2g+4g (49)

o
-
o
o

200 300 400 500
Bandwidth [Gb/s]

(o2}
o
o

Figure 6.2: Performance isolation for GPU instances in MIG under STREAM benchmark

6.3.1 Benchmarks

* bfs. An implementation of breadth-first search (BFS) for traversing a
graph.
¢ hotspot. HotSpot is a thermal simulation application that estimates pro-

cessor temperature based on an architectural floorplan of a microchip.

¢ pathfinder. PathFinder is a dynamic programming application that
finds the path in a matrix from the bottom row to the top row with the
smallest accumulated weights.

¢ srad_vl. Speckle Reducing Anisotropic Diffusion (SRAD) is an image
processing application that is used to remove locally correlated noise in
ultrasonic and radar imaging.

¢ gaussian. Gaussian is an implementation of the Gaussian elimination
algorithm for solving systems of equations.

¢ myocyte. Myocyte is a biological simulation application that models a
cardiac myocyte (heart muscle cell).

For statistics on the number of kernel launches, unique kernels, memory
allocations, and copies, see Table 6.1.

31

6. EVALUATION

32

Benchmark Kernel | Unique cudaMalloc | H2D | D2H
launches | kernels
bfs 24 2 7 18 13
hotspot 25 1 3 2 1
pathfinder 5 1 3 2 1
srad_v1 502 6 12 5 201
gaussian 2046 2 3 3 3
myocyte 3900 1 4| 7800 | 7800

Table 6.1: Statistics on CUDA API usage of Rodinia benchmarks

Time [ms]

Runtime of Rodinia benchmarks

NVIDIA A100, n=100, 95% confidence

1600 A

1400 A

1200 A

1000 ~

800 A

600

400 A

200 A

bfs

mmm Native

mmm GPUless remote, device pre-initialized

B GPUless remote

hotspot pathfinder srad_v1l

gaussian

myocyte

Figure 6.3: GPUless execution time vs. native in Rodinia benchmark

6.3.2 Results

Figure 6.3 shows the runtime of the Rodinia benchmarks. We see a perfor-
mance of our system that is generally close to native performance. If CUDA
devices are pre-initialized before being allocated for this task, we see a slight
gain in performance due to the relatively short benchmarks. The one outlier
is the myoyte application, which has much-reduced performance due to its
many device-to-host memory copies that cause expensive synchronizations.

6.4 Machine Learning inference

For machine learning inference, we evaluate a selection of benchmarks in-
cluded in the mlperf [37] suite and pre-trained models publicly available on
PyTorch Hub [33].

6.4. Machine Learning inference

6.4.1 Benchmarks

alexnet [25]. AlexNet is a model for image recognition that won the
ILSVRC 2012 task.

¢ vggl9 [41]. vgg-nets is a convolutional network for image recognition
that makes use of a very large network depth, placing 1°t in the ILSVRC
2014 task.

* resnet50 [19]. ResNet is a residual learning framework for image
recognition that won the 1% place on the ILSVRC 2015 classification
task.

¢ resnext50, resnext101 [46]. ResNeXt is an evolution of the ResNet
framework that placed 2" in the ILSVRC 2016 classification task.

¢ yolop [45]. YOLOP (You Only Loop Once for Panoptic Driving Per-
ception) is a driving perception system that performs traffic object
detection, drivable area segmentation and lane detection simultane-
ously.

¢ MiDaS [36, 35]. MiDaS is model for monocular depth estimation based
on vision transformers.

* 3d-unet-kits19. 3D-UNet [49] is a model for 3D image segmentation,
performing the KiTS 2019 kidney tumor segmentation task [20], used
in the miperf benchmark.

¢ BERT-SQuAD. BERT [14] (Bidirectional Encoder Representations from
Transformers) is a language representation model that can be fine-
tuned for a wide range of tasks. Our benchmark is configured for the
SQuAD [34] question-answering task.

For statistics on the number of kernel launches, unique kernels, memory
allocations, and copies, see Table 6.2. For reference histograms of synchroniza-
tions and CDFs of trace sizes at sychronization, see Appendix A.1 and A.2.

6.4.2 Results

Cold invocation. Figure 6.4 shows the runtime of machine learning inference
benchmarks of native execution, compared to execution in the GPUless
system for cold execution, where nothing is in cache, and the GPU is not
initialized. The entire model is loaded, and an inference invocation is made.
The image recognition models perform well, with GPUless being slightly
faster than native due to optimizations discussed in chapter 5. Models with
longer run times (3d-unet-kits19, BERT-SQuAD) do not benefit from these
optimizations as much, and they tend to have more overhead because more
data is transferred (see Table 6.3).

33

6. EVALUATION

34

Benchmark Kernel | Unique cudaMalloc | H2D | D2H
launches | kernels
resnet50 219 27 17 321 2
resnext50 458 24 12 321 2
resnext101 1435 21 27 | 627 2
alexnet 38 12 5 17 2
vggl9 96 16 12 39 2
yolop 762 63 111 546 | 247
midas 660 38 96 | 369 1
3d-unet-kits19 6850 17 22 82 2
BERT-SQuAD 714 22 71 397 3
Table 6.2: Statistics on CUDA API usage of machine learning benchmarks
Benchmark API calls | Syncs | Syncs % | Up [MB] | Down [MB]
resnet50 2086 43 2.0% 180.64 0.019
resnext50 2083 39 1.8% 178.59 0.020
resnext101 4047 49 1.2% 434.36 0.017
alexnet 165 13 7.8% 311.23 0.006
vggl9 431 24 5.5% 641.57 0.010
yolop 4644 398 8.5% 339.93 0.067
MiDaS 2284 119 5.2% 1509.73 7.525
3d-unet-kits19 39314 | 2248 5.7% 1689.99 679.760
BERT-SQuAD 1974 75 3.7% 1491.03 0.011

Table 6.3: Statistics on synchronization

Hot invocation. Figure 6.5 shows the latency of one ML inference call,
comparing native execution to the GPUless system, FaaS+GPUless, and
AWS Lambda. FaaS+GPUless is a setup where a basic HTTP server takes
invocation requests and executes them using a GPUless remote execution.
Note that AWS Lambda does not support GPU execution, so it will naturally
be much slower than running on a GPU (AWS Lambda benchmarks are
executed on CPU only). Native executions are always faster, but GPUless is
still quite close. In the case of FaaS+GPUless, we see quite a bit of overhead
introduced due to the use of the HTTP protocol, but especially for longer
running benchmarks (yolop, MiDaS, BERT-SQuAD), this constant overhead
is of much less importance.

Bandwidth limiting. Figures 6.6 and 6.7 show the influence of the available
bandwidth on the execution latency, for both cold and hot executions. This
evaluation was run on a workstation computer using an Ampere generation
GPU (RTX 3060), an Intel i7-9700KF CPU, and 32GB of main memory. Both
server and client are run on the same host, using the loopback network

6.4. Machine Learning inference

Cold execution time components of ML inference benchmarks
NVIDIA A100, n=100, median execution time

I Native execution
Hl GPUless + FaaS
GPUless: Client execution
8- mmm GPUless: Waiting for synchronization
6 -
0
4]
£
'_
4
2 -
0 -

\] \} "\ X o) .22 +cA \9]
(es(\e’é (es“e*é - B - AN LN LN s b S cquP
¢

230 aﬁ\ﬂ

Figure 6.4: Cold execution time for machine learning benchmarks

interface. The bandwidth is limited by limiting the loopback interface to
a specific bandwidth. As expected, performance degrades with reduced
bandwidth. In general, we can say that to retain good performance compared
to native execution, 1-10 Gbps of bandwidth should be available.

35

6. EVALUATION

Latency of ML inference in hot environment
NVIDIA A100, n=100, 95% confidence

Time [ms]

36

\} \] 3 A9 9 022
(esﬂe@ (e‘_’“e\/&‘) es(\e‘,\ﬂ“ A g0t yoo? e
¢

Native

GPUless remote
FaaS + GPUless
AWS Lambda

Figure 6.5: Hot execution time for machine learning bechmarks

st

6.4. Machine Learning inference

Cold-start execution time under bandwidth limitation
NVIDIA RTX 3060, Intel i7-9700KF, n=10, 95% confidence

resnet50

100
—— GPUless remote execution
—--- Native baseline
80
— 60
K2
]
£
= 40+
0 Ly ————— ———— —————
0.1 1.0 10.0 100.0
Network bandwidth [Gbps]
olo
100 yoop
—— GPUless remote execution
—--- Native baseline
80
— 60 -
£
]
£
= 40+
20+
o
0.1 1.0 10.0 100.0
Network bandwidth [Gbps]
BERT-SQUAD
100

0

—— GPUless remote execution
--- Native baseline

0.1

1.0 10.0
Network bandwidth [Gbps]

100.0

100

resnext101

80

—— GPUless remote execution
—--- Native baseline

100

1.0 10.0
Network bandwidth [Gbps]

100.0

midas

Time [s]

0

—— GPUless remote execution
—--- Native baseline

0.1

100

—T— T —T— T T
1.0 10.0
Network bandwidth [Gbps]

100.0

3d-unet-kits19

0 -

—— GPUless remote execution
--- Native baseline

0

T
1

—T— T —T— T T
1.0 10.0
Network bandwidth [Gbps]

100.0

Figure 6.6: Influence of network bandwidth on cold-start performance

37

6. EVALUATION

Time [ms]

Time [ms]

38

Time [ms]

oo}
o
1

~
o
1

N
o
1

w
o
1

N
o
1

500 4

400

300

200

100+

(=)}
o
1

ul
o
1

Hot model inference latency under bandwidth limitation
NVIDIA RTX 3060, Intel i7-9700KF, n=100, 95% confidence

resnet50

—— GPUless remote execution
—--- Native baseline

1.0 10.0
Network bandwidth [Gbps]

100.0

yolop

—— GPUless remote execution
—--- Native baseline

1.0 10.0
Network bandwidth [Gbps]

100.0

BERT-SQUAD

160 1

1404

.

N

o
1

100

—— GPUless remote execution
--- Native baseline

100.0

10.0
Network bandwidth [Gbps]

Time [ms]

Time [s]

Time [ms]

resnext101

1204

100

80

60

40

20

—— GPUless remote execution
—--- Native baseline

1.0 10.0
Network bandwidth [Gbps]

100.0

midas

1600

1400

1200

1000

800

600 4

400

200

—— GPUless remote execution
—--- Native baseline

1.0 10.0
Network bandwidth [Gbps]

100.0

3d-unet-kits19

200

1754

150 4

1254

100

75

50

25

—— GPUless remote execution
--- Native baseline

1.0 10.0
Network bandwidth [Gbps]

100.0

Figure 6.7: Influence of network bandwidth on hot model inference performance

Chapter 7

Conclusions and Future Work

In this work, we presented GPUless, a prototype system for GPU-native
function execution. We introduce traced execution, a new approach to
transporting CUDA API calls over the network where execution traces are
collected and executed in the aggregated form at specific synchronization
points. Our prototype supports a subset of CUDA, cuDNN, and cuBLAS,
which allows us to evaluate the system against the Rodinia benchmark suite
and select machine learning applications. Due to some optimizations applied
in the implementation, we see good cold-start performance for machine
learning benchmarks compared to native execution. For hot invocations,
the performance penalty is more significant but not unreasonable. We also
analyzed the bandwidth requirements of our system, and conclude that a
network with a bandwidth of at least 1 Gbps is required.

Opportunistic execution. Functions tend to be regular, i.e., their execution
structure often does not change between invocations. In such cases, traces
could be stored on the FaaS executor without the client transmitting the full
transcript for every invocation. This optimization would be optimistic, as
we assume the kernel structure for the function does not change. Synchro-
nizations could be limited to host-to-device and device-to-host memory copy
operations that carry new data. Correctness could be verified by a mechanism
that checks that the recorded structure agrees with client execution.

Warming data. A problem with GPU function execution is that containers
cannot be kept “warm”, as is commonly down in commercial FaaS systems,
where containers will reside in memory for some time after an invocation.
This is more challenging with GPUs because every tenant will need a separate
process with an attached GPU device to achieve isolation. When such a
process is created and the device initialized, the device is reset fully, leaving
no data behind. However, it could be possible to use main memory (RAM)

39

7. CONCLUSIONS AND FUTURE WORK

40

storage to offload the state from the GPU and later re-instantiate it. If
we could determine what parts of the application stay constant and what
parts depend on user input, the constant data could be cached in the main
memory between invocations. This scheme could benefit applications with
high initialization costs but much smaller costs for repeated invocations with
different user data, such as machine learning applications. These applications
incur a high cost for loading the models, but inference operations have a
much shorter run time and require much fewer data transferred.

Function format. Based on the success of the ideas in the previous two
paragraphs, it could be possible to achieve the goal of true cloud-based
GPU functions. A classic Faa$S function consists of code (typically Python/-
JavaScript), libraries, and data loaded into main memory. For GPU functions,
a function definition could consist of the kernels (i.e., PTX code), the CUDA
API trace, synchronization points, and constant data that is loaded to GPU
memory.

Implementation improvements. A problem in the prototype implementa-
tion is that only a small fraction of the CUDA, cuBLAS, and cuDNN libraries
are covered. The entire API would have to be covered to support any ap-
plication fully. An approach to achieve full coverage with high degrees of
correctness could be to generate the code from an API specification automati-
cally. This would be a significant software engineering problem, but likely
would not require additional much more additional insight.

Currently, the selection of a MIG instance size is left entirely to the client.
However, previous work has investigated how to optimize throughput by
more advanced scheduling mechanisms [42]. Such scheduling algorithms
could potentially also be applied to our system.

Our prototype implementation is based on basic TCP transport protocols.
However, it would be possible to accelerate network operations by using
asynchronous RMDA transport that provides higher bandwidth. A further
option could be to support NVIDIAs GPU-Direct technology, which allows
using RDMA for direct access to GPU memory.

= N N w w
u o v o [l

[
o

Data transfer size [MB]

35

30

25

20

15

Data transfer size [MB]

10

Appendix A

Appendix

A.1 Synchronization histograms (vs. transfer size)

Histogram of synchronization calls (resnet50)

- 20.0

- 17.5

—-15.0

-12.5

-10.0

-7.5
-5.0
-25

-0.0
0 250 500 750 1000 1250 1500 1750
Timestamp [ms]

Histogram of synchronization calls (resnext101)
- 14
- 12

- 10

0 500 1000 1500

Timestamp [ms]

2000

Data transfer size [MB]

Data transfer size [MB]

35

30

25

20

15

10

140

120

100

80

60

40

20

Histogram of synchronization calls (resnext50) 14

- 12

- 10

0 250 500 750 1000 1250 1500 1750
Timestamp [ms]

Histogram of synchronization calls (alexnet) .0

n
- 3.5
- 3.0
-2.5
-2.0

-15

-1.0

-0.0
0 500 1000

Timestamp [ms]

1500 2000

41

A. APPENDIX

Histogram of synchronization calls (vgg19) Histogram of synchronization calls (yolop)
400 - 10
70
350
-8 60
= 300 o
= =
— — 50
230 -6 k¢
2 2 40
8 200 &
Z 2
£ 150 -4 £30
8 8 20
8 100 8
| -2
10
50 B
0 " || | l 0 mam
-0
0 500 1000 1500 2000 2500 0 500 1000 1500 2000
Timestamp [ms] Timestamp [ms]
Histogram of synchronization calls (midas) Histogram of synchronization calls (3d-unet-kits19)
80
70 - 25 600
o 60 = 500
=3 - 20 =3
g 50 & a00
wn wn
o o
o 40 - 15 9]
& &
2 3 300
C 30 e
5 10 5
% % 200
a2 a
10 _5 100
o u 0 ERTEEEEEEEEEE
0 1000 2000 3000 4000 0 2000 4000 6000 8000 10000 12000
Timestamp [ms] Timestamp [ms]

Histogram of synchronization calls (BERT-SQUAD)

- 4.0
120]
- 3.5
100
'g - 3.0
S 8o = 2
N u 25
w
o
QL 60 -2.0
w
C
g -1.5
] 40
©
o -1.0
20
-0.5
|
o W= |
-0.0

0 500 1000 1500 2000 2500 3000
Timestamp [ms]

42

- 200

- 150

- 100

- 50

- 300

- 250

- 200

- 150

- 100

- 50

1.0

0.8

Proportion
o
o

o
IS

0.2

0.0

1.0

0.8

Proportion
o
o

o
IS

0.2

0.0

1.0

0.8

Proportion
o
o

o
IS

0.2

0.0

o

A.2. Synchronization trace size ECDF

A.2 Synchronization trace size ECDF

ECDF of trace size at synchronization (resnet50)

50 100

150 200
Trace size

250

300

350

ECDF of trace size at synchronization (resnext101)

250 500

750 1000
Trace size

1250

1500

ECDF of trace size at synchronization (alexnet)

5 10

15
Trace size

20

25

1750

Proportion

Proportion

Proportion

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

o

o

ECDF of trace size at synchronization (resnext50)

50

100

150 200
Trace size

250

300

350

ECDF of trace size at synchronization (vgg19)

Trace size

ECDF of trace size at synchronization (midas)

100

200

300
Trace size

400

500

600

43

A. APPENDIX

1.0

0.8

Proportion
o
o

<
S

0.2

0.0

44

ECDF of trace size at synchronization (yolop)

ECDF of trace size at synchronization (3d-unet-kits19)

50 100 150 200 250
Trace size

1.0

0.8

Proportion
o
o

o
IS

0.2

0.0

7

0.8

o
o

Proportion

<
S

0.2

0.0
300 350 400 0 10 20 30 40 50
Trace size

ECDF of trace size at synchronization (BERT-SQUAD)
=

0 200 400 600 800 1000
Trace size

A.3. CUDA API coverage

A.3 CUDA API coverage

cudaMalloc

cudaMemcpy

cudaMemcpyAsync
cudaLaunchKernel

cudaFree
cudaStreamSynchronize
cudaThreadSynchronize
cudaDeviceSynchronize
cudaStreamCreateWithFlags
cudaStreamIsCapturing
cudaGetDevice

cudaSetDevice
cudaGetDeviceCount
cudaGetDeviceProperties
cudaGetLastError
__cudaPushCallConfiguration
__cudaPopCallConfiguration
__cudaRegisterFatBinary
__cudaRegisterFatBinaryEnd
__cudaRegisterFunction
__cudaRegisterVar
__cudaUnregisterFatBinary
cudnnCreate

cudnnSetStream
cudnnCreateTensorDescriptor
cudnnSetTensorNdDescriptor
cudnnCreateFilterDescriptor
cudnnSetFilterNdDescriptor
cudnnCreateConvolutionDescriptor
cudnnSetConvolutionGroupCount
cudnnSetConvolutionMathType
cudnnSetConvolutionNdDescriptor

cudnnGetConvolutionForwardAlgorithm_v7

cudnnConvolutionForward
cudnnConvolutionBackwardData

cudnnGetConvolutionBackwardDataAlgorithm_v7

cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize
cudnnGetBatchNormalizationTrainingExReserveSpaceSize

cudnnBatchNormalizationForwardInference
cudnnBatchNormalizationForwardTrainingEx

cudnnDestroyConvolutionDescriptor
cudnnDestroyFilterDescriptor
cudnnDestroyTensorDescriptor
cublasCreate_v?2

cublasLtCreate
cublasSetStream_v?2
cublasSetMathMode
cublasSgemm_v2
cublasLtMatmulDescCreate
cublasLtMatmulDescDestroy
cublasLtMatmulDescSetAttribute
cublasLtMatmul

45

A. APPENDIX

46

cublasLtMatrixLayoutCreate
cublasLtMatrixLayoutDestroy
cublasLtMatrixLayoutSetAttribute
cublasSgemmStridedBatched

Bibliography

(1]

(2]

(8]

Apache OpenWhisk. https://openwhisk.apache.org/. Accessed: 2022-
01-19.

Azure Functions. https://azure.microsoft.com/en-us/services/
functions/. Accessed: 2022-01-19.

Google Cloud Functions. https://cloud.google.com/functions/. Ac-
cessed: 2022-01-19.

IBM Cloud Functions. https://cloud.ibm.com/functions/. Accessed:
2022-01-19.

AWS Lambda. https://aws.amazon.com/de/lambda, 2014. Accessed:
2022-01-19.

Id.so (8) Linux User’s Manual, 5.13 edition, 2021. Accessed: 2022-01-19.

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Rafal Jozefowicz, Yangqing Jia, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dan Mané, Mike Schuster, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Van-
houcke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaogiang Zheng. Ten-
sorflow, large-scale machine learning on heterogeneous systems, 11
2015.

Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus
Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. SAND: Towards

47

https://openwhisk.apache.org/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://cloud.google.com/functions/
https://cloud.ibm.com/functions/
https://aws.amazon.com/de/lambda

BIBLIOGRAPHY

48

high-performance serverless computing. In 2018 USENIX Annual Techni-
cal Conference (USENIX ATC 18), pages 923-935, Boston, MA, July 2018.
USENIX Association.

[9] L Susan Blackford, Antoine Petitet, Roldan Pozo, Karin Remington,
R Clint Whaley, James Demmel, Jack Dongarra, Iain Duff, Sven Ham-
marling, Greg Henry, et al. An updated set of basic linear algebra subpro-
grams (blas). ACM Transactions on Mathematical Software, 28(2):135-151,
2002.

[10] Thomas Bradley. Hyper-Q Example. https://developer.download.
nvidia.com/compute/DevZone/C/html_x64/6_Advanced/simpleHyperQ/
doc/HyperQ.pdf, 2013. Accessed: 2021-12-11.

[11] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and Aleksander
Slominski. The rise of serverless computing. Commun. ACM,
62(12):44-54, nov 2019.

[12] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W.
Sheaffer, Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark suite
for heterogeneous computing. In 2009 IEEE International Symposium on
Workload Characterization (IISWC), pages 44-54, 2009.

[13] Ben Cumming. Stream benchmark in cuda c++. https://github.com/
bcumming/cuda-stream.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding, 2019.

[15] Jose Duato, Antonio J. Pena, Federico Silla, Rafael Mayo, and Enrique S.
Quintana-Orti. rCUDA: Reducing the number of GPU-based accelerators
in high performance clusters. In 2010 International Conference on High
Performance Computing & Simulation. IEEE, June 2010.

[16] Google. Flatbuffers. https://google.github.io/flatbuffers.

[17] Jing Gu, Shengbo Song, Ying Li, and Hanmei Luo. Gaiagpu: Sharing
gpus in container clouds. In 2018 IEEE Intl Conf on Parallel Distributed
Processing with Applications, Ubiquitous Computing Communications, Big
Data Cloud Computing, Social Computing Networking, Sustainable Comput-
ing Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom), pages
469-476, 2018.

[18] Tsuyoshi Hamada, Rio Yokota, Keigo Nitadori, Tetsu Narumi, Kenji
Yasuoka, and Makoto Taiji. 42 tflops hierarchical n-body simulations on

https://developer.download.nvidia.com/compute/DevZone/C/html_x64/6_Advanced/simpleHyperQ/doc/HyperQ.pdf
https://developer.download.nvidia.com/compute/DevZone/C/html_x64/6_Advanced/simpleHyperQ/doc/HyperQ.pdf
https://developer.download.nvidia.com/compute/DevZone/C/html_x64/6_Advanced/simpleHyperQ/doc/HyperQ.pdf
https://github.com/bcumming/cuda-stream
https://github.com/bcumming/cuda-stream
https://google.github.io/flatbuffers

Bibliography

gpus with applications in both astrophysics and turbulence. Proceedings
of the Conference on High Performance Computing Networking, Storage and
Analysis, 11 2009.

[19] Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. Deep residual
learning for image recognition, 2015.

[20] Nicholas Heller, Niranjan Sathianathen, Arveen Kalapara, Edward Wal-
czak, Keenan Moore, Heather Kaluzniak, Joel Rosenberg, Paul Blake,
Zachary Rengel, Makinna Oestreich, et al. The kits19 challenge data:
300 kidney tumor cases with clinical context, ct semantic segmentations,
and surgical outcomes. arXiv preprint arXiv:1904.00445, 2019.

[21] Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski. Serving
deep learning models in a serverless platform, 2018.

[22] Jiawei Jiang, Shaoduo Gan, Yue Liu, Fanlin Wang, Gustavo Alonso,
Ana Klimovic, Ankit Singla, Wentao Wu, and Ce Zhang. Towards
demystifying serverless machine learning training. Proceedings of the
2021 International Conference on Management of Data, Jun 2021.

[23] A. Kawai, Kenji Yasuoka, K. Yoshikawa, and Tetsu Narumi. Distributed-
shared cuda: Virtualization of large-scale gpu systems for programma-
bility and reliability. The Fourth International Conference on Future Compu-
tational Technologies and Applications, pages 7-12, 01 2012.

[24] Jaewook Kim, Tae Joon Jun, Daeyoun Kang, Dohyeun Kim, and Daey-
oung Kim. Gpu enabled serverless computing framework. In 2018 26th
Euromicro International Conference on Parallel, Distributed and Network-based
Processing (PDP), pages 533-540, 2018.

[25] Alex Krizhevsky. One weird trick for parallelizing convolutional neural
networks, 2014.

[26] Diana M. Naranjo, Sebastian Risco, Carlos de Alfonso, Alfonso Pérez,
Ignacio Blanquer, and Germdan Molt6. Accelerated serverless computing
based on GPU virtualization. Journal of Parallel and Distributed Computing,
139:32-42, May 2020.

[27] NVIDIA. Multi-Process Service. https://docs.nvidia.com/deploy/pdf/
CUDA_Multi_Process_Service_Overview.pdf. Accessed: 2021-12-18.

[28] NVIDIA. NVIDIA Container Toolkit. https://github.com/NVIDIA/
nvidia-docker. Accessed: 2022-01-19.

[29] NVIDIA. NVIDIA cuBLAS Documentation. https://docs.nvidia.com/
cuda/cublas/index.html. Accessed: 2022-01-05.

49

https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker
https://docs.nvidia.com/cuda/cublas/index.html
https://docs.nvidia.com/cuda/cublas/index.html

BIBLIOGRAPHY

50

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

NVIDIA. NVIDIA cuDNN Documentation. https://docs.nvidia.com/
deeplearning/cudnn/developer-guide/index.html. Accessed: 2022-01-
05.

NVIDIA. NVIDIA Multi-Instance GPU User Guide. https://docs.
nvidia.com/datacenter/tesla/mig-user-guide/. Accessed: 2021-12-18.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems 32, pages 8024—
8035. Curran Associates, Inc., 2019.

PyTorch. PyTorch Hub. https://pytorch.org/hub/. Accessed: 2022-01-
02.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang.
Squad: 100,000+ questions for machine comprehension of text, 2016.

René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transform-
ers for dense prediction. ArXiv preprint, 2021.

René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and
Vladlen Koltun. Towards robust monocular depth estimation: Mixing
datasets for zero-shot cross-dataset transfer. IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 2020.

Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson,
Guenther Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien
Breughe, Mark Charlebois, William Chou, Ramesh Chukka, Cody Cole-
man, Sam Davis, Pan Deng, Greg Diamos, Jared Duke, Dave Fick, J. Scott
Gardner, Itay Hubara, Sachin Idgunji, Thomas B. Jablin, Jeff Jiao, Tom St.
John, Pankaj Kanwar, David Lee, Jeffery Liao, Anton Lokhmotov, Fran-
cisco Massa, Peng Meng, Paulius Micikevicius, Colin Osborne, Gennady
Pekhimenko, Arun Tejusve Raghunath Rajan, Dilip Sequeira, Ashish
Sirasao, Fei Sun, Hanlin Tang, Michael Thomson, Frank Wei, Ephrem
Wu, Lingjie Xu, Koichi Yamada, Bing Yu, George Yuan, Aaron Zhong,
Peizhao Zhang, and Yuchen Zhou. Mlperf inference benchmark, 2019.

Steve Rennich. CUDA C/C++ Streams and Concur-
rency. https://developer.download.nvidia.com/CUDA/training/
StreamsAndConcurrencyWebinar.pdf. Accessed: 2021-12-18.

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://pytorch.org/hub/
https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf
https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf

Bibliography

[39] Sebastidn Risco and German Molté. GPU-enabled serverless workflows
for efficient multimedia processing. Applied Sciences, 11(4):1438, February
2021.

[40] Klaus Satzke, Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel
Stein, Andre Beck, Paarijaat Aditya, Manohar Vanga, and Volker Hilt.
Efficient GPU sharing for serverless workflows. ACM, June 2020.

[41] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition, 2015.

[42] Cheng Tan, Zhichao Li, Jian Zhang, Yu Cao, Sikai Qi, Zherui Liu, Yibo
Zhu, and Chuanxiong Guo. Serving dnn models with multi-instance
gpus: A case of the reconfigurable machine scheduling problem, 2021.

[43] Rick Villars, Holly Muscolino, Wayne Kurtzman, Serge Findling, Ritu
Jyoti, Dan Vesset, Mario Morales, Jennifer Cooke, Deepak Mohan,
Jonathan Lang, Al Gillen, Mickey North Rizza, Carrie MacGillivray,
and Ashish Nadkarni. Idc futurescape: Worldwide it industry 2021
predictions. 2020.

[44] Liang Wang, Mengyuan Li, Yingian Zhang, Thomas Ristenpart, and
Michael Swift. Peeking behind the curtains of serverless platforms.
In 2018 USENIX Annual Technical Conference (USENIX ATC 18), pages
133-146, Boston, MA, July 2018. USENIX Association.

[45] Dong Wu, Manwen Liao, Weitian Zhang, and Xinggang Wang. Yolop:
You only look once for panoptic driving perception, 2021.

[46] Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He.
Aggregated residual transformations for deep neural networks, 2017.

[47] Tsung Tai Yeh, Amit Sabne, Putt Sakdhnagool, Rudolf Eigenmann, and
Timothy G. Rogers. Pagoda. 6(4):1-23, December 2019.

[48] Houssam-Eddine Zahaf, Ignacio Sanudo Olmedo, Jayati Singh, Nicola
Capodieci, and Sebastien Faucou. Contention-aware gpu partitioning
and task-to-partition allocation for real-time workloads, 2021.

[49] Ozgﬁn Cigek, Ahmed Abdulkadir, Soeren S. Lienkamp, Thomas Brox,
and Olaf Ronneberger. 3d u-net: Learning dense volumetric segmenta-
tion from sparse annotation, 2016.

51

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.

| hereby confirm that | am the sole author of the written work here enclosed and that | have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

GPUless - Serverless GPUless functions

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

Tobler Lukas

With my signature | confirm that

- | have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information
sheet.

- | have documented all methods, data and processes truthfully.
- | have not manipulated any data.
- | have mentioned all persons who were significant facilitators of the work.

| am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s) / %'—

Wil SG, 15.01.2022

For papers written by groups the names of all authors are
required. Their signatures collectively guarantee the entire
content of the written paper.

	Contents
	Introduction
	Background
	Serverless
	GPU Programming Model
	NVIDIA Multi-Instace GPU (MIG)

	Related Work
	CUDA Device Virtualization
	DS-CUDA
	rCUDA
	Pagoda

	CUDA Device sharing in Clouds
	KNIX
	GaiaGPU
	GPU Enabled Serverless Computing Framework
	GPU-Enabled Serverless Workflows for Efficient Multimedia Processing

	Applications of NVIDIA MIG
	Serving DNN Models with Multi-Instance GPUs
	Contention-Aware GPU Partitioning and Task-to-Partition Allocation for Real-Time Workloads
	NVIDIA Triton

	Design
	Goals
	Trace execution
	Design
	Resource allocation

	Summary

	Implementation
	Library interception
	Kernel submission
	Synchronization requirements
	Optimizations
	PTX analysis
	Example execution

	Evaluation
	Evaluation platform
	MIG performance isolation
	Scientific Computing: Rodinia
	Benchmarks
	Results

	Machine Learning inference
	Benchmarks
	Results

	Conclusions and Future Work
	Appendix
	Synchronization histograms (vs. transfer size)
	Synchronization trace size ECDF
	CUDA API coverage

	Bibliography

