XaaS Containers: Performance-Portable Representation With

Marcin Copik
ETH Zirich
Zurich, Switzerland
mcopik@gmail.com

Valerie Hayot-Sasson
University of Chicago
Chicago, USA
valerie.hayot-sasson@etsmtl.ca

Kyle Chard
University of Chicago
Chicago, USA

Argonne National Laboratory (ANL)

Source and IR Containers

Eiman Alnuaimi Alok Kamatar
ETH Zirich University of Chicago
Zurich, Switzerland Chicago, USA
ealnuaimi@student.ethz.ch alokvk2@uchicago.edu
Alberto Madonna Todd Gamblin
ETH Zirich Lawrence Livermore National
Lugano, Switzerland Laboratory (LLNL)
Swiss National Supercomputing Livermore, USA
Centre (CSCS) tgamblin@llnl.gov

Lugano, Switzerland
alberto.madonna@cscs.ch

Ian Foster
University of Chicago
Chicago, USA

Argonne National Laboratory (ANL)

Torsten Hoefler
ETH Zirich
Zurich, Switzerland

Swiss National Supercomputing

Chicago, USA Chicago, USA Centre (CSCS)
chard@uchicago.edu foster@uchicago.edu Zirich, Switzerland
htor@inf.ethz.ch
Abstract CCS Concepts

High-performance computing (HPC) systems and cloud data centers
are converging, and containers are becoming the default method of
portable software deployment. Yet, while containers simplify soft-
ware management, they face significant performance challenges in
HPC environments as they must sacrifice hardware-specific opti-
mizations to achieve portability. Although HPC containers can use
runtime hooks to access optimized MPI libraries and GPU devices,
they are limited by application binary interface (ABI) compatibil-
ity and cannot overcome the effects of early-stage compilation
decisions. Acceleration as a Service (XaaS) proposes a vision of
performance-portable containers, where a containerized applica-
tion should achieve peak performance across all HPC systems.
We present a practical realization of this vision through Source
and Intermediate Representation (IR) containers, where we delay
performance-critical decisions until the target system specification
is known. We analyze specialization mechanisms in HPC software
and propose a new LLM-assisted method for automatic discovery of
specializations. By examining the compilation pipeline, we develop
a methodology to build containers optimized for target architec-
tures at deployment time. Our prototype demonstrates that new
Xaa$ containers combine the convenience of containerization with
the performance benefits of system-specialized builds.

This work is licensed under a Creative Commons Attribution 4.0 International License.
SC 25, St Louis, MO, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1466-5/2025/11

https://doi.org/10.1145/3712285.3759868

« Computer systems organization — Cloud computing; - Gen-
eral and reference — Performance; « Software and its engineer-
ing — Software performance; System administration.

Keywords

Containers, Intermediate Representation, Performance Portability

ACM Reference Format:

Marcin Copik, Eiman Alnuaimi, Alok Kamatar, Valerie Hayot-Sasson, Al-
berto Madonna, Todd Gamblin, Kyle Chard, Ian Foster, and Torsten Hoe-
fler. 2025. XaaS Containers: Performance-Portable Representation With
Source and IR Containers. In The International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC °25), Novem-
ber 16-21, 2025, St Louis, MO, USA. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3712285.3759868

XaaS Implementation: https://github.com/spcl/xaas-containers
Xaa$ Artifact: https://doi.org/10.5281/zenodo.17115960

1 Introduction

High-performance computing (HPC) systems and cloud data cen-
ters have been developed to address different goals—HPC aimed
at peak performance, while cloud platforms focused on usability.
Recent years have brought a shift towards the convergence of HPC
and cloud systems: the architecture of supercomputers is becoming
more commoditized [43, 54], and the popularity of HPC workloads
is growing, fueled by the massive demand for machine learning
(ML) training. Cloud introduces new user types and software de-
velopment philosophies such as containers. Containers are built on
the fundamental assumption that an application is shipped with all
its dependencies configured and compiled, regardless of the type of

https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3712285.3759868
https://doi.org/10.1145/3712285.3759868
https://github.com/spcl/xaas-containers
https://doi.org/10.5281/zenodo.17115960

SC ’25, November 16-21, 2025, St Louis, MO, USA

@ Spack z

Source Builds

€rfo
€y)
3Ne
(]

<, B £4e
N F
Xaa$ Source Container

v XaaS$ IR Container v dOCker‘
S8 & a
podman A
Performance-Oblivious
and HPC Containers

r
M © t’.Vl't

Figure 1: Continuum of software deployment in HPC: performance-
portable XaaS containers provide better productivity than optimized
builds, while avoiding limitations of traditional containers.

system on which it will be deployed. Thus, containers offer work-
load portability, enabling execution at different cloud providers
with minimal deployment complexity. For example, they can effi-
ciently support rapid deployment to spot virtual machines, which
are offered at a discount but might not provide the exact hard-
ware specification expected by the user. Thus, users can decrease
computation costs by scaling up their applications on a mix of vir-
tual machines with different hardware configurations that cannot
always be predicted. In HPC, containers can help with seamless
deployment across systems with heterogeneous hardware configu-
rations [3]. However, the adoption of containers in HPC is limited
by the lack of performance portability, i.e., the ability to "achieve
excellent performance on a variety of architectures” [42].

While containers simplify deployment, they do not necessarily
benefit HPC system providers. Traditional HPC systems use mod-
ules containing carefully tailored applications and libraries that
allow operators to nudge users toward performant solutions. How-
ever, this adds a major human cost of managing HPC software with
complex dependencies [41]. However, when users can simply run
any container image, neither they nor administrators will optimize
the build, leading to poor performance as users bring ready-to-use
but unoptimized software. To encourage performant solutions, we
need a different approach to containers in HPC.

The adoption of containers is also limited by the many parameter
configurations that need to be supported, with a combinatorial ex-
plosion of containers specialized toward different systems, runtimes,
compilers, and parallelism approaches [31]. HPC containers can
be (re)specialized at runtime with hooks defined by the Open Con-
tainer Initiative (OCI) standard. These hooks replace libraries inside
the container with system-specific versions. A common example is
replacing MPI libraries [13], which requires implementations with
compatible Application Binary Interface (ABI) [39]. The Libfabric in-
stallation can be replaced to access proprietary and custom network
providers, which accelerates communication without changes to
MPI [51]. However, solutions using Libfabric are not fully portable
due to differences in the capabilities of network providers (Sec-
tion 2.2). Furthermore, Fortran applications are known to lack ABI
compatibility, which prevents straightforward runtime replacement
of libraries such as BLAS or LAPACK. Finally, it is often too late
to overcome the consequences of prior decisions that affect the
generated code, like GPU acceleration and vectorization.

We propose that containers should be agnostic of selected con-
figurations and target platforms, distributing software packages

M. Copik, E. Alnuaimi, A. Kamatar, V. Hayot-Sasson, A. Madonna, T. Gamblin, K. Chard, I. Foster, and T. Hoefler

x86 Execution Time: Intel Xeon Gold 6130 ARM Execution Time: NVIDIA GH200
211.9s 94.8s

®
3

9150

o
3

=)

S
IS
S

-37.4%

<
3

28.2s 25.3s

Execution Time (seconds)

Execution Time (se

w
S

N

S

386s 38.5s
34.6s 2815 paa

N
&

o

0
V2

he v e \3
. oy X N\
B i © ©

o 2° -
RIS

W

Vectorization Type
Vectorization Type

Figure 2: The impact of vectorization in GROMACS (16 threads, 100

timesteps, I/0 time excluded): enabling newer features can improve
performance, at the cost of creating a non-portable deployment.

almost ready for installation while deferring performance deci-
sions until the target system is known. However, this problem is
difficult because HPC build systems are sophisticated, often Turing-
complete tools that hardcode performance-critical decisions early
in the build process, making complete analysis of these systems not
only a massive engineering undertaking but potentially intractable.

Acceleration as a Service (XaaS) [42] introduced a new vision
of HPC, where performance-portable containers can offer the con-
venience of containers with the performance of specialized builds.
We realize this vision with the concept of Source and Intermedi-
ate Representation (IR) containers. We aim to strike a balance
between traditional HPC practices, where builds are conducted
entirely on the destination system, and limited container optimiza-
tions at runtime (Figure 1). We propose to deploy applications in
a portable manner and provide the benefits of traditional contain-
ers: smaller size, faster deployment, and the ability to hide the
application’s source code. Both representations enable configura-
tion for a specific system, allowing us to improve performance by
tuning parameters such as vectorization, which enables hardware
features unavailable on all platforms (Figure 2). Instead of distribut-
ing multi-arch Docker containers targeting different Instruction
Set Architectures (ISAs), we distribute multi-arch-IR containers to
support different compilers and toolchains, as long as they offer an
intermediate representation to the end user.

We first analyze the broad world of HPC software to determine
their specialization mechanisms (Section 2). Based on those results,
we examine the compilation pipeline and analyze at which levels
performance-critical decisions are made and how they can be de-
layed until the final hardware specification is known (Section 3).
We configure many instances of the same project with different
parameters. We isolate a shared core of IR files where compilation
is identical across configurations or is unaffected by the change in
performance-critical parameters (Section 4). We build a container
image that is fully optimized and lowered to the target architecture
only during deployment on the selected HPC system (Section 5).
We demonstrate a prototype of IR containers with LLVM IR [47].

In this paper, we make the following contributions:

o We study specialization points in HPC applications and pro-
pose reorienting container deployment around them.

e We analyze the multi-layer HPC compilation stack, and de-
sign two solutions for performance-portable containers.

e We introduce IR containers that combine the convenience of
generic containers with performance of specialized builds.

Xaa$S Containers: Performance-Portable Representation With Source and IR Containers

SC ’25, November 16-21, 2025, St Louis, MO, USA

Table 1: Most important specialization points of selected HPC applications and benchmarks: analysis of representative applications shows a
wide diversity of specializations for accelerated and high-performance computing.

Domain Name Architecture Spec. GPU Acceleration Parallelism Vectorization Performance Libraries
Molecular Dynamics GROMACS [76] Architecture-specific FFT ~ OpenCL, CUDA, SYCL, HIP OpenMP, MPI Automatic, many ISAs BLAS/LAPACK, FFT (many)
Hydrodynamics LULESH [1] OpenMP, MPL - -
) Quantum .) BLAS/LAPACK, ELPA [7],
Electronic Structure Espresso [35] Compiler adaptations CUDA, OpenACC OpenMP, MPI Scal APACK [19], FFT (many)
. . Compiler flags, many ISAs LAPACK, PRIMME [72],
) MILC [14] Compiler adaptations CUDA, HIP, SYCL OpenMP, MPI (Intel, AMD, PowerPC) FFTW [29], QUDA [2, 20]
Lattice QCD
OpenQCD [52] Optimized for x86 CPUs OpenMP, MPT Assembly (SSE, AVX, FMA3) -
L VPIC [16], . OpenMP and V4 library
Particle-in-Cell VPIC 2.0 [15] Kokkos portability CUDA OpenMP, MPI (many ISAs) -
Cloud Physics CloudSC [55] System-specific toolchains CUDA, SYCL, HIP, OpenACC OpenMP, MPI Atlas [25]
Weather & Climate ICON [82] System-specific toolchains CUDA, HIP, OpenACC OpenMP, MPI System-specific compiler flags BLAS/LAPACK

Eight, including CUDA,

LLM Inference HIP, SYCL

llama.cpp [33] Optimization flags

Intrinsics (AVX, AVX2,

AVX512, AMX, NEON, ...) BLAS (OpenBLAS, MKL, BLIS [77])

OpenMP, pthreads

Table 2: Levels of code portability and their implementations. Libraries like MPI can be shipped with a container and replaced dynamically at
runtime or fully mounted inside the container during execution, as long as ABI compatibility is provided.

Level Technology Description Portability Approach Dependency Integration
Building Spack [31], EasyBuild [44] From-source package manager Parameterized package compilation Automatic, dependency resolver
Linking Sarus [13], Apptainer [46] HPC container runtime Runtime binding, OCI hooks Manual, CLI option, and host bind
Lowering Linux Popcorn [9] Multi-ISA binary system Heterogeneous-OS containers No direct integration

H-containers [8, 79]

NVIDIA PTX Runtime JIT compilation

ISA-agnostic container with IRs

No direct integration
No direct integration

Container + recompilation
Virtual GPU architecture

Emulation Wi4MPI [48], mpixlate [23] MPI compatibility layer

2 State of HPC Software

To understand the challenge of performance portability in HPC, we
begin with identifying configuration parameters that affect the per-
formance by specializing to the target machine (Section 2.1). Then,
we analyze the existing approaches for code portability, focusing on
when the optimizations are applied (Section 2.2). This process helps
us decide which build steps should be conducted before distributing
software to the end user (Section 3).

2.1 Specialization Points

HPC applications are highly configurable since they aim to run on
heterogeneous systems, with many built on custom and specialized
hardware (Table 1). We define specialization points as application
parameters that must be known at the configuration and build time,
stay constant throughout the entire application’s lifetime, and whose
values affect the final performance and portability. In particular, we
focus on parameters that dictate which specific hardware and soft-
ware solutions should be employed by the final application. These
options are not always mutually exclusive, as the application can
support multiple GPU backends that are only selected at runtime.
We consider the following categories of specialization points.

o Network fabric and communication library like MPI.

e Acceleration, such as NVIDIA, AMD, or Intel GPUs.

e CPU-specific optimizations such as vectorization.

e Libraries like BLAS, LAPACK, and FFT.

2.2 Portability Layers

We classify portability solutions into four categories based on the
fraction of the build that is conducted on the target system (Table 2).

Runtime emulation of MPI ABIs No direct integration

Building performs a full compilation of the application on the
destination system. This approach provides the highest perfor-
mance portability, at the cost of increased complexity - each user
builds their copy manually or with the help of a package manager.

In linking, the dynamic dependencies of an existing application
are replaced at runtime with an optimized and systems-specific
implementation, e.g., through OCI hooks for containers. The main
constraint here is the requirement of ABI compatibility, which pre-
vents such replacements for BLAS/LAPACK libraries. For example,
Libfabric allows the implementation of network communication
with a standardized API and dynamic selection of network providers
at runtime [62]. In practice, it still requires manual and specialized
implementations because network providers differ in the support
of libfabric features (Table 3). Furthermore, while libfabric replace-
ment can accelerate a containerized MPI runtime [51], it might
require additional plugins to support intra-node messaging [69].
Thus, relinking the libfabric installation is not a general method for
performance specialization of an already compiled application.

Lowering replaces the intermediate representation with the
final binary product at the target system. These solutions support
multiple ISAs, even when the hardware popularity changes over
time. HPC applications cannot be limited to x86 deployments, with
primary examples of contenders being PowerPC in the past and
ARM today, e.g., Fugaku’s A64FX [67], Graviton CPUs [80] in AWS
cloud, and NVIDIA’s Grace Hopper superchip [70]. Similarly, this
approach provides compatibility with different NVIDIA GPU archi-
tectures by deploying Parallel Thread Execution (PTX), an ISA for
virtual GPU architectures in CUDA. PTX is JIT-compiled to a binary
code, providing portability across many GPU generations [59].

SC ’25, November 16-21, 2025, St Louis, MO, USA

#if not defined(HAVE_ANY_BLAS)

void transpose(double* A,

doublex B, int rows, int cols) {

for (int i; i < rows; i++) {
for (int j; j < cols; j++) {
B[j * rows + i] = rows, cols, 1.0, A,

Ali * cols + jI; cols, B, rows

13)5

3 3}

#endif #endif

#if defined (HAVE_OPENBLAS)
void transpose(doublex* A,
double* B, int rows, int cols) {
cblas_domatcopy(
CblasRowMajor, CblasTrans,

(a) Manual Implementation

#if defined(HAVE_MKL)
void transpose(double* A,
double* B, int rows,

(b) OpenBLAS Implementation (c) Intel MKL Implementation

M. Copik, E. Alnuaimi, A. Kamatar, V. Hayot-Sasson, A. Madonna, T. Gamblin, K. Chard, I. Foster, and T. Hoefler

#if defined(HAVE_CUBLAS)
void transpose(double* A, doublex B,
int rows, int cols) {

int cols) { double alpha = 1.0, beta = 0.0;
mk1_domatcopy(cublasDgeam(handle, CUBLAS_OP_T,
'R'", 'T', rows, cols, CUBLAS_OP_N, rows, cols, &alpha, A,
1.0, A, cols, B, rows cols, &beta, nullptr, rows, B, rows
)5
}
#endif #endif

(d) cuBLAS Implementation

Figure 3: Matrix transposition: a simple linear algebra kernel that has not been standardized, requiring a custom solution chosen at build time.
While manual implementation is a safe choice that will work everywhere, it will prevent achieving the highest performance.

Table 3: Feature availability in libfabric 2.0 [62] providers (P - partial
support, N/A - not used, ? - unknown). Libfabric offers a portable
API, but implementations must still specialize to the hardware.

Feature TCP 1B Slingshot | EFA | Omni-Path
(tcp) | (verbs) (cxi) (efa) (opx)

Message v v X X X
Reliable Datagram v P v v v
Datagram X v X P X
Tagged Message v P v v v
Directed Receive 4 X v v v
Multi Receive v X v v v
Atomic Operations X P v P v
Memory Registration N/A Basic Scalable Local Scalable
Manual Progress X X v v v
Auto Progress v v X X P
Wait Objects v P v X ?
Completion Events v X v X X
Resource Management v P v P v
Scalable Endpoints X X X X v
Trigger Operations X X v X X

Finally, emulation attempts to patch incompatibilities at run-
time without code modifications. An example is replacing MPI
runtimes when the application has been built against MPI that is
not ABI compatible with the host implementation [23, 48, 68].

3 HPC Specialization in Xaa$

To fundamentally change the way we distribute HPC software, we
first need to understand how specialization points affect the build
and installation process (Section 3.1). Since discovering specializa-
tion points is complex due to the lack of standardization in build
systems, we apply semi-automatic detection with the help of artifi-
cial intelligence (Section 3.2). By detecting specialization points, we
can design performance-portable containers that delay the impact
of specialization until we know the final specification (Section 4).

3.1 HPC Specialization

The build process of an application can be split into three major
parts: configuration that resolves dependencies and decides what
should be built, and how; compilation and linking, responsible
for turning source files into libraries and executables; and instal-
lation, which places headers, binaries, and project resources in a
selected destination. To create a transparent and seamless experi-
ence for HPC users, any solution must support all three steps.
During configuration, source modules and files are enabled or
disabled depending on the selected specialization. Compiler flags
are adjusted, and the build system adds compile-time definitions
embedded into the application. Paths to dependencies are resolved,
and additional packages can be fetched into the build directory.

Once source files are compiled, headers of chosen libraries will
be introduced, preprocessing directives are applied, and compile-
time definitions like C++ templates are resolved. After that stage, we
can no longer switch between libraries that are not ABI-compatible
since the application has been introduced to types with different
representations and functions with incompatible signatures. Fur-
thermore, preprocessing directives can potentially exclude certain
code paths and already decide which kernels will be generated,
as shown in the example of matrix transpose in BLAS libraries
(Figure 3). Since this operation is not standardized, different imple-
mentations are needed, but they can only be enabled if the selected
library is present in the system.

Once the source files are translated into the intermediate rep-
resentation and optimized, the ISA is chosen, processor-specific
decisions are made, and the final code is emitted. At this point, the
code is no longer portable between different systems. Furthermore,
it is no longer feasible to change vectorization settings or apply
optimizations valid only on specific types of CPUs.

At the linking stage, applications are relinked to a specific im-
plementation of a dependency. This decision can be changed later,
as long as the library is linked dynamically and its implementa-
tions are ABI compatible. For example, an application compiled
against MPICH can be relinked to use Cray’s specialized MPICH
implementation. While future MPI implementations will be ABI
compatible [39], this method is currently limited since MPI types
can have different implementations. After that point, the only possi-
ble performance adjustments are runtime options, such as switching
network providers in applications built on top of libfabric.

Finally, the application is installed, which includes copying the
contents of the package. Specialization affects the generation of
project-specific headers and the installation of libraries, since the
inclusion of specific dependencies is affected by user decisions.

3.2 Specialization Discovery

To generate the list of specialization points an application supports,
we need to parse build scripts and understand what dependencies
and optimizations can be selected during configuration. Unfortu-
nately, this process is not standardized in common HPC program-
ming languages, like C++ and Fortran. In addition to supporting
different build systems such as autotools, handwritten Makefiles,
CMake, Bazel, or custom scripts, there is often no single way of de-
termining dependencies within one ecosystem. For example, third-
party libraries can be located in CMake using standard CMake
calls such as find_package, with custom find modules for libraries
not supported by CMake, by using pkg-config, or with a manual

Xaa$S Containers: Performance-Portable Representation With Source and IR Containers

"gpu_build": {"value": true, "build_flag": "-DGMX_GPU"},
"gpu_backends": {
"CUDA": {"min_version": "12.1", "flag":
"HIP": {"min_version": "5.4.3", "flag":
3
"vectorization": {
"None": {"flag": "-DGMX_SIMD=None"},
"SSE4.1": {"flag": "-DGMX_SIMD=SSE4.1"},
"AVX2_256": {"flag": "-DGMX_SIMD=AVX2_256"},
"AVX_512": {"flag": "-DGMX_SIMD=AVX_512"},
"ARM_NEON_ASIMD": {"flag": "-DGMX_SIMD=ARM_NEON_ASIMD"}

"-DGMX_GPU=CUDA"},
"-DGMX_GPU=HIP"}

1
(a) Specialization Points

"CPU Info": {
"Architecture": "x86_64",
"Vectorization": [
"avx512f", "avx",
]

i

"GPU Backends": {

"CUDA": { "version": "12.1",
"lib": ["/1lib/libcuda.so.1"],

3
3

(b) System Features

"avx2", "sse4_1"

SC ’25, November 16-21, 2025, St Louis, MO, USA

{
"common_specialization": {
"vectorization_flags": {
"SSE4.1": "-DGMX_SIMD=SSE4.1",
"AVX_512": "-DGMX_SIMD=AVX_512",
"AVX2_256": "-DGMX_SIMD=AVX2_256"
i
"gpu_backends": {
"CUDA": { "version": "12.1",
"flag": "-DGMX_GPU=CUDA",
3,
3}
3

(c) Common Specialization Points

Figure 4: Simplified example of GROMACS’ specialization points and how the checker determines the intersection of specialization points.

search for specific headers and libraries. Moreover, large projects
often define custom routines for locating packages.

Analyzing configuration files to identify specialization points is
difficult to automate due to the many diverse and unique patterns.
At the same time, it is a task that humans can handle easily. Thus,
we employ a Large Language Model (LLM) to help users identify
specialization points by processing the project configuration files
with a structured prompt. We apply in-context learning by including
in the prompt examples of specialization options, build flags, and
CMake commands, helping the LLM to extract specialization op-
tions accurately and capture all relevant choices in the build file. The
model outputs a JSON file containing the detected specialization
points. To enforce consistency and facilitate automated processing,
we supply a predefined JSON schema, guiding the model to adhere
to a structured format and minimizing anomalies. As the accuracy
and correctness of LLM systems vary heavily, the results of LLM
extraction still serve mainly as a guideline for the developer to
prepare the final specification (Section 6.2).

On the target system, we collect information on system features
and available specialization points. Then, we intersect these results
with the specialization discovery of the application. At this point,
we exclude the non-supported configuration options and present
the user with a list of options for each specialization point. Figure 4
illustrates a subset of GROMACS’s specialization points alongside
the system features of our test environment. GROMACS supports
OpenCL, SYCL, HIP, and CUDA as GPU backends, whereas the
system is limited to CUDA and OpenCL. The automatic checker
identifies the intersection of supported GPU backends, and allows
the user to manually select the final specialization points.

4 XaaS Containers

In XaaS, we aim to resolve the two major limitations of existing
containers—lack of performance portability and a combinatorial
explosion of the number of final representations. First, we deploy
source containers that bring the application and its environment
to the final system (Section 4.1). The source container images con-
tain the HPC application with development tools (Figure 5), and
are only built for the target system once hardware configuration
and all dependencies are known. Then, we propose that intermedi-
ate representation becomes a new mode for distributing software
(Section 4.2). Intuitively, we distribute a container image where
build steps are conducted until we cannot progress further without
making performance-critical decisions (Section 4.3).

Development Distribution Deployment

°
/l:. Build from scratch,
assisted with binary

Source and build
instructions, binary

Create package with

Package manager, dependencies and

e.g., Spack. constraints package caches
Build full image with all Image with binary OCI hooks (semi-
Container, dependencies representation, one per ISA manual)
e.g., Docker
One image with source, Full build

% Create
Lt source image
Source
Container

from scratch, OCI
hooks at runtime

build instructions,
dependencies

Optimization and
lowering of IRs,
build of source files,
OCl hooks

3) . .. Createimage One image per IR.
Find optimization ith IR and Includes IR "

points: human Wt/ ! ncludes IR, source o

expert assisted configuration system dependent files,

Adaptable IR ’
P by Al dependencies

Container

Figure 5: Performance-portable Xaa$ containers provide better pro-
ductivity while avoiding limitations of traditional containers.

. @—l 3 _Xaa$S Source Container
System Discovery * Source Code + Dev Tools
m — [—_— — ol + >
FEEs) @ —J - W T Dependency Layers

Feature

e = Deployed
Specialization Source Container

Specialization
Di. y N

@ Selected Configuration

Figure 6: Deployment of source containers on HPC system.

The new types of containers require a new deployment step,
when specialization points are matched against the system specifica-
tion and user preferences. The remaining source files are compiled,
architecture-specific optimizations are applied, and the entire appli-
cation is lowered to the selected ISA. As a result, we obtain a new
image different from the one provided in the registry, which allows
for specialization of the application to the selected HPC system.

4.1 Source Containers

Source containers deliver the application source code, an open-
source MPI implementation, and the build toolchain to the HPC
system. This solution can support HPC applications and systems
that benefit from specialized and vendor-provided compilers, which
often do not expose their intermediate representation explicitly.
Since no build steps are conducted before the deployment, this
approach does not suffer from the large number of combinations:
only one image is needed per toolchain and architecture.

The deployment begins by automatically detecting CPU fea-
tures, accelerators, and the development environment (Figure 6).
This step must be conducted on a compute node, and in an environ-
ment with all standard modules loaded. We augment the results with
knowledge of standard HPC environments. For example, when a
ROCm or CUDA installation is discovered, we assume the availabil-
ity of rocFFT and cuFFT, respectively, even if they are not explicitly

SC ’25, November 16-21, 2025, St Louis, MO, USA

detected. The discovery can be enhanced with solutions for labeling
microarchitectural features, e.g., archspec [24], and strengthened
with explicit system specification provided by system operators.

Then, we perform the automatic intersection of specializations
(Section 3.2), and the user selects the best fit from the available
options. After that, we generate a Dockerfile to create a new im-
age that inherits from the source container and builds the appli-
cation with selected options. We implement support for a subset
of popular dependencies, inheriting dependency versions from the
system environment when possible, and provide them as Docker
layers or build steps. Other dependencies could be supported by
employing package managers like Spack. Furthermore, we allow
switching base images at deployment times to use optimized and
recommended images for a specific platform, e.g., oneAPI images
in Aurora (Section 6.3).

The new container is no longer portable and can often only be
executed on that specific system. However, images derived from
source containers should achieve near-native performance since
we enable specializations available for bare metal applications, and
the performance losses can only come from the container runtime
itself. By providing the infrastructure for building and storing a
single deployed container, we avoid the situation where users man-
ually build multiple copies of the same application. From the user’s
point of view, the entire process is still convenient and relatively
automatic—only a cold pull takes longer than a traditional container
build since the very first user of a container on a system will have
to wait for the build to finish. Users are only expected to select
the values for discovered specialization points. However, this step
could also be accelerated by allowing system operators to supply
preferred configurations, e.g., preferring MKL on Intel systems
over other BLAS/FFT libraries, relying on third-party configuration
like in Spack [31], or providing the Al system with the application
documentation to suggest the best option for the target platform.

4.2 IR Containers

IR containers are close to the original idea of containers, with the
main goal of build once and run anywhere. However, the original
build is augmented with the deployment step, responsible for the
final optimizations and lowering to the target architecture. The
application is distributed in the compiler’s intermediate represen-
tation, and the image should not contain any object code that de-
pends on the final architecture, as this would be neither portable
nor performance-portable. In addition to selecting the architecture
of the container image, we specify the IR, e.g., LLVM IR.

IR containers can suffer the same problem of combinatorial explo-
sion that affects performance-oblivious containers. With multiple
possible choices for parallelization, acceleration, hardware special-
ization, and communication, the number of build configurations
grows combinatorially. The cost of building containers that include
all combinations would be too high for many applications, and their
size would be a major deployment problem. To make IR deploy-
ments practical, we need to deduplicate build configurations and
build only the unique intermediate representation files:
Hypothesis 1: Let Py, P, ..., PN be N different configurations of the
same HPC application. Each configuration P; compiles T; different
IR files. Let T’ be the total number of distinct IR files produced in
all N configurations. Then, T" < 3; T;.

M. Copik, E. Alnuaimi, A. Kamatar, V. Hayot-Sasson, A. Madonna, T. Gamblin, K. Chard, I. Foster, and T. Hoefler

The set of unique results of compilation is not immediately de-
tectable, as different compilation settings will obscure the analysis
while not affecting the result. Many build configurations apply
compilation flags globally to targets, e.g., C/C++ include flags or
enabling OpenMP. To resolve the problem of too many build config-
urations, we apply a behavioral approach. Due to the complexity and
intractability of the problem, we do not attempt to understand what
build systems do but examine the compilation instructions of each
target created in build configurations. We identify the differences
between configurations and build only the delta when selecting a
specific option. When two different configurations produce differ-
ent targets from the same input, we build two different IR files for
that target. Instead of storing all results of many different builds,
we use one common set of IR files shared across all configurations,
and a set of deltas applied only to selected configuration.

4.2.1 System Dependency. Before assembling the IR container, we
define the necessary conditions for deploying the application’s
source files in that form.

Definition 1: A system-independent source file (SI) can be passed
through the configuration and compilation stages without specify-
ing the final software and hardware configuration.

A typical HPC example of such a source file would be numerical
computations. Computations can be parallelized with OpenMP
since the file can be compiled twice to IR, once with and once
without OpenMP. However, MPI dependencies are not permitted
for this category due to the lack of ABI compatibility in current
runtimes. In practice, such files can be compiled with MPICH to be
deployed with a widely accepted binary interface [56]. CUDA’s PTX
can be included in this category, while the binary representation of
a compiled kernel (cubin) cannot.

Definition 2: A system-dependent source file (SD) cannot be com-
piled to a shared IR without sacrificing portability.

This category includes files with functionality conditionally en-
abled only for some configurations, and files requiring a dedicated
compiler that does not expose its intermediate representation.
Hypothesis 2: HPC applications can be decomposed into two sets of
source files: system-independent (SI) and system-dependent (SD).
Most importantly, for most practical applications, |SI| >> |SD|.

The corollary of the last part of the hypothesis is critical: the
effort of building a specialized pipeline makes sense only if the
majority of the source code can be processed without knowing the
final system; otherwise, source containers are a better solution.

4.3 IR Containers Pipeline

We create a modular container build pipeline (Figure 7) that solves
multiple problems to determine the unique set of IR files:

(1) Combinatorial explosion of build configurations on projects
with many specialization points.

(2) Code modules that can be excluded during the project’s
configuration, depending on specialization points.

(3) C/C++ preprocessor that can encode the effects of special-
ization points.

(4) Compilation flags that do not affect the result.

In particular, we implement optimizations that analyze the effects
of OpenMP and vectorization flags.

Xaa$S Containers: Performance-Portable Representation With Source and IR Containers

@ Config N° 1 @ @ @ -fopenmp

-03-DDEF -03 l
@ Config N° N
nllg — M . — No OpenMP —
entica
Compilation Targets C++ File g:;ch::g,

Generation Preprocessing OpenMP Detection

ST 0

Vectorization

SC ’25, November 16-21, 2025, St Louis, MO, USA

@ IR Files
@ Source Code
@ Dependencies

i B Toolchain

Delay until
IR deployment

Building IRs XaaS IR Container

Figure 7: XaaS$ IR container. The modular pipeline reduces the build cost by detecting IR files shared by different configurations.

Configuration While we try to constrain the cost of building
a container (Problem 1), we need to ensure that we do not prema-
turely exclude code modules that might become necessary during
the deployment step (Problem 2). First, we generate a specialized
build configuration for each combination of provided specialization
points, e.g., LULESH [1] with two specialization points—MPI and
OpenMP—will produce four different configurations. Each build
configuration is created in a containerized environment, where the
build directory is always mounted under the same path. This helps
remove the effects of different locations on the generated compila-
tion flags. The container is assembled from layers that provide the
toolchain and dependencies of the selected application.

For each build configuration, we obtain the list of all compila-
tion steps and associated compilation flags, e.g., by examining the
compile commands database generated by CMake, which can be ob-
tained without analyzing the internal structure of each build system.
Other build systems can be supported by extracting compilation
flags with third-party tools and compiler wrappers. We identify
compilation targets and not source files, since a single source file
can be mapped to multiple targets but with different compilation
flags. Then, we compare the results of each build profile to identify
the common denominator, a shared core of files that are always
built in the same manner. In the case of LULESH, where each build
consists of five source files, we obtain 20 IR files.

Preprocessing The configuration step is followed by a prepro-
cessor evaluation to determine if different compile-time definitions
produce a semantically different source file. Thus, we create pre-
processed C/C++ files, hash them, and look for identical files. In
LULESH, this step does not change the result since enabling MPI
changes the source files, and the OpenMP compilation flag is at-
tached to all files. Since not all files will use OpenMP, we apply a
Clang AST analysis pass to detect if the processed file contains any
OpenMP constructs. If two compilation targets from different build
configurations have the same hash but differ only in the OpenMP
flag, then we can treat them as the same. After that step, LULESH
has been reduced from 20 to 14 different IR files.

Vectorization is another example of divergence across many
builds of the same application. For example, GROMACS [76] sup-
ports nine different configurations for vectorization on x86 CPUs.
Since LLVM vectorizers work at the IR level, we can ignore the
architecture-specific flags when comparing different configurations
of the same file. Instead, the vectorization will be applied during de-
ployment once the final ISA is known. Our experiments show that
LLVM optimizations need to be delayed as well, as otherwise the
code will not be re-vectorized efficiently once the target is known.

Compilation During compilation, applications become aware
of types that might introduce incompatibilities between different
implementations of the same library. Thus, we need to isolate them

@—FAS— = ACMake -

.
. -

Bt + @808 Ao &
“#3% IR Container => Vectorization, Linking, Deployed IR

Specialization Selection Lowering Installation Container

Figure 8: Deploying Xaa$ IR container: user selects one configuration
that will be optimized and lowered to the architecture.

[T Otder Driver ® <@ ;"GPU Container b [EXE} Newer Driver (® 2(®
GPUNode Do @@@ —2Rloy GPU Node
® @G P1X [©® @ pix [@ N i)

SASS [h SAss [}
@Driver 0 Runtime G Compute Capability 0PTX ISA [} Restricted Compatibility
Figure 9: CUDA compatibility is determined by six parameters: two
on host (driver and device capability), and four in container (runtime,
PTX version, compute capability of PTX and device binary cubin).

from the rest of the codebase: the "default” partition (SI) can con-
tinue compilation as previously, while the new partition dependent
on the ABI-problematic library (SD) will not be compiled at all until
the final deployment for the target system.

MPT applications are the most important source of ABI compati-
bility, and we compile against MPICH to provide wide portability.
Since we expect future MPI runtimes to be ABI compatible [39], we
do not focus on this problem. To support Open MPI, Xaa$ containers
could detect all files dependent on MPI and compile them multiple
times against different ABIs, or employ portability layers [38].

Container Build: We generate a container with the LLVM, all
build directories, IR files, and the source repository. The latter is
necessary to support system-dependent files and perform the final
installation. For each build configuration, we generate a specific
installation file with instructions for compiling IR files and placing
them in their respective locations. We do not include all image lay-
ers, e.g., GPU runtimes, as these will be reassembled at deployment.

GPU Compatibility: GPU runtimes target multiple architec-
tures by generating either direct device code or portable PTX ISA
for later JIT compilation (Figure 9). Portable containers can use the
oldest supported CUDA runtime to ensure backward compatibility,
while newer runtimes offer updated libraries and support for new
hardware features at the cost of additional compatibility steps. We
provide compatibility across CUDA minor versions, e.g., CUDA
12.x. First, we search for any use of compile-time definition indi-
cating CUDA runtime version, which is a pessimistic check if the
application might depend conditionally on API features unavailable
in older drivers. Once we decide if the newest CUDA runtime can
be used, we emit device binaries for all architectures and a PTX for
the latest compute capability to support newer devices.

4.3.1 Deployment. The user selects specialization points from the
list of parameters and their values chosen at configuration time.
Then, we create a new container by assembling dependencies ex-
plicitly defined for that specialization. We select a subset of IRs for

SC ’25, November 16-21, 2025, St Louis, MO, USA

that configuration, optimize and compile them, and let the build
system finish linking (Figure 8). Image tag includes specialization
points to support the coexistence of many builds.

Code Generation: We lower all IR files of a selected build con-
figuration to the target architecture. This step can be much faster
than a complete compilation of a C/C++ application. We also apply
vectorization at this stage if it is detected during container build.

Linking: Once the binary code is generated, we can use the ex-
isting project configuration to link them together into final libraries
and executables. Alternatively, linking flags for each target can be
inferred from the build system, e.g., CMake exposes them explicitly.
For runtime replacement system-optimized libraries, we can rely
on the capabilities of existing HPC containers.

5 XaaS Containers in Practice

We implement a prototype of XaaS containers that can create source
and IR images and then deploy them on selected HPC systems.
For common choices of specialization points, like CUDA or Intel
oneAPI, we provide an extensible fleet of Docker containers and
manual installation steps. In source containers, we build a toolset
for matching system specifications and specialization points, imple-
ment application-specific patching and integration, and provide two
base source images, one for x64 and one for ARM64. The prototype
of IR containers is built on top of Clang 19 and CMake, and includes
a collection of Docker images with common runtimes and applica-
tion dependencies. Users provide application-specific parameters
and build steps, from which we generate all build configurations.
The new types of containers proposed in this work differ funda-
mentally from existing approaches, which raises new challenges
in handling different applications and systems (Section 5.1). We
transition from multi-arch container images to multi-IR images,
highlighting that performance portability requires a change in con-
tainer structure. Source and IR containers are vessels for delivering
the correct environment and application, and they need to be trans-
formed during the deployment step. XaaS containers will need new
approaches to integrate into container ecosystems (Section 5.2).

5.1 Challenges

Can an IR container be cross-platform? XaaS needs to cre-
ate one IR container per architecture, e.g., IR, x86 and IR, AArch64.
While the LLVM intermediate representation can be independent of
the target system, this condition does not hold for practical compi-
lation of C/C++ applications.! The IR is affected by the compilation
platform, e.g., through type sizes, definitions included in system
headers, inlined assembly, and intrinsics [45].

How to handle custom targets? Applications can use custom
targets to fetch dependencies or generate source files. For example,
when no FFT implementation is selected for GROMACS, it will build
a custom implementation, but this does not happen at configuration
time - only at build time. We assume that the user specifies all such
targets, and we execute them before analyzing build configurations.
Which IRs are available? The IR container requires a toolchain
that can export the intermediate representation and import it in

1C/C++ code cannot be compiled to a platform-independent LLVM IR [50].

M. Copik, E. Alnuaimi, A. Kamatar, V. Hayot-Sasson, A. Madonna, T. Gamblin, K. Chard, I. Foster, and T. Hoefler

subsequent compilation steps. Here, LLVM IR is the primary exam-
ple. While GNU Compilers export the program representation in
GIMPLE, this format cannot be imported later and lowered to the
target architecture. On GPUs, the intermediate representation can
be provided through PTX on NVIDIA architectures, and SPIR-V for
applications using SYCL and OpenCL. However, at this moment,
the intermediate representations of Intel DPC++/C++ Compiler and
Cray Compiling Environment are unavailable to end users. When
partial compilation to IR is impossible, source containers offer the
fallback option. XaaS can also use high-level intermediate repre-
sentations suitable for HPC optimizations, e.g., DaCe SDFG [11].

5.2 Compatibility with OCI Containers

Our deployment model fundamentally differs from traditional con-
tainers: XaaS completely breaks the relationship between the image
in the registry and the image on the system. This can raise the
question of OCI compliance, since the container standard requires
that changes to image layers are recorded in the manifest, leading to
a new hash value and a new immutable identifier of the image [61].
However, Xaa$S publishes standard container images, pulls them
from container registries, and produces specialized images in the
same OCI-compliant format that can be consumed later by general-
purpose and HPC-focused container runtimes. We introduce a new
deployment tool customized for HPC specialization, but all other
steps of container management - building, publishing, pulling, and
running - are conducted with standard and existing container tools.
Furthermore, virtually none of the current HPC container solutions
preserve OCI compliance: images are generally flattened [13, 34, 65]
(destroying the original OCI layers), converted to SquashFS, or use
the custom Singularity Image Format (SIF) [46].

Image Architecture and Annotations: In Xaa$ containers, we
propose that the source and IR formats become a new identifying
feature of the container image. This would require that the OCI
specification recognizes LLVM IR as a valid architecture. The cur-
rent specification allows an image to have an architecture and a
variant of the architecture [61]. Additionally, it reserves a list of
features which can be used to encode deployment format.

OCI images use annotations for additional metadata in various
media types (indexes, manifests, image configurations), with the
latter consumed directly by container runtimes. In XaaS, annota-
tions could embed specialization points of the HPC application. We
propose that future versions could include specialization points
as image annotations, allowing Xaa$ tools to query them before
pulling and building the final image. Furthermore, it would simplify
image tags and allow for the easy location of specialized images.

6 Evaluation

In the evaluation, we focus on the following research questions:
e Can LLM systems process large C++ project configurations?
e Can source containers provide performance portability?
e Can IR containers perform better than portable containers?
e Can IR containers optimize deployments?

6.1 Benchmarking Setup

We demonstrate the portability of our containers on three systems:

Xaa$S Containers: Performance-Portable Representation With Source and IR Containers

SC ’25, November 16-21, 2025, St Louis, MO, USA

Table 4: Performance and cost of LLMs parsing GROMACS configuration. Token counts, latency, and estimated cost are averaged from 10 runs
executed from Ziirich, Switzerland. F1, precision, and recall metrics are aggregated across all runs and reported as Min/Median/Max per model.

Model Version Tokens Tokens Out Time (s) Cost($) Flmin Flped Flmax Pmin Pmed Pmax Rmin Rmed Rmax
gemini-flash-1.5-exp 15803 £ 0 2333.5 +147.6 16.40 + 1.00 0.002 0.863 0.902 0.942 0.838 0.898 0.948 0.868 0.909 0.936
gemini-flash-2-exp 15803 £ 0 2610.8 +189.4 11.96 + 0.86 0.003 0.873 0978 0.994 0.873 0.981 1.000 0.873 0.981 0.988
claude-3-5-haiku-20241022 17841+ 0 1568.9 + 174.2 20.09 £ 1.96 0.021 0.628 0.672 0.702 0.807 0.863 0.894 0.5 0.539 0.622
claude-3-5-sonnet-20241022 17841 £ 0 1528.7 £ 39.2 126.18 + 335.31 0.077 0.661 0.672 0.692 0.875 0.878 0.882 0.539 0.544 0.57
claude-3-7-sonnet-20250219 17841+ 0 3122.7 £ 155.1 50.29 + 21.67 0.100 0.878 0.883 0911 0.857 0.868 0.923 0.9 0.9 0.9
03-mini-2025-01-31 13538 £ 0 8003.9 £ 1160.8 108.40 + 40.02 0.050 0.559 0.924 0.968 0.549 0.909 0.987 0.57 0.923 1.000

gpt-40-2024-08-06 13539 £ 0 1540.0 £ 146.1 26.06 £ 6.96

0.049 0.547 0.774 0.887 0.508 0.892 0.979 0.53 0.675 0.859

e CSCS Ault Heterogenous system with Sarus [13] containers.
We use Ault23 (Intel 6130 CPU, V100 GPU), Ault25 (AMD
EPYC 7742, A100 GPU), and Ault01-04 (Intel 6154 CPU).

e CSCS Alps.Clariden Cray system with the GH200 super-
chip, Cray Slingshot network, and Podman [73] containers.

e Aurora Cray system with Intel Xeon CPU Max CPUs, Intel
Data Center GPU Max, and Apptainer [46] containers.

The deployment images for Clariden are built on the compute
nodes, and we use a local development machine with Docker for
Ault23 and Aurora, as neither system supports container building.

We consider two high-performance applications as case studies.
GROMACS 2025.0 [76] supports many vectorization options, with
automatic detection of the best option on the system. In addition to
MPI and OpenMP, it contains mutually exclusive GPU backends.
llama.cpp [33] The C++ LLM inference engine achieves good porta-
bility by separating the implementation into multiple backends,
which can be loaded dynamically at runtime.

6.2 Specialization Discovery

We propose automating the process of discovering specialization
points with the help of LLMs. Given LLM’s tendency to hallucinate
and produce incorrect output, this raises the question: can these
results be trusted? Thus, we evaluate the analysis of GROMACS
with models from OpenAl, Anthropic, and Google. For each model,
we apply in-context learning by providing examples from CMake
configuration options, internal commands, and flags for GROMACS,
Quantum Espresso, and Kokkos. We normalize the structure of spe-
cialization points, and compare specializations found in the ground
truth and LLM result, counting true/false positives and negatives.
We repeat the prompt 10 times and evaluate the characterization
of the build system, vectorization, FFT and linear algebra libraries,
parallel computing solutions, and GPU backends. Results in Table 4
show that the correctness and performance vary widely between
models. Both GPT models produce inconsistent results across repe-
titions (F-score 0.55-0.97). Gemini models perfom best, which can
be explained by the large context window. Examples of failures
include returning only a subset of options (Claude 3.5, GPT-40) and
mixing FFT and linear algebra libraries (GPT-40, Gemini 1.5).

The basic CMake configuration contains 13299 tokens, while all
CMake scripts add 154,946 more tokens. Recommended configura-
tions are described in the documentation that adds almost 1M to-
kens (without plots), which might be out of reach for many current
models [49]. Documentation can be processed iteratively, but this
would significantly increase processing time and further increase
the uncertainty of the final result. Thus, while in-context learning

Ault23 (A 20,000, B 1000 steps) ~ Aurora (A 20,000, B 1000 steps) ~ Clariden (A 30,000, B 3000 steps)
4

5
240
Tore 48 123 B TestA
) 42 [TestB
£ 180 36 140
= 150 30 120
£ 15 100
] 24 80
£ 9 18 0
§ 60 12 40
w 30 6 20
el (0] el il el el
R A S 3 L & o N AN A S S
Fo S & &2 2@ 22 & P I I & Pe
GV ESF o S S oS B S o St
o S g o & Rf @

Figure 10: Performance portability of GROMACS between systems.

Ault23 10.775 Aurora 10.680

10 10

Clariden-Alps
830 26897
Q

25 s 8

6 5.586 5.600 6

20

-
e

4 4

2 2 1.164 1.155 1.167

Execution Tim
"
5

2236 2.228 2.232
B .

o wu

0 0

@ (3 > o @ > o @ > > o
) 2 2 O) < O) < < O
F® & e g F® & S F® & e s
S f SLE S o O T LS
& &L & R & R & &L & 9 8
R RFS R R R R F s

Figure 11: Performance portability of llama.cpp between systems.

can enable LLM models to perform well in the automatic analysis of
specialization points, the processing pipeline requires tight human
supervision and corrections, and performance preferences might
be provided by system operators or application developers.
Generalization We evaluated llama.cpp for which we provide no
prompt examples. We pass CMake configurations of llama.cpp and
its main subproject ggml (2544 and 4574 tokens, respectively). Best
performing models are Sonnet 3.7 (F1 0.55-0.62) and GPT-03 (F1
0.62-0.7). Models often underperform due to minor discrepancies
(inconsistent hyphen/underscore, missing -D prefix). Normalization
improves performance: Sonnet 3.7 (F1 0.63-0.74), Gemini Flash 2 (F1
0.53-0.79), and GPT-03 (F1 0.73-0.79). Additionally, ggml contains
over 20 optimization flags; including them in evaluation decreases
overall performance while improving Sonnet’s best result to 0.78.

6.3 Performance Portability

We evaluate the performance portability of XaaS source containers
by comparing them against local builds, specialized containers, and
Spack packages or modules - when available. We deploy different
source images based on system discovery and user input results.

6.3.1 GROMACS. We execute test cases A and B from UEABS [64]
30 times, and subtract the I/O overhead reported by GROMACS
from timings (Figure 10). We use default GCC 11.4 in XaaS source
images, and Spack-installed GCC 11.5 for other test cases. Naive
build uses the default CMake command from the documentation,

SC ’25, November 16-21, 2025, St Louis, MO, USA

which results with lack of GPU acceleration even when the CUDA
module is loaded. Both naive and native builds pick up MKL from
the HPC modules environment. On Ault23, we compare Spack
installation with MPI and CUDA, and a second configuration with
explicit selection of MKL, which achieves performance close to the
XaaS$ source container. According to GROMACS logs, the default
Spack installation performs worse in the CPU part of the application,
indicating possible issues with multithreading or the automatically
selected OpenBLAS. Spack cases uses the latest available GROMACS
2024.4, and a subsequent reevaluation of 2025.0 with test B on Ault23
demonstrated an average improvement of 1-2 seconds.

We use two baselines on Aurora: a hand-written specialized
container and a module version of GROMACS 2024.5 since it can-
not be installed by Spack. For XaaS and specialized containers,
we use the oneAPI image recommended by system operators. The
module version uses MPI, while other benchmarks use the inter-
nal Threads-MPI due to MPI compatibility issues in containers on
Aurora (Section 6.5). However, the default source container uses
only CPUs because the build is incompatible with Intel Max GPUs.
There, GROMACS uses a compile-time definition specialized only
for this device, found in the documentation but not the build con-
figuration. For the manual fix, source containers need an additional
source of knowledge, such as documentation parsing (Section 6.2)
or specialization parameters provided by developers (Section 4.1).

Portable Container. A GPU-capable container is possible only
with the SYCL backend. This exotic configuration [37] uses the
VKFFT library [75], which can be compiled for one hardware back-
end only. Instead, we used the recently added oneMath library [28],
which supports MKL and cuFFT simultaneously. We built GRO-
MACS with the CUDA plugin for SYCL [21] in the oneAPI image,
and compared it against our source containers on V100 (Ault23)
and A100 (Ault25). The SYCL container is 11%-20% slower on test A,
and fails to run test B. Portability is further limited by two factors:
GPU compatibility still requires compile-time definitions, and the
CUDA plugin generates code for one GPU architecture at a time.

6.3.2 llama.cpp. We use the internal llama.cpp benchmark, run-
ning 40 repetitions of prompt processing (512) and text generation
(128), with a 4-bit quantized LLama-2-13B-chat model. We configure
source containers to compiler and library versions close to those
available on the system. On Aurora, we have to manually patch the
source code to compile with the Intel icpx compiler, as the SYCL
backend cannot be compiled with Clang 21. For XaaS source con-
tainers, we switch to the official oneAPI image at deployment. In
this benchmark, the specialized build performs comparably to Xaa$,
while the naive default build does not enable GPU (Figure 11).

6.4 IR Containers

We evaluate the performance portability of IR containers with GRO-
MACS on CPU, with OpenMP, and tuned against five different CPU
architectures, from SSE4.1 to AVX-512. This requires discovering
CPU tuning flags and delaying optimizations until final deployment
(Section 4.3). For each variant, we build a separate container layer
hosting fftw3 library tuned for that architecture. Additionally, we
build IR containers with CUDA 12.8 by generating IR files with
embedded device code, which we later lower to the target platform.
We compare against portable and specialized containers built with

M. Copik, E. Alnuaimi, A. Kamatar, V. Hayot-Sasson, A. Madonna, T. Gamblin, K. Chard, I. Foster, and T. Hoefler

CPU, Test A, 1 core, 200 steps

, Test B, 36 cores, 200 steps
40- 38.8538.6538.65 36 6o

40 539 653935

21.1520.4s
20- I 18 1s 17 9s
0-

O n> 56 o0 3} 2‘3
X 12 % L
o“ ‘:(’ q‘fﬂ “q Q* g qﬁa/ I \l*’ c\a\\

27.9s
24.2523 55

20-

Execution Time (s)
Execution Time (s)

o
o
CL ° ’L‘> 9 o

o Vc@ \H:LN*/ wg/ @ @k,

V100 (left) and A100 (right), Test A (20,000 steps) and B (1,000 steps)

; N7 7z
< I e+ --n

10 20 30 40 0 5 10 15 20 25 30
Execution Time (s) Execution Time (s)
mmm TestA mmm TestB @ 1/0 Time

Figure 12: IR containers on CPU (top, Ault01-04) and GPU (bottom).

Clang 19 for SSE4.1 and AVX_512 (CPU), and CUDA containers
(GPU). Figure 12 shows the runtime of GROMACS with I/O time ex-
cluded, demonstrating that a specialization of the IR container can
improve performance by up to 2x when compared to a performance-
oblivious container. We also evaluate a separate deployment of IR
containers configured against CUDA and two vectorization levels
for Ault23 and Ault25 nodes. On the GPU, we provide performance
comparable to a specialized container, with a slight increase in I/O
time for test case B.

Configurability and System Dependency This experiment vali-
dates positively Hypotheses 1 and 2 on GROMACS (Section 4.2).
To deploy five GROMACS containers tuned to different ISAs, devel-
opers must build 8710 translation units (TU). In our container, we
build only 2695 IRs (69% reduction). The reduction would not be
possible without the XaaS pipeline, as 96% of compiled source files
have incompatible build flags across projects; the primary reason
is the inclusion of header files in the build directory. Preprocessing
determines that only 14.3% of additional TUs require separate IR
compilation. However, 95% of identical targets have different CPU
tuning, which is resolved by the vectorization pass of our pipeline.

Four build configurations with two vectorization settings and
CUDA require 7052 TUs, which we reduce to 2694 IRs (76% re-
duction). The build combinations obtained with enabling OpenMP
and/or MPI require compiling and lowering 6976 TUs. Thanks to
preprocessing and determining when the OpenMP flag has no effect,
we build only 2333 IRs (66.4% reduction).

6.5 Network Performance

We focused on single-node deployments to demonstrate specializa-
tion to the available hardware and software, and did not evaluate
distributed execution due to technical limitations on our systems.
On Aurora, Apptainer containers did not function with MPI, and
we had to use Thread-MPI instead. On Clariden, co-location of MPI
ranks is needed to utilize the four GH200 chips on each node. How-
ever, the intra-node MPI communication is implemented separately
from cxi, the Slingshot provider in Libfabric [69]. Thus, container-
ized MPIs can access the high-speed network through Libfabric
replacement, but cannot use shared memory. While bare-metal
Cray-MPICH achieves up to 64 GB/s on the same socket, co-located
containers reach only up to 23.5 GB/s (OpenMPI). LinkX [66] is a
Libfabric provider that combines remote and local communication,

Xaa$S Containers: Performance-Portable Representation With Source and IR Containers

and provides up to 64 (MPICH) and 70 (OpenMPI) GB/s of intra-
node bandwidth. However, the provider is still experimental, e.g.,
it does not function well on all benchmarks and hardware.

7 Related Work

Building: Languages common in HPC, like C++ and Fortran, are no-
tably missing in commonly used package managers. EasyBuild [44]
builds HPC applications from source using specific toolchains, sup-
porting hierarchical module creation [32]. Spack [31] is a package
manager that parameterizes builds with constraints and versioned
dependencies. Resolving dependencies can be reduced with declar-
ative programming [30] or machine learning [57]. E4S provides
curated HPC software stacks, including hardware-specific con-
tainers [41, 78]. Binary distribution is possible: Spack uses binary
caches [71], and EESSI distributes EasyBuild stacks via network
filesystems [27]. XaaS complements these tools by addressing the
trade-off between container portability and performance.
Portable and HPC Containers: Injecting or replacing con-
tainer libraries with host counterparts can be achieved with many
container runtimes, but it can require expert knowledge of the
system. Apptainer [46] supports semi-manual mounting of host
MPI [6]. Charliecloud [65] uses heuristics to copy resource-specific
files (NVIDIA, libfabric) into images, permanently modifying them.
Sarus [13, 51] and Podman-HPC [73] use OCI hooks to inject host
MPI and GPU libraries. XaaS can use the same hooks, but source con-
tainers can be compiled to use the version of the specialized library
compatible with the one available on the system. Vendor container
registries offer optimized but platform-specific images [5, 60].
Containers can already contain intermediate representation as
Python and Java bytecode [83]. Popcorn Linux [9] enables cross-ISA
live migration with a custom compiler and kernel that transform
LLVM IR into multi-ISA binaries with compatible data layouts [40].
H-Containers [8, 79] achieve migration by decompiling to LLVM IR
and recompiling to different ISAs. To the best of our knowledge, this
is the only known use of IR for container deployment. However, it
differs fundamentally from XaaS: we use IR-based representations
to access customized performance features of each system.
Performance Portability: Performance portability often in-
volves rewriting applications using models like OpenMP, OpenACC,
or SYCL [17, 63]. Frameworks provide new abstractions for memory
access (Kokkos [18]), loop parallelism (Raja [10]), and data-centric
programming (DaCe [84]). Compilers can translate programming id-
ioms to specialized libraries [36] and accelerators [53], and upgrade
applications to use newer and specialized implementations of linear
algebra libraries [22]. XaaS focuses on portable representations of
existing applications without rewriting or requiring single-source
code. We do not require applications to be single-source or use the
same set of source files across all systems and devices.
Emulation, Translation, and JIT: Cross-ISA emulation, such
as Docker with QEMU [26], is unsuitable for HPC due to
performance overheads. Runtime MPI ABI translation layers
like Wi4MPI [48] can incur performance overhead. Other tools
include mpixlate [23] (compatibility with Cray MPI), MPITrampo-
line [68], Mukautuva [38], and MPI-Adapter2 [74]. JIT compilation,
used in CUDA PTX, OpenCL, SYCL IR [4], allows for specialization
of the final implementation by compiling the code dynamically.

SC ’25, November 16-21, 2025, St Louis, MO, USA

8 Discussion

We demonstrate XaaS containers with representative HPC applica-
tions. However, modern HPC workloads are often not limited to a
single application [12]. Large HPC workflows like MOFA [81] are
built from several different tasks, each with its own requirements
for CPU and GPU computation. Performance-portable containers
could create a seamless deployment of a heterogeneous workflow
across different HPC hardware. To transition the IR format to large
and complex applications, we need to support dependency man-
agement (Section 8.1) and software installation (Section 8.2).

8.1 Dependency Management

When building different versions of an application, we should not
repeat the entire build step for all dependencies. Instead, dependen-
cies should be composed into a final package, as is already the case
for package managers such as Spack [31]. Standard containers dis-
tribute dependencies as binary images assembled for the selected
specialization. In IR containers, each dependency should be dis-
tributed in the IR form. However, they must be located during the
configuration phase of IR containers, and build parameters are af-
fected by compilation and linking flags of dependencies. This leads
to a conflict: we want to deploy partially compiled applications, but
still provide installation configuration to compose IR containers.
To support composability, future work can include creating fat
binaries with embedded IR, similarly to existing approaches for
deploying GPU device code in CUDA and SYCL [58]. This approach
will generate a full installation target, allowing for seamless op-
eration of build systems, while providing the necessary metadata
and IRs to optimize and regenerate the dependency for the target.
Furthermore, extended dependency management could support
version constraints, similarly to existing solutions in package man-
agers. This feature will restrict the matching process of specializa-
tion points, and prevent build failures caused by incompatibilities
between the containerized application and its dependencies.

8.2 Installation

IR containers include the application’s source code, even if the
entire application is compiled to an intermediate representation.
This is not a strict requirement of our method but a limitation of
existing build systems. To finalize the application build, we need to
perform linking and installation. However, these steps can include
many user-defined and customized instructions, such as generating
custom headers, and they cannot be easily extracted from the build
configuration. Consequently, the IR image embeds all build config-
urations. Automating installation would reduce the complexity of
the container and solve the problem of IR container composability.
Furthermore, we can deduplicate installation targets as currently
done with IR files. Then, the IR container will only need to contain
a shared installation core and a delta for each build configuration.

9 Conclusions

Xaa$S Source and Intermediate Representation (IR) containers bring
a new methodology for software management in HPC. We show

SC ’25, November 16-21, 2025, St Louis, MO, USA

that changing the software distribution allows for delaying per-
formance critical decisions until the deployment, avoiding perfor-
mance limitations of traditional containers. Our prototype demon-
strates that software deployments based on LLVM IR can signifi-
cantly reduce the number of files that need to be generated without
sacrificing performance.

Acknowledgments

This project received support by the SwissTwins project (funded by
the Swiss State Secretariat for Education, Research and Innovation)
and the ERC PSAP project (Grant Agreement No. 101002047). This
work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344 (LLNL-CONF-2010482), Lawrence Livermore
National Security, LLC, and by Argonne National Laboratory under
Contract DE-AC02-06CH11357. We thank the Swiss National Su-
percomputing Centre (CSCS) and Argonne Leadership Computing
Facility (ALCF) for providing computational resources and tech-
nical support that facilitated this project. The authors leveraged
Claude to assist with light editing of the manuscript. Copilot and
Claude Code were used during code development. All content and
ideas remain the authors’ original work.

References

[1] 2011. Hydrodynamics Challenge Problem, Lawrence Livermore N ational Laboratory.

Technical Report LLNL-TR-490254. 1-17 pages.

] 2021. QUDA. https://github.com/lattice/quda Accessed: 2025-08-25.

[3] Dong H. Ahn, Jim Garlick, Mark Grondona, Don Lipari, Becky Springmeyer, and
Martin Schulz. 2014. Flux: A Next-Generation Resource Management Framework
for Large HPC Centers. In 2014 43rd International Conference on Parallel Processing
Workshops. 9-17. doi:10.1109/ICPPW.2014.15

[4] Aksel Alpay and Vincent Heuveline. 2023. One Pass to Bind Them: The First
Single-Pass SYCL Compiler with Unified Code Representation Across Backends.
In International Workshop on OpenCL. ACM, Cambridge United Kingdom, 1-12.
doi:10.1145/3585341.3585351

[5] AMD. 2025. AMD Infinity Hub. https://www.amd.com/en/developer/resources/
infinity-hub.html Accessed: 2025-01-04.

[6] Apptainer. 2025. Apptainer and MPI applications. https://apptainer.org/docs/
user/latest/mpi.html Accessed: 2025-01-04.

[7] T. Auckenthaler, V. Blum, H.-J. Bungartz, T. Huckle, R. Johanni, L. Kridmer, B.
Lang, H. Lederer, and P.R. Willems. 2011. Parallel solution of partial symmetric
eigenvalue problems from electronic structure calculations. Parallel Comput. 37,
12 (2011), 783-794. doi:10.1016/j.parco.2011.05.002 6th International Workshop
on Parallel Matrix Algorithms and Applications (PMAA’10).

[8] Antonio Barbalace, Mohamed L. Karaoui, Wei Wang, Tong Xing, Pierre Olivier,

and Binoy Ravindran. 2020. Edge computing: the case for heterogeneous-ISA

container migration. In Proceedings of the 16th ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments (Lausanne, Switzerland)

(VEE °20). Association for Computing Machinery, New York, NY, USA, 73-87.

doi:10.1145/3381052.3381321

Antonio Barbalace, Robert Lyerly, Christopher Jelesnianski, Anthony Carno,

Ho-Ren Chuang, Vincent Legout, and Binoy Ravindran. 2017. Breaking the

Boundaries in Heterogeneous-ISA Datacenters. SIGARCH Comput. Archit. News

45, 1 (April 2017), 645-659. doi:10.1145/3093337.3037738

David A. Beckingsale, Jason Burmark, Rich Hornung, Holger Jones, William

Killian, Adam J. Kunen, Olga Pearce, Peter Robinson, Brian S. Ryujin, and

Thomas RW Scogland. 2019. RAJA: Portable Performance for Large-Scale Sci-

entific Applications. In 2019 IEEE/ACM International Workshop on Performance,

Portability and Productivity in HPC (P3HPC). 71-81. doi:10.1109/P3HPC49587.

2019.00012

[11] Tal Ben-Nun, Johannes de Fine Licht, Alexandros N. Ziogas, Timo Schneider, and

Torsten Hoefler. 2019. Stateful dataflow multigraphs: a data-centric model for
performance portability on heterogeneous architectures. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis (Denver, Colorado) (SC ’19). Association for Computing Machinery,
New York, NY, USA, Article 81, 14 pages. doi:10.1145/3295500.3356173

=

[10

M. Copik, E. Alnuaimi, A. Kamatar, V. Hayot-Sasson, A. Madonna, T. Gamblin, K. Chard, I. Foster, and T. Hoefler

[12] Tal Ben-Nun, Todd Gamblin, D. S. Hollman, Hari Krishnan, and Chris J. Newburn.
2020. Workflows are the New Applications: Challenges in Performance, Portabil-
ity, and Productivity. In 2020 IEEE/ACM International Workshop on Performance,
Portability and Productivity in HPC (P3HPC). 57-69. doi:10.1109/P3HPC51967.
2020.00011
Lucas Benedicic, Felipe A. Cruz, Alberto Madonna, and Kean Mariotti. 2019.
Sarus: Highly Scalable Docker Containers for HPC Systems. In High Performance
Computing, Michéle Weiland, Guido Juckeland, Sadaf Alam, and Heike Jagode
(Eds.). Springer International Publishing, Cham, 46-60.
Claude Bernard, Michael C. Ogilvie, Thomas A. DeGrand, Carleton E. DeTar,
Steven A. Gottlieb, A. Krasnitz, RL. Sugar, and D. Toussaint. 1991. Studying
Quarks and Gluons On Mimd Parallel Computers. The International Journal of
Supercomputing Applications 5, 4 (1991), 61-70. doi:10.1177/109434209100500406
arXiv:https://doi.org/10.1177/109434209100500406
Robert Bird, Nigel Tan, Scott V. Luedtke, Stephen Lien Harrell, Michela Taufer,
and Brian Albright. 2022. VPIC 2.0: Next Generation Particle-in-Cell Simulations
. IEEE Transactions on Parallel & Distributed Systems 33, 04 (April 2022), 952-963.
doi:10.1109/TPDS.2021.3084795
[16] K. J. Bowers, B. J. Albright, L. Yin, B. Bergen, and T. J. T. Kwan.
2008. Ultrahigh performance three-dimensional electromagnetic rela-
tivistic kinetic plasma simulationa). Physics of Plasmas 15, 5 (03
2008), 055703. doi:10.1063/1.2840133 arXiv:https://pubs.aip.org/aip/pop/article-
pdf/doi/10.1063/1.2840133/14083352/055703 _1_online.pdf
Marcel Breyer, Alexander Van Craen, and Dirk Pfliiger. 2022. A Comparison
of SYCL, OpenCL, CUDA, and OpenMP for Massively Parallel Support Vector
Machine Classification on Multi-Vendor Hardware. In Proceedings of the 10th
International Workshop on OpenCL (Bristol, United Kingdom, United Kingdom)
(IWOCL °22). Association for Computing Machinery, New York, NY, USA, Article
2, 12 pages. doi:10.1145/3529538.3529980
H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. 2014. Kokkos:
Enabling manycore performance portability through polymorphic memory access
patterns. J. Parallel and Distrib. Comput. 74, 12 (2014), 3202-3216. doi:10.1016/].
jpdc.2014.07.003 Domain-Specific Languages and High-Level Frameworks for
High-Performance Computing.
[19] J. Choi, JJ. Dongarra, R. Pozo, and D.W. Walker. 1992. ScaLAPACK: a scal-
able linear algebra library for distributed memory concurrent computers .
In The Fourth Symposium on the Frontiers of Massively Parallel Computation.
IEEE Computer Society, Los Alamitos, CA, USA, 120,121,122,123,124,125,126,127.
doi:10.1109/FMPC.1992.234898
[20] M.A. Clark, R. Babich, K. Barros, R.C. Brower, and C. Rebbi. 2010. Solving lattice
QCD systems of equations using mixed precision solvers on GPUs. Computer
Physics Communications 181, 9 (2010), 1517-1528. doi:10.1016/j.cpc.2010.05.002
Codeplay. 2024. Install oneAPI for NVIDIA GPUs. https://developer.codeplay.
com/products/oneapi/nvidia/2024.2.0/guides/get-started- guide-nvidia Accessed:
2025-08-25.
Bruce Collie, Philip Ginsbach, and Michael F.P. O’Boyle. 2019. Type-Directed
Program Synthesis and Constraint Generation for Library Portability . In 2019
28th International Conference on Parallel Architectures and Compilation Techniques
(PACT). IEEE Computer Society, Los Alamitos, CA, USA, 55-67. doi:10.1109/
PACT.2019.00013
Cray. 2025. mpixlate. https://cpe.ext.hpe.com/docs/24.03/mpt/mpixlate/mpixlate.
html Accessed: 2025-01-04.
Massimiliano Culpo, Gregory Becker, Carlos Eduardo Arango Gutierrez, Kenneth
Hoste, and Todd Gamblin. 2020. archspec: A library for detecting, labeling,
and reasoning about microarchitectures. In 2020 2nd International Workshop on
Containers and New Orchestration Paradigms for Isolated Environments in HPC
(CANOPIE-HPC). 45-52. doi:10.1109/CANOPIEHPC51917.2020.00011
Willem Deconinck, Peter Bauer, Michail Diamantakis, Mats Hamrud, Christian
Kithnlein, Pedro Maciel, Gianmarco Mengaldo, Tiago Quintino, Baudouin Raoult,
Piotr K. Smolarkiewicz, and Nils P. Wedi. 2017. Atlas : A library for numerical
weather prediction and climate modelling. Computer Physics Communications
220 (2017), 188-204. doi:10.1016/j.cpc.2017.07.006
Docker. 2025. Multi-platform builds. https://docs.docker.com/build/building/
multi-platform/ Accessed: 2025-01-04.
[27] Bob Droge, Victor Holanda Rusu, Kenneth Hoste, Caspar van Leeuwen,
Alan O’Cais, and Thomas R&blitz. 2023. EESSI: A cross-platform
ready-to-use optimised scientific software stack. Software: Prac-
tice and Experience 53, 1 (2023), 176-210. doi:10.1002/spe.3075
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3075
Unified Acceleration (UXL) Foundation. 2025. oneAPI Math Library (oneMath).
https://github.com/uxlfoundation/oneMath/tree/v0.8 Accessed: 2025-08-25.
M. Frigo and S.G. Johnson. 2005. The Design and Implementation of FFTW3.
Proc. IEEE 93, 2 (2005), 216-231. doi:10.1109/JPROC.2004.840301
Todd Gamblin, Massimiliano Culpo, Gregory Becker, and Sergei Shudler. 2022.
Using Answer Set Programming for HPC Dependency Solving. In SC22: Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. 1-15. doi:10.1109/SC41404.2022.00040

[13

[14

[15

(17

(18

[21

[22

[23

[24

[25

[26

S
&,

[29

[30

https://github.com/lattice/quda
https://doi.org/10.1109/ICPPW.2014.15
https://doi.org/10.1145/3585341.3585351
https://www.amd.com/en/developer/resources/infinity-hub.html
https://www.amd.com/en/developer/resources/infinity-hub.html
https://apptainer.org/docs/user/latest/mpi.html
https://apptainer.org/docs/user/latest/mpi.html
https://doi.org/10.1016/j.parco.2011.05.002
https://doi.org/10.1145/3381052.3381321
https://doi.org/10.1145/3093337.3037738
https://doi.org/10.1109/P3HPC49587.2019.00012
https://doi.org/10.1109/P3HPC49587.2019.00012
https://doi.org/10.1145/3295500.3356173
https://doi.org/10.1109/P3HPC51967.2020.00011
https://doi.org/10.1109/P3HPC51967.2020.00011
https://doi.org/10.1177/109434209100500406
https://arxiv.org/abs/https://doi.org/10.1177/109434209100500406
https://doi.org/10.1109/TPDS.2021.3084795
https://doi.org/10.1063/1.2840133
https://arxiv.org/abs/https://pubs.aip.org/aip/pop/article-pdf/doi/10.1063/1.2840133/14083352/055703 _1_online.pdf
https://arxiv.org/abs/https://pubs.aip.org/aip/pop/article-pdf/doi/10.1063/1.2840133/14083352/055703 _1_online.pdf
https://doi.org/10.1145/3529538.3529980
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1109/FMPC.1992.234898
https://doi.org/10.1016/j.cpc.2010.05.002
https://developer.codeplay.com/products/oneapi/nvidia/2024.2.0/guides/get-started-guide-nvidia
https://developer.codeplay.com/products/oneapi/nvidia/2024.2.0/guides/get-started-guide-nvidia
https://doi.org/10.1109/PACT.2019.00013
https://doi.org/10.1109/PACT.2019.00013
https://cpe.ext.hpe.com/docs/24.03/mpt/mpixlate/mpixlate.html
https://cpe.ext.hpe.com/docs/24.03/mpt/mpixlate/mpixlate.html
https://doi.org/10.1109/CANOPIEHPC51917.2020.00011
https://doi.org/10.1016/j.cpc.2017.07.006
https://docs.docker.com/build/building/multi-platform/
https://docs.docker.com/build/building/multi-platform/
https://doi.org/10.1002/spe.3075
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3075
https://github.com/uxlfoundation/oneMath/tree/v0.8
https://doi.org/10.1109/JPROC.2004.840301
https://doi.org/10.1109/SC41404.2022.00040

Xaa$S Containers: Performance-Portable Representation With Source and IR Containers

[31] Todd Gamblin, Matthew LeGendre, Michael R. Collette, Gregory L. Lee, Adam

Moody, Bronis R. de Supinski, and Scott Futral. 2015. The Spack package man-
ager: bringing order to HPC software chaos. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(Austin, Texas) (SC ’15). Association for Computing Machinery, New York, NY,
USA, Article 40, 12 pages. doi:10.1145/2807591.2807623

Markus Geimer, Kenneth Hoste, and Robert McLay. 2014. Modern Scientific
Software Management Using EasyBuild and Lmod. In 2014 First International
Workshop on HPC User Support Tools. 41-51. doi:10.1109/HUST.2014.8

Georgi Gerganov. 2025. llama.cpp. https://github.com/ggml-org/llama.cpp
Accessed: 2025-01-04.

Lisa Gerhardt, Wahid Bhimji, Shane Canon, Markus Fasel, Doug Jacobsen,
Mustafa Mustafa, Jeff Porter, and Vakho Tsulaia. 2017. Shifter: Containers for HPC.
Journal of Physics: Conference Series 898, 8 (oct 2017), 082021. doi:10.1088/1742-
6596/898/8/082021

Paolo Giannozzi, Stefano Baroni, Nicola Bonini, Matteo Calandra, Roberto Car,
Carlo Cavazzoni, Davide Ceresoli, Guido L Chiarotti, Matteo Cococcioni, Ismaila
Dabo, Andrea Dal Corso, Stefano de Gironcoli, Stefano Fabris, Guido Fratesi,
Ralph Gebauer, Uwe Gerstmann, Christos Gougoussis, Anton Kokalj, Michele
Lazzeri, Layla Martin-Samos, Nicola Marzari, Francesco Mauri, Riccardo Maz-
zarello, Stefano Paolini, Alfredo Pasquarello, Lorenzo Paulatto, Carlo Sbraccia,
Sandro Scandolo, Gabriele Sclauzero, Ari P Seitsonen, Alexander Smogunov,
Paolo Umari, and Renata M Wentzcovitch. 2009. QUANTUM ESPRESSO: a mod-
ular and open-source software project for quantum simulations of materials.
Journal of Physics: Condensed Matter 21, 39 (sep 2009), 395502. doi:10.1088/0953-
8984/21/39/395502

Philip Ginsbach, Toomas Remmelg, Michel Steuwer, Bruno Bodin, Christophe
Dubach, and Michael F. P. O’Boyle. 2018. Automatic Matching of Legacy Code to
Heterogeneous APIs: An Idiomatic Approach. In Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming Languages and
Operating Systems (Williamsburg, VA, USA) (ASPLOS ’18). Association for Com-
puting Machinery, New York, NY, USA, 139-153. doi:10.1145/3173162.3173182
GROMACS. 2025. Installation guide for exotic configurations. https://manual.
gromacs.org/2025.2/install-guide/exotic.html Accessed: 2025-08-25.

Jeff Hammond. 2025. Mukautuva. https://github.com/jeffhammond/mukautuva
Accessed: 2025-01-04.

Jeff Hammond, Lisandro Dalcin, Erik Schnetter, Marc Pé Rache, Jean-Baptiste
Besnard, Jed Brown, Gonzalo Brito Gadeschi, Simon Byrne, Joseph Schuchart,
and Hui Zhou. 2023. MPI Application Binary Interface Standardization. In Pro-
ceedings of the 30th European MPI Users’ Group Meeting (Bristol, United Kingdom)
(EuroMPI "23). Association for Computing Machinery, New York, NY, USA, Article
1, 12 pages. doi:10.1145/3615318.3615319

Balvansh Heerekar, Cesar Philippidis, Ho-Ren Chuang, Pierre Olivier, Antonio
Barbalace, and Binoy Ravindran. 2024. Offloading Datacenter Jobs to RISC-
V Hardware for Improved Performance and Power Efficiency. In Proceedings
of the 17th ACM International Systems and Storage Conference (Virtual, Israel)
(SYSTOR °24). Association for Computing Machinery, New York, NY, USA, 39-52.
doi:10.1145/3688351.3689152

M Heroux,] Willenbring, S Shende, C Coti, W Spear,] Peyralans, J Skutnik, and E
Keever. 2020. E4S: Extreme-scale scientific software stack. LLVM 2011 European
User Group Meeting. https://collegeville.github.io/CW20/WorkshopResources/
WhitePapers/heroux-willenbring-shende- coti-spear-et-al-E4S.pdf Accessed:
2025-01-04.

Torsten Hoefler, Marcin Copik, Pete Beckman, Andrew Jones, Ian Foster, Manish
Parashar, Daniel Reed, Matthias Troyer, Thomas Schulthess, Daniel Ernst, and
Jack Dongarra. 2024. XaaS: Acceleration as a Service to Enable Productive High-
Performance Cloud Computing. Computing in Science & Engineering 26, 3 (2024),
40-51. doi:10.1109/MCSE.2024.3382154

Torsten Hoefler, Ariel Hendel, and Duncan Roweth. 2022. The Convergence of
Hyperscale Data Center and High-Performance Computing Networks. Computer
55, 7 (2022), 29-37. doi:10.1109/MC.2022.3158437

Kenneth Hoste, Jens Timmerman, Andy Georges, and Stijn De Weirdt. 2012.
EasyBuild: Building Software with Ease. In 2012 SC Companion: High Perfor-
mance Computing, Networking Storage and Analysis. 572-582. doi:10.1109/SC.
Companion.2012.81

Jin-Gu Kang. 2011. More Target Independent LLVM Bitcode. LLVM 2011 Eu-
ropean User Group Meeting. https://llvm.org/devmtg/2011-09-16/ Accessed:
2025-01-04.

Gregory M. Kurtzer, Vanessa Sochat, and Michael W. Bauer. 2017. Singularity:
Scientific containers for mobility of compute. PLOS ONE 12, 5 (05 2017), 1-20.
doi:10.1371/journal.pone.0177459

C. Lattner and V. Adve. 2004. LLVM: a compilation framework for lifelong pro-
gram analysis & transformation. In International Symposium on Code Generation
and Optimization, 2004. CGO 2004. 75-86. d0i:10.1109/CGO0.2004.1281665

Edgar A. Le6n, Marc Joos, Nathan Hanford, Adrien Cotte, Tony Delforge, Frangois
Diakhaté, Vincent Ducrot, Ian Karlin, and Marc Pérache. 2021. On-the-Fly, Robust
Translation of MPI Libraries. In 2021 IEEE International Conference on Cluster
Computing (CLUSTER). 504-515. doi:10.1109/Cluster48925.2021.00026

SC ’25, November 16-21, 2025, St Louis, MO, USA

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua,
Fabio Petroni, and Percy Liang. 2024. Lost in the Middle: How Language Models
Use Long Contexts. Transactions of the Association for Computational Linguistics
12 (2024), 157-173. doi:10.1162/tacl_a_00638

LLVM. 2025. "Can I compile C or C++ code to platform-independent LLVM bit-
code?". https://llvm.org/docs/FAQ.html#can-i-compile-c-or-c-code-to-platform-
independent-llvm-bitcode Accessed: 2025-01-04.

Alberto Madonna and Tomas Aliaga. 2022. Libfabric-based Injection Solu-
tions for Portable Containerized MPI Applications. In 2022 IEEE/ACM 4th In-
ternational Workshop on Containers and New Orchestration Paradigms for Iso-
lated Environments in HPC (CANOPIE-HPC). 45-56. do0i:10.1109/CANOPIE-
HPC56864.2022.00010

Stefan Schaefer Martin Lischer. 2024. openQCD. https://luscher.web.cern.ch/
luscher/openQCD/ Accessed: 2025-01-04.

Pablo Antonio Martinez, Jackson Woodruff, Jordi Armengol-Estapé, Gregorio
Bernabé, José Manuel Garcia, and Michael F. P. O’Boyle. 2023. Matching Linear
Algebra and Tensor Code to Specialized Hardware Accelerators. In Proceedings
of the 32nd ACM SIGPLAN International Conference on Compiler Construction
(Montréal, QC, Canada) (CC 2023). Association for Computing Machinery, New
York, NY, USA, 85-97. doi:10.1145/3578360.3580262

Satoshi Matsuoka, Jens Domke, Mohamed Wahib, Aleksandr Drozd, and Torsten
Hoefler. 2023. Myths and legends in high-performance computing. The Interna-
tional Journal of High Performance Computing Applications 37, 3-4 (2023), 245-259.
doi:10.1177/10943420231166608 arXiv:https://doi.org/10.1177/10943420231166608
Balthasar Reuter Michael Lange, Willem Deconinck. 2025. CLOUDSC. https:
//github.com/ecmwf-ifs/dwarf-p-cloudsc Accessed: 2025-01-04.

MPICH. 2013. MPICH ABI Compatibility Initiative. https://www.mpich.org/abi/
Accessed: 2025-01-04.

Daniel Nichols, Harshitha Menon, Todd Gamblin, and Abhinav Bhatele. 2024. A
Probabilistic Approach To Selecting Build Configurations in Package Managers.
In SC24: International Conference for High Performance Computing, Networking,
Storage and Analysis. 1-13. doi:10.1109/SC41406.2024.00090

NVIDIA. 2025. The CUDA Compilation Trajectory. https://docs.nvidia.com/
cuda/cuda-compiler-driver-nvce/#the-cuda-compilation- trajectory Accessed:
2025-08-25.

NVIDIA. 2025. CUDA: Virtual Architectures. https://docs.nvidia.com/cuda/cuda-
compiler-driver-nvee/index.html#virtual-architectures Accessed: 2025-01-04.
NVIDIA. 2025. NVIDIA NGC Containers. https://www.nvidia.com/en-us/gpu-
cloud/ Accessed: 2025-01-04.

Open Containers Initiative (OCI). 2024. The OpenContainers Image Spec. https:
//specs.opencontainers.org/image-spec/ Accessed: 2025-01-04.

OFIWG. 2024. Open Fabric Interfaces. https://github.com/ofiwg/libfabric/tree/
v2.0.0 Accessed: 2025-01-04.

S. John Pennycook, Jason D. Sewall, Douglas W. Jacobsen, Tom Deakin, and Simon
MclIntosh-Smith. 2021. Navigating Performance, Portability, and Productivity.
Computing in Science & Engineering 23, 5 (2021), 28-38. d0i:10.1109/MCSE.2021.
3097276

PRACE. 2024. Unified European Applications Benchmark Suite. https://
repository.prace-ri.eu/git/UEABS/ueabs Accessed: 2025-01-04.

Reid Priedhorsky and Tim Randles. 2017. Charliecloud: unprivileged contain-
ers for user-defined software stacks in HPC. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(Denver, Colorado) (SC ’17). Association for Computing Machinery, New York,
NY, USA, Article 36, 10 pages. doi:10.1145/3126908.3126925

Howard P Pritchard, Thomas Naughton III, Amir Shehata, and David Bernholdt.
2023. Open MPI for HPE Cray EX Systems. In Proceedings of the Cray User Group
(CUG) Conference (Helsinki, Finland). https://cug.org/proceedings/cug2023_
proceedings/includes/files/pap140s2-file1.pdf

Mitsuhisa Sato, Yutaka Ishikawa, Hirofumi Tomita, Yuetsu Kodama, Tetsuya Oda-
jima, Miwako Tsuji, Hisashi Yashiro, Masaki Aoki, Naoyuki Shida, Ikuo Miyoshi,
Kouichi Hirai, Atsushi Furuya, Akira Asato, Kuniki Morita, and Toshiyuki
Shimizu. 2020. Co-Design for A64FX Manycore Processor and "Fugaku”. In SC20:
International Conference for High Performance Computing, Networking, Storage
and Analysis. 1-15. doi:10.1109/SC41405.2020.00051

Erik Schnetter. 2022. MPItrampoline. doi:10.5281/zenodo.6174409

Amir Shehata, Thomas Naughton, David E. Bernholdt, and Howard Pritchard.
2024. Bringing HPE Slingshot 11 support to Open MPL Concurrency and
Computation: Practice and Experience 36, 22 (2024), e8203. doi:10.1002/cpe.8203
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.8203

Nikolay A. Simakov, Matthew D. Jones, Thomas R. Furlani, Eva Siegmann, and
Robert J. Harrison. 2024. First Impressions of the NVIDIA Grace CPU Superchip
and NVIDIA Grace Hopper Superchip for Scientific Workloads. In Proceedings
of the International Conference on High Performance Computing in Asia-Pacific
Region Workshops (Nagoya, Japan) (HPCAsia "24 Workshops). Association for
Computing Machinery, New York, NY, USA, 36-44. doi:10.1145/3636480.3637097
Spack. 2022. Announcing public binaries for Spack. https://spack.io/spack-
binary-packages/ Accessed: 2025-01-04.

https://doi.org/10.1145/2807591.2807623
https://doi.org/10.1109/HUST.2014.8
https://github.com/ggml-org/llama.cpp
https://doi.org/10.1088/1742-6596/898/8/082021
https://doi.org/10.1088/1742-6596/898/8/082021
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1145/3173162.3173182
https://manual.gromacs.org/2025.2/install-guide/exotic.html
https://manual.gromacs.org/2025.2/install-guide/exotic.html
https://github.com/jeffhammond/mukautuva
https://doi.org/10.1145/3615318.3615319
https://doi.org/10.1145/3688351.3689152
https://collegeville.github.io/CW20/WorkshopResources/WhitePapers/heroux-willenbring-shende-coti-spear-et-al-E4S.pdf
https://collegeville.github.io/CW20/WorkshopResources/WhitePapers/heroux-willenbring-shende-coti-spear-et-al-E4S.pdf
https://doi.org/10.1109/MCSE.2024.3382154
https://doi.org/10.1109/MC.2022.3158437
https://doi.org/10.1109/SC.Companion.2012.81
https://doi.org/10.1109/SC.Companion.2012.81
https://llvm.org/devmtg/2011-09-16/
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/Cluster48925.2021.00026
https://doi.org/10.1162/tacl_a_00638
https://llvm.org/docs/FAQ.html#can-i-compile-c-or-c-code-to-platform-independent-llvm-bitcode
https://llvm.org/docs/FAQ.html#can-i-compile-c-or-c-code-to-platform-independent-llvm-bitcode
https://doi.org/10.1109/CANOPIE-HPC56864.2022.00010
https://doi.org/10.1109/CANOPIE-HPC56864.2022.00010
https://luscher.web.cern.ch/luscher/openQCD/
https://luscher.web.cern.ch/luscher/openQCD/
https://doi.org/10.1145/3578360.3580262
https://doi.org/10.1177/10943420231166608
https://arxiv.org/abs/https://doi.org/10.1177/10943420231166608
https://github.com/ecmwf-ifs/dwarf-p-cloudsc
https://github.com/ecmwf-ifs/dwarf-p-cloudsc
https://www.mpich.org/abi/
https://doi.org/10.1109/SC41406.2024.00090
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/#the-cuda-compilation-trajectory
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/#the-cuda-compilation-trajectory
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#virtual-architectures
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#virtual-architectures
https://www.nvidia.com/en-us/gpu-cloud/
https://www.nvidia.com/en-us/gpu-cloud/
https://specs.opencontainers.org/image-spec/
https://specs.opencontainers.org/image-spec/
https://github.com/ofiwg/libfabric/tree/v2.0.0
https://github.com/ofiwg/libfabric/tree/v2.0.0
https://doi.org/10.1109/MCSE.2021.3097276
https://doi.org/10.1109/MCSE.2021.3097276
https://repository.prace-ri.eu/git/UEABS/ueabs
https://repository.prace-ri.eu/git/UEABS/ueabs
https://doi.org/10.1145/3126908.3126925
https://cug.org/proceedings/cug2023_proceedings/includes/files/pap140s2-file1.pdf
https://cug.org/proceedings/cug2023_proceedings/includes/files/pap140s2-file1.pdf
https://doi.org/10.1109/SC41405.2020.00051
https://doi.org/10.5281/zenodo.6174409
https://doi.org/10.1002/cpe.8203
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.8203
https://doi.org/10.1145/3636480.3637097
https://spack.io/spack-binary-packages/
https://spack.io/spack-binary-packages/

SC ’25, November 16-21, 2025, St Louis, MO, USA

[72]

[73

[74

[75]

[76]

[77]

[78]

[79]

[80

(81

[82]

[83]

[84]

A

Andreas Stathopoulos and James R. McCombs. 2010. PRIMME: preconditioned
iterative multimethod eigensolver—methods and software description. ACM
Trans. Math. Softw. 37, 2, Article 21 (April 2010), 30 pages. doi:10.1145/1731022.
1731031

Laurie Stephey, Shane Canon, Aditi Gaur, Daniel Fulton, and Andrew J. Younge.
2022. Scaling Podman on Perlmutter: Embracing a community-supported con-
tainer ecosystem. In 2022 IEEE/ACM 4th International Workshop on Containers and
New Orchestration Paradigms for Isolated Environments in HPC (CANOPIE-HPC).
25-35. doi:10.1109/CANOPIE-HPC56864.2022.00008

Shinji Sumimoto, Toshihiro Hanawa, and Kengo Nakajima. 2024. MPI-Adapter2:
An Automatic ABI Translation Library Builder for MPI Application Binary Porta-
bility. In Proceedings of the International Conference on High Performance Com-
puting in Asia-Pacific Region Workshops (Nagoya, Japan) (HPCAsia "24 Work-
shops). Association for Computing Machinery, New York, NY, USA, 63-68.
doi:10.1145/3636480.3637219

Dmitrii Tolmachev. 2023. VKFFT-A Performant, Cross-Platform and Open-Source
GPU FFT Library. IEEE Access 11 (2023), 12039-12058. doi:10.1109/ACCESS.2023.
3242240

David Van Der Spoel, Erik Lindahl, Berk Hess, Gerrit Groenhof, Alan E. Mark,
and Herman J. C. Berendsen. 2005. GROMACS: Fast, flexible, and free. Journal
of Computational Chemistry 26, 16 (2005), 1701-1718. do0i:10.1002/jcc.20291
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.20291

Field G. Van Zee and Robert A. van de Geijn. 2015. BLIS: A Framework for
Rapidly Instantiating BLAS Functionality. ACM Trans. Math. Software 41, 3 (June
2015), 14:1-14:33. https://doi.acm.org/10.1145/2764454

James M. Willenbring, Sameer S. Shende, and Todd Gamblin. 2024. Providing
a Flexible and Comprehensive Software Stack Via Spack, an Extreme-Scale Sci-
entific Software Stack, and Software Development Kits. Computing in Science &
Engineering 26, 1 (2024), 20-30. doi:10.1109/MCSE.2024.3395016

Tong Xing, Antonio Barbalace, Pierre Olivier, Mohamed L. Karaoui, Wei Wang,
and Binoy Ravindran. 2022. H-Container: Enabling Heterogeneous-ISA Container
Migration in Edge Computing. ACM Trans. Comput. Syst. 39, 1-4, Article 5 (July
2022), 36 pages. doi:10.1145/3524452

Shulei Xu, Aamir Shafi, Hari Subramoni, and Dhabaleswar K. Panda. 2022. Arm
meets Cloud: A Case Study of MPI Library Performance on AWS Arm-based
HPC Cloud with Elastic Fabric Adapter. In 2022 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW). 449-456. do0i:10.1109/
IPDPSW55747.2022.00083

Xiaoli Yan, Nathaniel Hudson, Hyun Park, Daniel Grzenda, J. Gregory Pauloski,
Marcus Schwarting, Haochen Pan, Hassan Harb, Samuel Foreman, Chris Knight,
Tom Gibbs, Kyle Chard, Santanu Chaudhuri, Emad Tajkhorshid, Ian Foster, Mo-
hamad Moosavi, Logan Ward, and E. A. Huerta. 2025. MOFA: Discovering
Materials for Carbon Capture with a GenAl- and Simulation-Based Workflow.
arXiv:2501.10651 [cs.DC] https://arxiv.org/abs/2501.10651

Giinther Zéng], Daniel Reinert, Pilar Ripodas, and Michael Baldauf. 2015. The
ICON (ICOsahedral Non-hydrostatic) Modelling Framework of DWD and MPI-
M: Description of the Non-Hydrostatic Dynamical Core. Quarterly Journal of
the Royal Meteorological Society 141, 687 (2015), 563-579. do0i:10.1002/qj.2378
arXiv:https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.2378

Nannan Zhao, Vasily Tarasov, Hadeel Albahar, Ali Anwar, Lukas Rupprecht,
Dimitrios Skourtis, Arnab K. Paul, Keren Chen, and Ali R. Butt. 2021. Large-
Scale Analysis of Docker Images and Performance Implications for Container
Storage Systems. IEEE Transactions on Parallel and Distributed Systems 32, 4
(2021), 918-930. doi:10.1109/TPDS.2020.3034517

Alexandros Nikolaos Ziogas, Timo Schneider, Tal Ben-Nun, Alexandru Calotoiu,
Tiziano De Matteis, Johannes de Fine Licht, Luca Lavarini, and Torsten Hoefler.
2021. Productivity, portability, performance: data-centric Python. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis (St. Louis, Missouri) (SC "21). Association for Computing
Machinery, New York, NY, USA, Article 95, 13 pages. doi:10.1145/3458817.3476176

LLM Prompt to Discover Specialization Points

I will share a build file, and I would like you to identify all the
specialization points for an HPC program and the associated build
flags used to enable those features during the build process. Please
pay close attention to:

e Comments and messages within the build file, as they often
reveal the necessary flags.

e Functions like gmx_option_multichoice, which specify
build flags and options for libraries.

o Ensure libraries are correctly matched to their corresponding
build flags based on these functions.

M. Copik, E. Alnuaimi, A. Kamatar, V. Hayot-Sasson, A. Madonna, T. Gamblin, K. Chard, I. Foster, and T. Hoefler

e Option Commands: In some projects, build flags are provided
in option commands. Look at these commands to extract
the build flags correctly.

Full Build Flags Extraction: Ensure that the full build flags
are extracted, not just partial representations. For instance, if
aflag is defined as ~-DQE_ENABLE_CUDA=ON, extract the entire
flag with its value.

Distinguish Between Build Flags and Preprocessor Defini-
tions: Do not confuse preprocessor definitions (e.g., __CUDA,
__MPI) with actual build flags (e.g., ~-DQE_ENABLE_CUDA,
-DQE_ENABLE_MPI). Extract only the build flags that are ex-
plicitly defined in the build configuration.

Portability Frameworks: Some build systems use portability
frameworks like Kokkos. Pay attention to build flags like
-DKokkos_ENABLE_OPENMP, -DKokkos_ENABLE_PTHREAD,
and -DKokkos_ENABLE_CUDA.

Vectorization Libraries: Some projects use external
vectorization libraries like V4. Look for build flags
such as -DUSE_V4_ALTIVEC, -DUSE_V4_PORTABLE, and
-DUSE_V4_SSE.

Key Instructions:
1. Analyze Functions for Build Flags:

e Look for functions such as gmx_option_multichoice,
gmx_dependent_option, and option commands that define
build flags and their corresponding options.

e For example, the flag -DGMX_FFT_LIBRARY has options like
fftw3, mkl, and fftpack[built-in].

o Another example is -DGMX_GPU_FFT_LIBRARY with options
like cuFFT, VKFFT, c1FFT, rocFFT, and MKL. Match the library
names with the build flags from these function calls.

e Additionally, the flag -DGMX_GPU has options like CUDA,
OpenCL, SYCL, and HIP. Ensure these GPU backends are
matched correctly to their corresponding flags.

o For Kokkos, look for flags like ~-DKokkos_ENABLE_OPENMP,
-DKokkos_ENABLE_PTHREAD, and -DKokkos_ENABLE_CUDA.

2. Match Libraries to Flags:

e Libraries should be matched to their respective build flags
based on these function definitions.
e For example:
— If GMX_FFT_LIBRARY is set to fftw3, the build ﬂag is
-DGMX_FFT_LIBRARY=fftw3.
— If GMX_GPU_FFT_LIBRARY is set to cuFFT, the build flag is
-DGMX_GPU_FFT_LIBRARY=cuFFT.
— For vectorization, look for flags like -DUSE_V4_ALTIVEC,
-DUSE_V4_PORTABLE, and -DUSE_V4_SSE.

3. Match GPU Backends to GMX_GPU:

e Ensure that GPU backends (CUDA, OpenCL, SYCL, HIP,
METAL) are matched to the GMX_GPU flag based on the
gmx_option_multichoice function.

e For example:

- If GMX_GPU is set to CUDA, the build flag is
-DGMX_GPU=CUDA.

- If GMX_GPU is set to SYCL, the build flag is
-DGMX_GPU=SYCL.

https://doi.org/10.1145/1731022.1731031
https://doi.org/10.1145/1731022.1731031
https://doi.org/10.1109/CANOPIE-HPC56864.2022.00008
https://doi.org/10.1145/3636480.3637219
https://doi.org/10.1109/ACCESS.2023.3242240
https://doi.org/10.1109/ACCESS.2023.3242240
https://doi.org/10.1002/jcc.20291
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.20291
https://doi.acm.org/10.1145/2764454
https://doi.org/10.1109/MCSE.2024.3395016
https://doi.org/10.1145/3524452
https://doi.org/10.1109/IPDPSW55747.2022.00083
https://doi.org/10.1109/IPDPSW55747.2022.00083
https://arxiv.org/abs/2501.10651
https://arxiv.org/abs/2501.10651
https://doi.org/10.1002/qj.2378
https://arxiv.org/abs/https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.2378
https://doi.org/10.1109/TPDS.2020.3034517
https://doi.org/10.1145/3458817.3476176

Xaa$S Containers: Performance-Portable Representation With Source and IR Containers

e For Quantum ESPRESSO: Ensure that GPU backends like
CUDA are matched to their corresponding build flags, such
as ~DQE_ENABLE_CUDA, instead of preprocessor definitions
like __CUDA.

4. Consider Default Values and Dependencies:

o Identify the default libraries and how they are conditionally
set. For example:
— GMX_FFT_LIBRARY_DEFAULT is mkl if GMX_INTEL_LLVM is
set, otherwise fftw3.
— The GPU FFT library defaults vary based on the GPU
backend (e.g., cuFFT for CUDA, VKFFT for OpenCL).

5. Special Attention to FFT Libraries:

o Look for all flags related to FFT libraries like:
— -DGMX_FFT_LIBRARY
— -DGMX_FFT_LIBRARY_DEFAULT
— -DGMX_GPU_FFT_LIBRARY
e Extract not only the flag but also the corresponding library
it enables (e.g., fftw3, mkl, cuFFT).

6. Include Relevant Build Flags:

e Do not include preprocessor definitions generated internally.
Only include build flags explicitly defined in the file.

o Ensure that each build flag is extracted with its full definition,
including any assigned values.

Specifically, identify the following:

o Does the build system support GPU builds? (For example, the
presence of a flag like BUILD_GPU indicates GPU support.)

e What GPU backends does it support (e.g. CUDA, HIP, SYCL,
OpenCL)? Are these backends enabled or disabled by default?
What is their minimum version, if specified?

e What parallel programming libraries (e.g. MPL, OpenMP,
Pthread, thread-MPI, OpenACC) are supported, and are they
enabled or disabled by default? What is their minimum ver-
sion, if specified?

e What linear algebra libraries (e.g. BLAS, LAPACK, SCALA-
PACK, MKL/oneMKL) does the build system use, and under
which conditions? What are the default libraries used in the
build process?

e What Fast Fourier Transform libraries (e.g. FFTW, fftpack,
MKL/oneMKL, cuFFT, vKkFFT, clIFFT, rocFFT) does the build
system use? What library is built-in? Are there specific de-
pendencies for the library to be used (for example, they must
be used with a certain GPU backend or parallel library)?
Are they enabled or disabled by default? For the build-flags,
look for flags defined via gmx_option_multichoice such as
-DGMX_FFT_LIBRARY, -DGMX_FFT_LIBRARY_DEFAULT,
-DGMX_GPU_FFT_LIBRARY.

o What other external libraries are used, what versions are
specified, and what are their dependencies? List all external
libraries and the conditions for their use.

e What other compiler flags are supported?

o Are there build flags used to optimize the performance of
the program? (e.g., auto-tuning, team reduction, hierarchical
parallelism, accumulators, qunatization, batch size, force use
of custom matrix multiplications)

SC ’25, November 16-21, 2025, St Louis, MO, USA

e Which compilers are supported, and what are the minimum
versions required?

e What architectures does the system support?

e Does it support SIMD vectorization, and what vectorization
levels are supported? find the build flag for each supported
vectorization level.

e What is the minimum version required for the build system?
Is it a CMake or Make build system?

o Are there any libraries that require internal builds?
If so, name them and provide the build flags (e.g.
-DGMX_BUILD_OWN
_FFTW, DBUILD_INTERNAL_KOKKOS).

The answer should be provided as a JSON structure
adhering to the specified schema, with keys including
gpu_build, gpu_backends, parallel_programming_libraries,
linear_algebra_libraries, fft_libraries,
other_external_libraries, optimization_build_flags,
compiler_flags, compilers, architectures,
simd_vectorization, and build_system, internal_build. The
build_flag value for each feature should be the flag itself (e.g.,
-DGMX_SIMD, -DGMX_GPU, -DQE_ENABLE_CUDA, -DQE_ENABLE_MPI,
-DKokkos_ENABLE_OPENMP, -DUSE_V4_ALTIVEC) without any
surrounding text. Do not include any preprocessor definitions
that are generated internally. The response must be a valid JSON
structure; do not include any introductory or explanatory text.

Here is the build file: {file_content}

JSON output schema. Use this JSON schema to format your
response but do not include it in the output: { schema}

B JSON Schema for Specialization Points

{
"$schema": "http://json-schema.org/draft-07/schema#",
"type": "object",
"properties": {
"gpu_build": {
"type": "object",
"properties": {
"value": {
"type": "boolean"
1,
"build_flag": {
"type": ["string", "null"]
}
3,
"required": ["value", "build_flag"]
3,
"gpu_backends": {

"type": "object",
"additionalProperties": {
"type": "object",

"properties": {
"used_as_default": {
"type": "boolean"
3,
"build_flag": {
"type": ["string", "null"]
1,
"minimum_version": {
"type": ["string", "null"]
}
3,
"required": ["used_as_default", "build_flag",
"minimum_version"]
3
}

"parallel_programming_libraries": {

SC ’25, November 16-21, 2025, St Louis, MO, USA M. Copik, E. Alnuaimi, A. Kamatar, V. Hayot-Sasson, A. Madonna, T. Gamblin, K. Chard, I. Foster, and T. Hoefler
"type": "object", "required": ["version", "used_as_default",
"additionalProperties": { < "conditions", "build_flag"]

"type": "object", 3
"properties": { 3,
"used_as_default": { "compiler_flags": {
"type": "boolean" "type": "array",
}, "items": {
"build_flag": { "type": "string"
"type": ["string", "null"] }
3, 3,
"minimum_version": { "optimization_build_flags": {
"type": ["string", "null"] "type": "array",
b "items": {
3, "type": "string"
"required": ["used_as_default", "build_flag", 3
< "minimum_version"] 3,
3} "compilers": {
}, "type": "object",
"linear_algebra_libraries": { "additionalProperties": {
"type": "object", "type": "object",
"additionalProperties": { "properties": {
"type": "object", "minimum_version": {
"properties": { "type": "string"
"used_as_default": { 3
"type": "boolean" 3,
T, "required": ["minimum_version"]
"build_flag": { 3
"type": ["string", "null"] 3,
3, "architectures": {
"condition": { "type": "array",
"type": ["string", "null"] "items": {
} "type": "string"
3, }
"required": ["used_as_default", "build_flag", 3,
< "condition"] "simd_vectorization": {
3 "type": "object",
3}, "additionalProperties": {
"FFT_libraries": { "type": "object",
"type": "object", "properties": {
"additionalProperties": { "build_flag": {
"type": "object", "type": ["string", "null"]
"properties": { 3},
"built-in": { "default": {
"type": "boolean" "type": "boolean"
3, }
"used_as_default": { 3,
"type": "boolean" "required": ["build_flag", "default"]
3, }
"dependencies": { 3,
"type": ["string", "null"] "build_system": {
3, "type": "object",
"build_flag": { "properties": {
"type": ["string", "null"] "type": {
} "type": "string",
3, "enum": ["cmake", "make", "undetermined"]
"required": ["used_as_default", "condition", 3,
<> "puild_flag"] "minimum_version": {
} "type": "string"
3, }
"other_external_libraries": { 3,
"type": "object", "required": ["type", "minimum_version"]
"additionalProperties": { 3,
"type": "object", "internal_build": {
"properties": { "type": "object",
"version": { "properties": {
"type": "string" "library_name": {
3, "type": "string"
"used_as_default": { Y,
"type": "boolean" "build_flag": {
3, "type": ["string", "null"]
"conditions": { 3
"type": "string" 3,
3, "required": ["library_name", "build_flag"]
"build_flag": { 3}
"type": ["string", "null"] 3,
3} "required": [
3, "gpu_build",

"gpu_backends",

Xaa$S Containers: Performance-Portable Representation With Source and IR Containers

"parallel_programming_libraries",
"linear_algebra_libraries",
"FFT_libraries",
"other_external_libraries",
"compiler_flags",
"optimization_build_flags",
"compilers",
"architectures",
"simd_vectorization",
"build_system",
"internal_build"
]

"additionalProperties": false

SC ’25, November 16-21, 2025, St Louis, MO, USA

	Abstract
	1 Introduction
	2 State of HPC Software
	2.1 Specialization Points
	2.2 Portability Layers

	3 HPC Specialization in XaaS
	3.1 HPC Specialization
	3.2 Specialization Discovery

	4 XaaS Containers
	4.1 Source Containers
	4.2 IR Containers
	4.3 IR Containers Pipeline

	5 XaaS Containers in Practice
	5.1 Challenges
	5.2 Compatibility with OCI Containers

	6 Evaluation
	6.1 Benchmarking Setup
	6.2 Specialization Discovery
	6.3 Performance Portability
	6.4 IR Containers
	6.5 Network Performance

	7 Related Work
	8 Discussion
	8.1 Dependency Management
	8.2 Installation

	9 Conclusions
	Acknowledgments
	References
	A LLM Prompt to Discover Specialization Points
	B JSON Schema for Specialization Points

