
SeBS-Flow: Benchmarking Serverless Cloud Function
Workflows

Larissa Schmid
Karlsruhe Institute of Technology

Germany

Marcin Copik
ETH Zurich
Switzerland

Alexandru Calotoiu
ETH Zurich
Switzerland

Laurin Brandner
ETH Zurich
Switzerland

Anne Koziolek
Karlsruhe Institute of Technology

Germany

Torsten Hoefler
ETH Zurich
Switzerland

Abstract
Serverless computing has emerged as a prominent paradigm,
with a significant adoption rate among cloud customers.
While this model offers advantages such as abstraction from
the deployment and resource scheduling, it also poses limi-
tations in handling complex use cases due to the restricted
nature of individual functions. Serverless workflows address
this limitation by orchestrating multiple functions into a
cohesive application. However, existing serverless workflow
platforms exhibit significant differences in their program-
ming models and infrastructure, making fair and consistent
performance evaluations difficult in practice. To address this
gap, we propose the first serverless workflow benchmarking
suite SeBS-Flow, providing a platform-agnostic workflow
model that enables consistent benchmarking across vari-
ous platforms. SeBS-Flow includes six real-world application
benchmarks and four microbenchmarks representing dif-
ferent computational patterns. We conduct comprehensive
evaluations on three major cloud platforms, assessing per-
formance, cost, scalability, and runtime deviations. We make
our benchmark suite open-source, enabling rigorous and
comparable evaluations of serverless workflows over time.
Implementation: https://github.com/spcl/serverless-benchmarks
Artifact: https://github.com/spcl/sebs-flow-artifact

CCS Concepts: • Computer systems organization →
Cloud computing; • Networks → Cloud computing; •
Software and its engineering→ Software performance;
• General and reference→ Performance; Metrics; Measure-
ment; Evaluation.

Keywords: benchmark, serverless, function-as-a-service, faas,
workflow, orchestration, serverless DAG

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
EuroSys ’25, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1196-1/2025/03
https://doi.org/10.1145/3689031.3717465

ACM Reference Format:
Larissa Schmid, Marcin Copik, Alexandru Calotoiu, Laurin Brand-
ner, Anne Koziolek, and Torsten Hoefler. 2025. SeBS-Flow: Bench-
marking Serverless Cloud Function Workflows. In Twentieth Euro-
pean Conference on Computer Systems (EuroSys ’25), March 30-April
3, 2025, Rotterdam, Netherlands. ACM, New York, NY, USA, 19 pages.
https://doi.org/10.1145/3689031.3717465

1 Introduction
Serverless computing gained major adoption in the indus-
try [29, 47], with 50-70% of cloud customers using serverless
functions and containers [25]. In the Function-as-a-Service
(FaaS) programming model, developers implement stateless
functions and invoke them through a REST interface. The ac-
tual function deployment and resource scheduling becomes
the responsibility of the cloud operator: Developers are no
longer concerned with managing their applications and are
charged only for resources used to handle function invoca-
tions. While the primitiveness of FaaS can be an important
benefit [29], it is also a major drawback: a single function is
insufficient to cover all use cases. Functions must be com-
posed to build larger applications, keep the design modular,
or use pre-defined and standardized functions, e.g., for ma-
chine learning inference.

Serverless workflows allow to chain and aggregate multi-
ple functions into a single application by creating a graph
of functions and automating the execution of a sequence
through control and data dependencies. They include control-
flow components - conditions and loops - which allows them
to represent full computations such as multi-stage machine
learning pipelines. Developers implement functions and de-
fine the workflow structure in a cloud-specific format. Cloud
operators then control the workflow invocation and orches-
tration, retaining the ability to optimize resource consump-
tion, e.g., through optimized function placement, oversub-
scription, targeting idle resources, and co-locating functions
that depend on each other [10, 22, 48].
Workflows have been adopted by the most popular com-

mercial cloud platforms [1, 2, 4] and make up almost a third
of serverless applications [27]. However, just like every FaaS
platform is different [23], serverless workflows are quite
distinct from each other. Not only the different APIs and

https://orcid.org/0000-0002-3600-6899
https://orcid.org/0000-0002-7606-5519
https://orcid.org/0000-0001-9095-9108
https://orcid.org/0009-0005-8251-9117
https://orcid.org/0000-0002-1593-3394
https://orcid.org/0000-0002-1333-9797
https://github.com/spcl/serverless-benchmarks
https://github.com/spcl/sebs-flow-artifact
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3689031.3717465
https://doi.org/10.1145/3689031.3717465

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Schmid et al.

Benchmarks Platforms

Papers Total M
icr
o

W
eb
ap
p

M
ul
tim

ed
ia

Da
ta
Pr
oc
.

M
L

Sc
ien

tifi
c

AW
S

Az
ur
e

GC
P

Ot
he
r

Re
se
ar
ch

Ar
tif
ac
t?

Analysis 14 7 1 4 2 4 2 8 4 3 3 3 5
Optimization 17 8 3 4 4 5 6 9 0 2 2 7 4
Application 18 1 4 1 4 1 7 15 5 5 2 3 9
Prog. Model 23 10 6 5 8 11 8 10 3 1 2 16 11

Table 1. Analysis of 72 research papers on serverless work-
flows with benchmarks.

incompatible graph syntax and format complicate the soft-
ware development process, but also fundamentally different
programming models: workflow platforms diverge in the
statelessness of functions and the static nature of graph defi-
nition (Section 2.1). Even though FaaS platforms might seem
like the same product, they offer drastically different per-
formance, reliability, and cost [23, 50, 73]. With workflows
built as an orchestration of functions, their functionality and
performance is affected by both orchestration service and
existing differences in the underlying compute infrastruc-
ture. As such details are hidden, an information gap between
developers and providers arises [74]. Thus, the software de-
velopers need to conduct extensive performance testing of
the cloud services to estimate the performance of their work-
loads and understand platform limitations up-front, as choos-
ing a certain platform implies significant lock-in [9], with
only limited support for testing [47].

We propose the first serverless workflows benchmark-
ing suite to support software developers and the quickly
growing research activity in serverless workflows. Our work
provides a baseline and benchmarking methodology for eval-
uating and comparing the performance of workflows on
different platforms, highlighting their strengths and weak-
nesses. We examined 72 different research contributions
to determine the similarity of their evaluation baselines
(Table 1). We found that publications use different appli-
cations to benchmark the performance of new ideas, do not
cover the same classes of workloads, and do not always
compare against the same subset of platforms. Without a
consistent baseline, comparing research results and estab-
lishing the most promising ideas becomes impossible [65].
Benchmarking suites and systems have been proposed for
FaaS [23, 43, 50, 68], but a benchmarking suite for serverless
workflows has remained an open problem. A comprehensive,
consistent, platform-independent, and portable benchmark-
ing suite will support the ongoing research work [54, 65] and
enable developers to differentiate between alternative solu-
tions. We establish a unified and portable workflow model
to abstract away the differences between different platforms
(Section 3). We design the benchmarking suite (Section 4)
and include six workflow benchmarks based on solutions
common in research and industry (Section 5). Applications

Platform Prog. Model Model Flexibility Max. Parallelism Interface
AWS State Machine Static 40 JSON

Azure Orchestrator
Function Dynamic Unlimited Durable

Functions
Google State Machine Semi-dynamic 20 JSON/YAML

Table 2. Key features of serverless workflows platforms.

are implemented in our unified workflow model, providing
an identical benchmark structure for each platform. We eval-
uate expressiveness and overhead of our model (Section 6)
and use our benchmarking suite to comprehensively evalu-
ate the three major cloud workflow services (Section 7). We
follow the FAIR principle [78] and release our benchmark
suite on an open-source license, enabling automatic repeti-
tion of our experiments, allowing reproducible results, and
measuring performance changes in clouds over time. We
make the following contributions:

• We introduce a platform-agnostic workflow definition, au-
tomatically transcribe the application into a cloud’s pro-
prietary presentations, and enable developers to run near
identical workloads on different systems.

• We propose a benchmark suite with six real-world appli-
cation benchmarks and four microbenchmarks.

• We extensively analyze performance, cost, scaling, and
stability of three major cloud platforms.

2 Background
Serverless workflows introduce multiple new challenges to
the software development process due to differences in the
workflows platforms (Section 2.1). To model workflows, we
use the formalism and semantics of Petri Nets (Section 2.2).

2.1 Developing Serverless Workflows
While software engineers are increasingly interested in server-
less applications [76], they encounter a wide range of chal-
lenges while developing them, with the first questions about
the different capabilities of the platforms arising before start-
ing the implementation [63, 76]:Workflows have been adopted
by all major cloud providers, but their implementations are
significantly different in capabilities (Table 2). We focus on
AWS Step Functions, Google Cloud Workflows, and Azure
Durable Functions, as they play a leading role.
The most important change is the programming model,

affecting the implementation of the workflows, with un-
known implications to workflow performance, an important
property for developers [76]. As the different implementa-
tions are all provider-specific, moving workflows from one
platform to another is complicated, causing vendor lock-
in [63]. Azure uses the programming model of Durable Func-
tions [20], where the workflow definition is encoded within
a regular program structure of an orchestrator. The graph
of functions is expressed using a mainstream programming

SeBS-Flow: Benchmarking Serverless Cloud Function Workflows EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

tasks = []
for i in range(4):
tasks.append(context.call_activity("process", i)

res = yield context.task_all(parallel_tasks)

(a) Azure Durable Functions
"assign_array": {

"assign": [
{"array": [0, 1, 2, 3]}]

},
"process": {

"call":"exp.exec.map",
"args":{
"workflow_id":"map",
"arguments":"${array}"

},
"result":"res"

}
"separate map-workflow:"
"main": {
"params":["elem"],
"steps":[

{
"map":{
"call":"http.post",
"args":{
"url":"google.process",
"body":{
"payload":"${elem}"

}
},
"result":"elem" }

},
{ "ret": {

"return":
"${elem.body}" } }

] }

(b) Google Cloud Workflows

"init": {
"Type": "Pass",
"Result": "States.Array(0,

1, 2, 3)",
"ResultPath": "$.array",
"Next": "map"

},
"map": {
"Type": "Map",
"ItemsPath": "$.array",
"Parameters": {
"payload.$":
"$$.Map.Item.Value"

},
"Iterator": {
"StartAt": "process",
"States": {
"process": {
"Type": "Task",
"Resource": "arn:proc",
"Parameters": {
"payload.$":
"$.payload"

},
"End": true

}
}

},
"ResultPath": "$.res",
"End": true

}

(c) AWS Step Functions

Figure 1. Workflow invoking function process in parallel,
with inputs from zero to three and results written to res.

language such as Python, as seen in the example of map-
ping the elements of input values array to invocations of the
process function (Figure 1a). The computation model is built
on top of stateless activity and stateful entity functions. On
the other hand, developers need to define their workflow
using a state machine on Google Cloud Workflows and AWS
Step Functions. The workflow consists of states representing
computations and transitions connecting them. The main
states include function invocations, while supplementary
states encode control flow. State languages defined with a
syntax based on JSON and YAML files can be limited, ver-
bose, and consequently difficult to debug, with missing tool
support for testing and debugging already being a problem
for developers [47, 75]. The example implementations in Fig-
ure 1 demonstrate how simple code snippets can become
much more verbose when compared to a native implementa-
tion of orchestrator. In Durable Functions, implementing the
same behavior requires less work and the single-source im-
plementation is more readable and easier to debug. However,
the static form of a state machine gives the cloud provider

Platform Compute time Invocation Orchestration
AWS $0.0000167/GBs $0.20 per 1M $0.025

GCP $0.0000025/GBs $0.40 per 1M $0.01 (internal),
$0.025 (external)

Azure $0.000016/GBs $0.20 per 1M $0.000355
Table 3. Pricing according to vendors’ documentation [12–
14, 35, 36]. Orchestration per 1000 transitions.

deep knowledge of the functions executed and their order,
allowing for optimizations.

The programming model also has an impact on the billing
system. In addition to the cost of executing functions within
a workflow, cloud providers charge users for workflow or-
chestration. In Azure, users have to pay for the duration of
the orchestration function. In AWS and Google Cloud, users
are charged per each transition of the state machine. Table 3
shows an overview. Note that we have to estimate the or-
chestration cost on Azure as billing is at the granularity of
complete workflows only.

With the different platform-specific implications of imple-
menting a workflow, it is difficult for developers to predict
workflow costs on a given platform. To efficiently support
them during the development of serverless workflows, we
need a higher-level construct for workflows to abstract away
the differences between platforms, enabling evaluation of
the same workflow on different platforms and therefore fa-
cilitating informed decisions about the right platform.

2.2 Workflow Nets
Webase ourmodel onworkflownetswith data (WFD-nets) [70].
They are an extension of Petri nets, usually used for business
workflows. Basing the model on Petri Nets is only one possi-
bility among alternatives such as state machines. We opt for
Petri Nets due to their advantages as modeling formalism,
such as their graphical nature, formal semantics, and analysis
defined. Petri nets [55] describe the flow of information and
control in concurrent and asynchronous systems. A Petri
net is a triple 𝑇 = ⟨𝑃,𝑇 , 𝐹 ⟩ consisting of places P, a finite
set of transitions T, and a set of arcs 𝐹 ⊆ (𝑃 ×𝑇) ∪ (𝑇 × 𝑃).
It is a workflow net iff there is a single source place start
without incoming arcs, a single sink place without outgoing
arcs, and every node is on a path from source to sink [69].
WFD-nets [69] are a tuple ⟨𝑃,𝑇 , 𝐹, 𝐷, 𝑟,𝑤,𝑑, 𝑔𝑟𝑑⟩, consisting
of a Petri Net 𝑁 = ⟨𝑃,𝑇 , 𝐹 ⟩ and additionally containing a set
𝐷 of data elements on top as well as read, write, and destroy
operations on these data elements. Moreover, the guarding
function 𝑔𝑟𝑑 : 𝑇 → 𝐺𝐷 can assign guards to transitions.
We show an example in Figure 2 where 𝑡1 writes data to
𝑥 , while 𝑡2 and 𝑡3 read from x. Dynamic system properties
are modeled using tokens that are routed through the net.
A transition is enabled if tokens are in all its input places
•𝑡 = {𝑝 | (𝑝, 𝑡) ∈ 𝐹 }. When it fires, it removes the token(s)

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Schmid et al.

t2
r: x; w: y

t3
r: x; w: z

t1
w: x

start

p1

p2

p3

end

Transition place

p4

t4
r: y, z; w: a

Figure 2. WFD-net with transitions 𝑇 = {𝑡1, 𝑡2, 𝑡3, 𝑡4} and
places 𝑃 = {𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑}

TaskTask

Map

start

c0

 map1
r: x1
w: y1

 map2
r: x2
w: y2

 process
r: y1, y2
w: z1

 generate
r: input
w: x1, x2

Enter
Phase 1

c0

Enter
Phase 2

c0

Enter
Phase 3

c0

endFunction transition Coordinator transition place

Figure 3. Workflow using our model based on WFD-nets.

from its input place(s) and routes them to its output place(s)
𝑡• = {𝑝 | (𝑡, 𝑝) ∈ 𝐹 }. In our example, 𝑡1 will be enabled if
there is a token in 𝑠𝑡𝑎𝑟𝑡 and put tokens to 𝑝1 and 𝑝2, which
will enable 𝑡2 and 𝑡3.

The platforms orchestrating serverless workflows that im-
pose time limits on execution and schedule functions. More-
over, it is important to model how in- and output data is
passed between functions. Modeling both of these is cur-
rently not supported by WFD-nets.

3 Serverless Workflows Model
We define a model for serverless workflows that allows devel-
opers to implement and analyze a workflow application in-
dependent of the platform it will run on, alleviating provider
lock-in. The model should encode the control flow and task
parallelism, and clearly display the flow of data between func-
tions, aiding developers in detecting scalability bottlenecks
and errors, e.g., inconsistent or missing data. Therefore, we
define our model on top of WFD-nets [69] (cf. Section 2.2)
and extend them to be able to express the orchestration by
the platform and how data is passed between functions.

3.1 Transitions
The set of transitions 𝑇 is composed of two types, the co-
ordinators𝐶 and serverless functions 𝑆𝐹 ,𝑇 = 𝐶∪𝑆𝐹 . Figure 3
shows an examplewith𝐶 = ⟨𝑐0, 𝐸𝑛𝑡𝑒𝑟𝑃ℎ𝑎𝑠𝑒1𝑐0, 𝐸𝑛𝑡𝑒𝑟𝑃ℎ𝑎𝑠𝑒2𝑐1⟩
and 𝑆𝐹 = ⟨𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒,𝑚𝑎𝑝1,𝑚𝑎𝑝2, 𝑝𝑟𝑜𝑐𝑒𝑠𝑠⟩.
A function transition 𝑠 𝑓 ∈ 𝑆𝐹 represents the execution

of a serverless function. All function transitions that can
run in parallel without any precedence dependencies and
their immediate predecessor and successor places make up a
workflow phase. There are different possible token routing
constructs within one phase of the workflow: A task phase
is a sequential routing, consisting of one function transition
only. For parallel routing, there are two alternatives: First,
a parallel phase can consist of any number of sub-phases
that will be executed concurrently. Second, the map phase:

Similar to the parallel phase, it can consist of any number
of sub-phases, but each sub-phase is executed concurrently
on different elements of an input array. Figure 3 shows an
example: The map functions compute 𝑦𝑖 = map (𝑥𝑖) simul-
taneously for all 𝑖 . A switch phase uses conditional routing
based on values of data by annotating guarding functions to
transitions.

The first transition of a workflow in our model is always a
Coordinator 𝑐 ∈ 𝐶 that initializes the workflow and schedules
functions for execution. Additional coordinator transitions
take place between phases, meaning that the coordinator
awaits the termination of the currently running functions
and afterwards schedules the functions of the next phase,
explicitly modeling the orchestration of the workflow by the
platform. For readability, we do not show the coordinator
transitions when they can be skipped while preserving the
control flow between function transitions, i.e., whenever a
sequential phase is the next phase. This is because the se-
quential function already serves the purpose of the AND-join
otherwise realized by the coordinator transition. In Figure 3,
this means we can leave out all coordinator transitions after
the initial 𝑐0 transition.

3.2 Resource Annotations
Data labeling functions indicate the required inputs and pro-
vided outputs of a transition. However, for the performance
of serverless workflows, it is important to know where the
data resides and how it is provided. Therefore, we extend the
notation of WFD-nets by annotating how the data is passed
using the following resource annotations:

• Object storage. Data is saved in cloud storage in
the same region. While providing high capacity, it suffers
from limited I/O bandwidth and high latency.

• NoSQL. Data stored in NoSQL key-value storage
provides low-latency data storage.

• Invocation Payload. Protocols such as HTTP and
gRPC can transfer small input data. However, the exact
size limit is subject to the protocol and platform.

• Transparent. The type of transmission used when
returning a payload is up to the provider and can change
given the payload size.

• Reference. Some functions only need the reference
to an object in the object storage rather than the object
itself.

Formally, we define the set of resource annotations 𝐴 =

{𝑜, 𝑛, 𝑝, 𝑡, 𝑟 } as additional element of the tuple of a WFD-net,
with 𝑜 representing data passing via the object storage, 𝑛
via NoSQL, 𝑝 via the invocation payload, 𝑡 transparently,
and 𝑟 via reference. We define the corresponding resource
annotation functions for reading and writing data as 𝑟𝑎 and
𝑟𝑤 as follows and also add them to the tuple of a WFD-net:

ra : {(𝑡, 𝑑) ∈ 𝑇 × 𝐷 | 𝑑 ∈ 𝑟 (𝑡)} → 𝐴

SeBS-Flow: Benchmarking Serverless Cloud Function Workflows EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

rw : {(𝑡, 𝑑) ∈ 𝑇 × 𝐷 | 𝑑 ∈ 𝑤 (𝑡)} → 𝐴

This means that each pair of a transition and a data ele-
ment (𝑡, 𝑑), with 𝑑 being read or written by 𝑡 , respectively,
is assigned a resource annotation 𝑎 ∈ 𝐴. By adding resource
annotations, we do not change the behavior of the WFD-
net. However, we enable checking the consistency of data
accesses, for example, if the same data object is written and
read using the same resource annotation.
We annotate data location in workflows using the respec-
tive icon and show an example in Figure 3. The function
generate receives a payload via an invocation payload and
stores its output on the object storage. The map functions
each receive an element of the array, process it, and return
their resulting elements 𝑦1 and 𝑦2 through a protocol de-
cided by the cloud provider. Once both map functions have
returned, the process function receives 𝑦1 and 𝑦2 as input
and, finally, uploads the final result 𝑧 of the workflow to the
object storage.

4 Workflows Benchmark Suite
We now present the design and implementation of SeBS-
Flow1. To enable reliable and fair comparison of various
workflow platforms, we need to execute the same bench-
mark implementation on many platforms. However, the plat-
forms exhibit vast differences in the programming model
and API of their workflow services (Section 2.1). Thus, we
define a platform-agnostic workflow definition (Section 4.1)
based on our workflow model (Section 3). Then, we propose
platform-specific generators that transcribe workflows to
the respective proprietary definition of the desired platform
(Section 4.2). We add the workflow representation and im-
plementation to a serverless benchmark suite (Section 4.3).

4.1 Platform-Agnostic Workflow Definition
Our workflow model encodes the application as Petri Net
(cf. Section 3). To define workflows in SeBS-Flow conform-
ing to our model, we use a JSON syntax. Every phase has
a type, relating to one of the available routing constructs
(cf. Section 3.1). Coordinator transitions encode the order
of phases, represented by the next field of phases that de-
scribes the consecutive step in the workflow. The next field
refers to the phase name to be executed after, and the work-
flow terminates if this field is not set. Each phase receives
the output payload of the previous function as input. This
means that function implementations need to conform to
the resource annotations as defined in the workflow model
and download and upload data as needed accordingly. We
encode the different phases as follows:
Task. A task executes a single serverless function, constitut-
ing a sequential routing. Listing 4a shows an example with
the compute_phase executing the function compute.

1An extended definition and discussion of benchmarks can be found in the
Master thesis [5].

"compute_phase": {
"type": "task",
"func_name": "compute"

}

(a) Task Statement.
"process_names": {
"type": "map",
"array": "customers",
"root": "shorten",
"next": "list_emails",
"states": {
"shorten": {
"type": "task",
"func_name": "short"

}
}

}

(b) Map Statement.

"root": "generate_phase",
"states": {
"generate_phase": {
"type": "task",
"func_name": "generate",
"next": "map_phase" },

"map_phase": {
"type": "map",
"array": "x",
"root": "map",
"next": "process_phase",
"states": {
"map": {
"type": "task",
"func_name": "map" } } },

"process_phase": {
"type": "task",
"func_name": "process"

}
}

(c) Workflow from Figure 3.

Figure 4. Workflow definition language: a portable specifi-
cation of control-flow and data dependencies.

Map. The map phase is a parallel routing construct and con-
currently executes the given states one after another on
each element of the given array and returns an array again.
The phase can define common_parameters from the running
variable that will be passed in addition to the array element.
Listing 4b shows an example with the process_names phase:
for each element of customers, the function short is exe-
cuted concurrently. Only after all functions have terminated,
the coordinator will transition to the next phase, which in
this case is list_emails.
Loop. The loop phase is similar to map but traverses the
given input array sequentially. Thus, loop encodes tasks that
cannot be parallelized due to existing dependencies.
Repeat. A repeat phase executes a function a given number
of times. This syntactic sugar eases modeling a chain of tasks.
Switch. The switch phase is a conditional routing, deciding
the next phase dynamically at runtime based on the given
condition. The different cases are evaluated after another,
with the first one fulfilling the condition being executed.
Parallel. This higher-level phase corresponds to a parallel
routing and executes sub-workflows, consisting of any of
the phases, concurrently.
We show an example of a complete workflow definition

in Listing 4c, encoding the same workflow as shown in Fig-
ure 3. The root entry specifies the name of the phase that
should be executed first, in this case the generate_phase.
The states entry then contains all phases of the workflow.
As mentioned above, each phase receives the output payload
of the previous function as input. Therefore, the data move-
ment is encapsulated in the functions and not controlled
by the workflow orchestration. Only in the case of the map
phase, we explicitly specify which array is used for distribut-
ing its elements to single functions. The level of parallelism

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Schmid et al.

is then decided dynamically at runtime depending on the
size of the given array.

4.2 Platform-Specific Transcription
We map the six phases building a serverless workflow to
different features of the modeling language on each plat-
form. We evaluate the overhead introduced by necessary
adaptations to platforms in Section 6.

4.2.1 AWS. The most notable difficulty when transcribing
our definition to the state machine definition of AWS Step
Functions is the loop phase. Step Functions do not inherently
support sequential array iteration. Their official documen-
tation suggests using an additional serverless function that
iterates over a given range [11], which is inefficient. Thus,
we use the AWS map state and configure it to traverse the
given array sequentially, yielding the semantics of a loop. A
downside of this approach is that the input to each function
is the same, i.e., consecutively executed functions can ob-
serve the results of computations of their predecessors only
if uploaded to the object storage.

4.2.2 Google Cloud. Google Cloud Workflows do not na-
tively support a task type. Instead, the recommended ap-
proach for invoking Cloud Functions [34] is to create a state
performing a POST request and providing the trigger URL
of the desired function as input. However, this requires ad-
ditional states for each task and map to parse the HTTP
response of a function and assign results. Moreover, the par-
allel map execution accepts only other workflows and not
states, which requires creating another sub-workflow, even if
it contains only a single function to be invoked. Finally, there
is no mechanism for passing additional arguments to a map
function, which is necessary for us to track measurements.
As a workaround, the input array is zipped together with an
array consisting of the additional parameter passed by the
benchmarking infrastructure.

4.2.3 Azure. Azure uses the dynamic model of Durable
Functions instead of state machines. There, we upload our
workflow definition together with the function code. The
user-provided orchestrator parses the definition as input,
decodes our definition, and executes it by spawning new
function executions.

4.3 Benchmark Suite
We follow standard design practices to build a new bench-
mark suite: it should be relevant, extensible, easy to use, and
reproducible [17, 23, 39, 72]. Our suite is relevant as we in-
clude applications representing a variety of workloads in
the industry and academia (Section 5). The implementation
is based on an abstract workflow definition and can be ex-
tended to new platforms by implementing a single interface
that transcribes our model definition to the new platform. To

fulfill the two remaining criteria, we build our implementa-
tion upon SeBS [23], an established benchmark suite for FaaS:
Benchmarks must be easy to deploy and execute to ensure
their self-validation [72]. Integration into a maintained and
up-to-date platform helps integrating new developments
of serverless platforms continuously and avoids pushing
this task to the end user. SeBS-Flow is multi-platform, sup-
ports automatic deployment of functions to the cloud, and
integrates with services like storage and cloud logging, al-
lowing developers to focus on the actual implementation
rather than specifics of cloud providers, which can be time-
consuming [21, 59].
Serverless functions need cloud storage to access data

and retain state across invocations. To that end, SeBS au-
tomatically manages object storage instances and provides
functions with a multi-cloud API. To create realistic work-
flow representations of web applications, we need to support
low-latency data stores other than object storage. We chose
NoSQL key-value storage for this task and extended SeBS
with a high-level interface for creating, modifying, retrieving,
and deleting items. The interface supports a partition and
an optional sorting key. Each benchmark function can use
multiple tables managed by the benchmark suite. We map
the tables to DynamoDB on AWS, CosmosDB on Microsoft
Azure, and Firestore in Datastore mode on Google Cloud.

We collect timestamps for start and end of each function,
its requestID, and a containerID to detect container reuse by
using the temporary filesystem and global variables. The run-
time of a phase is defined by the start of its earliest function
and the end of the latest one. All collected values are sent
to a Redis [57] instance deployed in the same cloud region.
We chose an in-memory cache as it provides sub-millisecond
latencies, reducing the risk of distorting the performance
measurements.
To implement a workflow using our model, a user has to

provide the following (cf. Figure 5): First, the implementation
of the workflow’s functions in a language of their choice.
Our workflowmodel is independent of the actual benchmark
implementation. We can work with any language supported
in the cloud, with currently supported Python, Node.js, C++,
and Java through SeBS. Second, any data used as input to the
workflow. Third, the specification how the functions should
be orchestrated using our platform-agnostic workflow defi-
nition in JSON (cf. subsection 4.1). SeBS-Flow takes both as
input and deploys the workflow with the functions to the
respective cloud the user chooses, transcribing the workflow
to their platform-specific representations by traversing the
JSON file. This is transparent to the user and fully automated.

5 Benchmark Applications
In SeBS-Flow, we implement six benchmarks covering real-
life workloads. Also, we implement four microbenchmarks

SeBS-Flow: Benchmarking Serverless Cloud Function Workflows EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

User-supplied

Orchestration
Specification

SeBS-Flow
Transcribe to different platform
representations
Deploy workflow and functions
Upload benchmark data
Execute workflow and collect
timestamps

Workflow's Functions

10
01 Workflow's Data

Figure 5. Process of executing a workflow using SeBS-Flow.

Benchmark #functions Parallelism Critical path Download [MB] Upload [MB]
Video 4 2 3 238.83 7.48
Trip Booking 7 1 4/7 0.0 0.0
MapReduce 9 5 4 0.02 0.04
ExCamera 16 5 6 302.07 17.49
ML 3 2 2 7.82 3.91
1000Genome 19 12 4 273.54 3.47

Table 4. Key features of different benchmarks.

used in the evaluation: function chain, object storage per-
formance, parallel invocations (Section 7.3.1), and selfish
detour (Section 7.3.2). The selected benchmarks cover vari-
ous domains that use workflows (Table 4), and correspond
to previous findings on the characterization of workflow use
cases [27, 28] regarding control-flow, number of functions,
parallel invocations of the same functions, longer runtimes,
and workload sizes: We include the sequential TripBooking
benchmark (50% of workflows), four benchmarks using less
than ten different functions (72% of workflows), five bench-
marks involving parallel invocations of the same function
(52% of workflows), and the 1000Genome workflow contains
functions with a runtime of over aminute (25% of workflows).
Moreover, the analysis by Eismann et al. [27] classifies 72%
of serverless workflows as “small,” consisting of 2 to 10 func-
tions, 23% as “medium” with 11 to 1000 functions, and only
4% as “large” with more than 1000 functions. With our work-
loads, four of six applications can be classified as “small”
and two more as “medium.” Furthermore, the analysis of
traces from production workloads on Azure Durable Func-
tions [49] also showed that 40% of workflows are sequential,
most workflows do not use more than ten functions, the me-
dian number of different functions in a workflow is three, and
the median workflow execution time is 5.6 seconds, confirm-
ing the representativeness of our applications. We visualize
only one of the benchmarks here, but provide figures for the
other benchmarks in the supplementary material.

VideoAnalysis. The benchmark detects objects in a video,
and parallelizes the sequential benchmark in vSwarm [8] (Fig-
ure 6). Functions decode video frames and apply the Faster
R-CNN model [58]. The decode function first downloads
the video, decodes 𝐹 frames, and then uploads 𝑁 = ⌈ 𝐹

𝐵
⌉

batches of size 𝐵. 𝑁 parallel detect functions compute 𝑌𝑖 ,
all detections with confidence 𝑝 > 0.5. Finally, detections are
accumulated in acc, returning the final payload 𝑌 . We used

TaskTask

Map

c0

 decode
r: video
w: x1,...,xn

...

 detect1
r: x1, model
w: y1

 detectN
r: xN, model
w: yN

 acc
r: y1,...,yN
w: Y

start end... ...

Function transition Coordinator transition place

Figure 6. The Video Analysis benchmark.

𝐹 = 10 frames and batch size 𝐵 = 5, yielding two parallel
functions in the map phase.

Trip Booking. The benchmark represents web applica-
tions, and it mocks a common example of reserving a hotel,
car rental, and flight [6, 53]. The workflow is a pipeline of
functions mocking the reservation system by storing trip
data in a shared NoSQL database. It implements the SAGA
pattern of long-running transactions [32] where a failure
triggers the reversal of prior changes. For testing, we simu-
late failure in the last confirm function, which is followed by
three consecutive functions to reverse the booking.

MapReduce. We base our example on prior implemen-
tations [8, 52] and perform the standard problem of word
counting. First, the split function partitions the input text
into 𝑁 batches. 𝑁 parallel map functions count how often
each word occurs in their text chunk next. Next, shuffle
flattens the resulting array 𝑌𝑖 |𝑖 < 𝑀 . Finally, 𝑀 reducers
count the total occurrences of their respective word in par-
allel, yielding 𝑍𝑖 . The benchmark has two parameters: the
number of mapping functions 𝑁 , and the total number of
words𝑊 . We set 𝑁 = 3 and𝑊 = 5000, containing 𝑀 = 5
different words. MapReduce frameworks typically execute
fully in parallel. However, the available workflow primitives
necessitate the shuffle function, not relying on the array 𝑌𝑖
itself but flattening it to enable the desired level of parallelism
in reduce.

ExCamera. ExCamera [31] uses interdependent video-
processing tasks to encode videos in parallel. A video with
𝑀 total frames is processed in chunks of 𝑁 frames by 𝑀

𝑁
= 𝑇

parallel functions. First, each frame is encoded, yielding one
key frame and 𝑁 − 1 interframes. Decode decodes all 𝑁
frames again, calculating the final state. The final state from
the first frame of the chunk is used for reencoding the other
frames, resulting in one final state and 𝑁 − 2 interframes.
We derive our implementation from the original description
of ExCamera [31] and the available implementation [30]. We
use𝑀 = 30 total frames and a chunk size of 𝑁 = 6, resulting
in five parallel functions.

Machine Learning. This workload represents a typical
training pipeline: It starts with gen generating a dataset, with
the number of samples 𝑁 and the number of features𝑀 as
input. Then, we train 𝐾 different classifiers 𝐶𝑖 in parallel.
We generate 𝑁 = 500 samples and 𝑀 = 1024 features, and

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Schmid et al.

train 𝐾 = 2 classifiers: a Support Vector Machine [56], and a
Random Forest [18], creating two concurrent functions.

1000Genomes. This is a scientific workflow that identi-
fies mutational overlaps using data from the 1000 Genomes
project [7]. It consists of five tasks and three phases: First, 𝑁
individuals functions parse the data for their chunk of the
input file of size𝑀 and then upload their results to the cloud
storage. While individuals_merge merges the results to
one, sifting computes the Sorting Intolerant from Tolerant
(SIFT) scores. In the last phase, mutation_overlapmeasures
the overlap in Single Nucleotide Polymorphisms (SNP) vari-
ants and frequency measures the frequency of mutation
overlapping, both by population 𝑃 . The benchmark has the
number of lines as input𝑀 , number of parallel individuals
functions 𝑁 , and number of populations 𝑃 as input variables.
We use𝑀 = 1250 lines, 𝑁 = 5 parallel individuals function,
and 𝑃 = 6 populations.

6 Evaluation of Workflow Model
By reviewing existing literature on serverless workflows,
we evaluate whether our model is general enough to ex-
press applications of workflows and if our transcription to
the platform-specific representations adds overhead com-
pared to the native implementation. We do so by using the
meta-search engine Google Scholar to find peer-reviewed
publications containing the keywords cloud, orchestration,
and serverless workflow or serverless DAG. We exclude papers
that are not in English, do not use a workflow benchmark,
or are published before 2017, the year of the first serverless
workflows in the cloud. This results in 72 papers analyzed
papers (cf. Table 1, p. 2 for their categorization). We pro-
vide the complete list of papers and analysis results in the
supplementary material.

6.1 Expressiveness of our Model
We analyze the workflow benchmarks used in the literature
and evaluate whether our model can represent the control
flow within the workflows without adding unnecessary de-
pendencies between their tasks. Out of the 72 papers, 14 did
not provide sufficient detail on the workflows used and their
dependencies to judge if we can express them. In two papers,
benchmarks are not presentable by our model, as they intro-
duce new programming models to support communication
between functions and load-balanced orchestration. Bench-
marks used in three more papers can be modeled but not
transcribed to platform-specific representations (Section 4).
For two of them, cloud platforms are the limitations, such as
ending the workflow as a result of a switch state (not possible
on AWS) and using multi-stage inputs, i.e., using the output
of a previously executed function as input without passing
it to the functions invoked in-between. The third one uses
a switch state requiring two conditions to be true. While
we do not support transcribing this currently, transcription

the switch state requiring two conditions to be true, it can
be easily added to the implementation. We fully support
modeling and transcribing the workflows described in 53
of the 58 analyzed papers. Therefore, we conclude that our
model does not have general limitations within the scope of
programming models not allowing for communication be-
tween functions and using orchestration based on dynamic
characteristics of the system, and developers can use it to
model and execute their workflows.

6.2 Overhead of our Model
To check if our model and transcription (cf. Sec. 4.2) create
overhead compared to a native implementation, we evaluate
available benchmark implementations used in the analyzed
papers and compare them to our transcription of their work-
flows. Only 10 of the 72 papers include an artifact containing
workflow implementations or show their implementation
as part of the paper for any of the platforms we support.
None of them uses Google Cloud Workflows. In total, we
find eleven AWS Step Functions state machines. One of them
uses the AND choice type. We currently do not transcribe
this choice type and are therefore not able to generate the
same state machine. However, if we would add the transcrip-
tion, the resulting state machine would look similar. Another
one adds fail and success states before ending the workflow,
which only introduces overhead as compared to just ending
the workflow. The other nine state machines use the same
states with the same parameters in the same order as the state
machines we transcribe, except for the fact that they specify
each parameter explicitly as part of the state machine while
we wrap them within a single payload entry, which does
not affect the overhead. Four of the papers provide imple-
mentations for a total of six workflows using Azure Durable
Functions. While one paper only provides an implementa-
tion using entity functions, the other five workflow imple-
mentations use activities to orchestrate tasks similar to our
transcription. Since we must parse the platform-independent
representation within the orchestrator, we could introduce
an overhead. However, the evaluation of the 1000Genome
benchmark, the benchmark with the most functions, shows
that the average duration of the orchestrator function is only
13.6 milliseconds, with the workflow’s median runtime being
3757.55 seconds. We conclude that SeBS-Flow does not in-
troduce noteworthy overhead in the workflows compared to
their native implementation, enabling developers to obtain
realistic performance results for their workflows.

6.3 Threats to Validity
We used only one query to find relevant works, bearing the
risk of missing results. We mitigated this by evaluating differ-
ent queries beforehand, evaluating the relevance of papers
found, and checking if the results included relevant papers
we knew as a gold standard [26]. Regarding external valid-
ity, we found only a limited number of artifacts to evaluate

SeBS-Flow: Benchmarking Serverless Cloud Function Workflows EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

the overhead, with none available that uses GC Workflows.
While our transcription follows best practices and tutorials
as provided by the cloud providers and matches the artifacts
we found, usage in other projects could differ.

7 Evaluation of Cloud Services
We use SeBS-Flow to evaluate three major cloud workflow
services – AWS Step Functions, Google Cloud Workflows,
and Azure Durable Functions – providing developers valu-
able insights regarding their suitability for different work-
loads. We investigate the following research questions:
RQ1 What are the runtime differences between platforms?
RQ2 What causes runtime and stability differences?
RQ2.1 What causes overheads in the orchestration?
RQ2.2 What causes variations in the critical path?
RQ3 How well can serverless workflow orchestration sup-

port scientific workflows?
RQ4 How does the pricing compare between platforms?
RQ5 How did the performance and stability of the platforms

evolve over time?

7.1 Methodology
We deploy benchmarks and resources used by them on Azure
to the europe-west region, on AWS to us-east-1, and onGoogle
Cloud to us-east1. We use the lowest common memory con-
figuration that successfully executes the workflow on AWS
and Google Cloud, at least 256 MB for computational func-
tions and 128 MB for simple web applications. We invoke
the application benchmarks in burst mode, triggering 30
executions at once and accepting all successful workflow
executions, as other work suggests that most serverless ap-
plications have potentially bursty workloads [27]. We check
how often we should repeat experiments by computing non-
parametric confidence intervals on the measurements of the
MapReduce benchmark and aim at being in a 5% interval of
the median using a 95% confidence interval. For the burst
mode with 30 executions triggered at once, this results in 1, 1,
and 6 repetitions on AWS, GCP, and Azure, respectively. We
opt to execute all experiments 180 times. However, we could
only obtain 30 executions of the 1000Genome benchmark
on Azure due to frequent timeout issues. Benchmarks use
the serverless object storage and NoSQL database on each
platform.

7.2 RQ1: Runtime Differences among Platforms
We compare the runtime of each benchmark on the selected
platforms. We calculate the runtime by subtracting the first
start timestamp from the last end timestamp. The results in
Figure 7 do not yield a single fastest platform among all our
benchmarks. AWS is the fastest platform for three out of six
benchmarks while performing relatively well for the other
three. While Google Cloud’s performance is comparable to
AWS, it is 1.55-1.97x slower on three benchmarks. While

Google Cloud AWS Azure
0

200

400

600

800

1000

1200

Du
ra

tio
n

[s
]

55.69
26.74

642.12

(a) Video Analysis, 2048MB.

Google Cloud AWS Azure

100

200

300

400

500

600

Du
ra

tio
n

[s
]

132.63
87.11

550.38

(b) ExCamera, 256MB.

Google Cloud AWS Azure

10

20

30

40

Du
ra

tio
n

[s
] 19.44

11.19 8.64

(c)MapReduce, 256MB.

Google Cloud AWS Azure
0

50

100

150

200

250

300

Du
ra

tio
n

[s
]

9.19 16.14 8.51

(d) Trip Booking, 128MB.

Google Cloud AWS Azure
0

10

20

30

40

Du
ra

tio
n

[s
]

15.32

10.05 6.67

(e) Machine Learning, 1024MB.

Google Cloud AWS Azure
0

2000

4000

6000

8000

Du
ra

tio
n

[s
]

453.63 257.14

3757.55

(f) 1000Genome, 2048MB.

Figure 7. Runtime of benchmark applications on AWS Step
Functions, GC Workflows, and Azure Durable, burst invoca-
tions.

Azure Durable functions perform very well, e.g., on MapRe-
duce and Machine Learning, they are the slowest platform
for Video Analysis, ExCamera, and the 1000Genome bench-
mark. For Trip Booking, Azure achieves the best median
performance but suffers from large outliers. We investigate
the potential causes of slowdown in the next section. All
platforms demonstrate variable performance, with Azure
showing the largest variance.

7.3 RQ2: Causes for Runtime and Stability
Differences

According to our results, AWS and Google Cloud provide a
performance-reliable workflow service, whereas the variabil-
ity is considerably higher on Azure. Thus, we split the run-
time into two components to investigate the reasons behind
this: the critical path 𝑇𝐶 , computed as the sum of all states’
maximum runtime within one phase, and the overhead 𝑇𝑂
caused by the scheduling and data movement conducted
by the cloud workflow service. We calculate the overhead
𝑇𝑂 by subtracting the critical path 𝑇𝐶 from the total run-
time. Figure 8 shows the critical path and overhead for all

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Schmid et al.

Google Cloud AWS Azure
0

100

200

300

400

500

600

700

Du
ra

tio
n

[s
]

Google Cloud
AWS
Azure

(a) Video Analysis, 2048MB.

Google Cloud AWS Azure
0

100

200

300

400

500

Du
ra

tio
n

[s
]

Google Cloud
AWS
Azure

(b) ExCamera, 256MB.

Google Cloud AWS Azure
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Du
ra

tio
n

[s
]

Google Cloud
AWS
Azure

(c) MapReduce, 256MB.

Google Cloud AWS Azure
0

5

10

15

20

25

30
Du

ra
tio

n
[s

]
Google Cloud
AWS
Azure

(d) Trip Booking, 128MB.

Google Cloud AWS Azure
0

2

4

6

8

10

12

14

16

Du
ra

tio
n

[s
]

Google Cloud
AWS
Azure

(e) Machine Learning, 1024MB.

Google Cloud AWS Azure
0

1000

2000

3000

4000

Du
ra

tio
n

[s
]

Google Cloud
AWS
Azure

(f) 1000Genome, 2048MB.

Figure 8. Critical path (opaque) and overhead (hatched) of
different benchmarks on considered platforms, burst invoca-
tions.

benchmarks. Azure’s runtime is dominated by highly vari-
able scheduling overhead: For example, the overhead of the
ExCamera benchmark is, on average, 495.5s, more than 36×
as long as its critical path of 13.5s. The ML benchmark in-
curs the least overhead of 5× the length of its critical path.
Also, Azure’s critical path is very fast across all benchmarks,
demonstrating the fastest critical path for ExCamera, MapRe-
duce, and Machine Learning. Google Cloud, however, has the
slowest critical path throughout the entire benchmark suite.
In summary, orchestration overhead causes long runtimes
and performance variances on Azure. For AWS and Google
Cloud, however, the critical path varies. We therefore ex-
plore different causes for the differing behavior of the cloud
platforms in the following Sections 7.3.1 and 7.3.2.

7.3.1 RQ2.1 Sources ofOverhead. We analyze three com-
mon sources of overhead: object storage I/O, parallel sched-
ule, and function return payload.

Cloud Storage I/O. The data downloaded from the object
storage differs between benchmarks (Table 4, p. 7), with hun-
dreds of megabytes in ExCamera, 1000Genomes, and Video
Analysis. These benchmarks experience the highest relative

212 215 218 221 224 227

Download [b]

0
25
50
75

100
125
150
175
200

Ov
er

he
ad

 [s
]

AWS
Azure
Google Cloud

(a) Overhead of storage I/O, 20
functions, 210 ≤ 𝐷 ≤ 228,
512MB, burst invocations.

26 28 210 212 214 216 218

Payload size [b]

0
1
2
3
4
5
6
7
8

La
te

nc
y

[s
]

AWS
Azure
Google Cloud

(b) Invocation latency, chain of
10 functions, 25 ≤ 𝑀 < 218,
256MB, warm invocations.

Figure 9. Analysis of different sources of overhead.

overhead of 36.7×, 10×, and 14.95× their critical paths on
Azure. To verify that this correlation is indeed causation,
we execute a microbenchmark evaluating the cloud storage
I/O performance. We invoke 20 functions in parallel where
each attempts to download a file of size 𝐷 from the stor-
age. Figure 9a shows that the overhead remains stagnant for
AWS at around one second and nearly stagnant on Google
Cloud, increasing a bit for downloads larger than 1MB. On
Azure, however, we observe an overhead of almost 149 and
4.9 seconds for 128 and 1 MB files, respectively. Therefore,
data downloads can account for a significant part of the large
overhead measured on Azure Durable.

Parallel Scheduling. Another potential source of over-
head are parallel invocations within a benchmark: Bench-
marks with the highest degree of parallelism – ExCamera
and 1000Genomes – show the largest overheads of Azure.
We test this by executing a microbenchmark that spawns
𝑁 functions in parallel, each one sleeping for 𝑇 seconds,
and start 30 such invocations concurrently. Figure 10 shows
the relative overhead of the actual runtime of the workflow
compared to the function execution time. AWS functions
demonstrate modest overhead, with largest values for the
shortest duration. The absolute overhead incurred for a cer-
tain number of parallel functions remains relatively constant,
causing the relative overhead to decrease with higher func-
tion executin times. GC functions present a larger relative
slowdown that increases with the number of parallel tasks.
There, the system puts a cap on scaling up and reuses con-
tainers, as 30 invocations with 𝑁 = 2,𝑇 = 1 start 60 different
function containers on AWS, but only 30 on Google Cloud.
On the other hand, Azure experiences an order of magnitude
larger relative overhead that increases with the parallelism
factor but does not seem to be correlated to the function
runtime.
To better understand the impact of limited parallel scala-

bility on our benchmarks, we measure the number of distinct
sandboxes allocated at any given time until the last func-
tion execution has terminated. We invoke 30 concurrent
executions of workflow benchmarks and display the scaling

SeBS-Flow: Benchmarking Serverless Cloud Function Workflows EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

1 5 10 15 20
Duration [s]

16
8

4
2

#F
un

ct
io

ns

26 42 26 23 25

19 31 28 28 24

14 12 22 17 18

9.1 9.9 11 14 8
10

15

20

25

30

35

40

(a) Azure.

1 5 10 15 20
Duration [s]

16
8

4
2

#F
un

ct
io

ns

1.6 1.1 1.1 1 1

1.6 1.1 1.1 1 1

1.5 1.1 1.1 1 1

1.6 1.1 1.1 1 1 1.1

1.2

1.3

1.4

1.5

1.6

(b) AWS.

1 5 10 15 20
Duration [s]

16
8

4
2

#F
un

ct
io

ns

5 2 1.4 1.3 1.2

3.8 1.6 1.3 1.2 1.1

3.4 1.5 1.2 1.1 1.1

3.2 1.5 1.2 1.1 1.1 1.5

2.0

2.5

3.0

3.5

4.0

4.5

(c) Google Cloud.

Figure 10. The overhead of parallel sleep microbenchmark,
2 ≤ 𝑁 ≤ 16, 1 ≤ 𝑇 ≤ 20, 256MB, burst invocations.

behavior in Figure 11. Throughout the benchmarks, AWS
and Google Cloud exhibit similar scaling behaviors, and their
scale-up curves reveal the same local maxima, with phase
transitions visible. However, we can also see that AWS spins
up new containers more quickly. Azure produces a much
more constant curve that remains similar throughout the
benchmarks, never allocating more than 10 containers simul-
taneously.

Return Payload. We evaluate the overhead resulting
from the function return payload size.We deploy amicrobench-
mark consisting of a function chain, where functions return
𝑀 bytes of result sent to the consecutive function, with ten
functions and test varying input sizes until Google Cloud’s
limit. We invoke the chain 30 times simultaneously and use
results fromwarm invocations only. Figure 9b shows that the
latency remains constant for AWS and Google Cloud, while
it increases dramatically for Azure from 16 kB, suggesting
an influence of remote storage or queue. While this may
present a significant source of overhead in applications, our
benchmarks do not return payloads larger than 1MB, and
this overhead can only account for a part of the slowdown.

Conclusions. The microbenchmarks demonstrate that a
significant part of the overhead observed on Azure originates
from the parallel schedules and storage I/O. Moreover, the re-
turn payload can be a source of overhead on Azure for larger
payloads. To minimize overheads, workflows downloading
large amounts of data, using high levels of parallelism, and
high return payloads may therefore better be deployed to
AWS or Google Cloud, with AWS demonstrating less over-
heads and better scalability across our benchmarks.

7.3.2 RQ2.2 Critical Path Discrepancy. The runtime
of benchmarks across platforms shows that additionally to
varying overhead, the critical path of computation can be
significantly different. To understand the reasons behind this
difference, we analyze how the critical path is impacted by
two factors: the varying CPU allocation and frequency of
cold starts.

OS Noise. The cloud provider controls the CPU allocation
to a serverless function, either in relation to the memory con-
figuration on AWS and GCP [35, 46], or in an undisclosed
fashion on Azure. We use the selfish detour benchmark to

quantify OS noise [40], which allows us to estimate how
long the function is suspended by the OS, which in turn ap-
proximates the vCPU timeshare. The benchmark runs a tight
loop and records the event that one iteration took signifi-
cantly more cycles than expected 𝑁 times. The magnitude
and frequency of these events characterize the suspension
and noise. We deploy a workflow with a single function
executing the benchmark, invoke it 30 times concurrently,
collect 𝑁 = 5000 events, and sample warm invocations to
obtain consistent results. Figure 13a compares the relative
to the expected suspension time according to the cloud doc-
umentation. We observe less noise on Google Cloud when
compared to AWS, with more than 20% difference on 1024MB
memory. We normalize the critical path per platform using
the following approximation: given a function with memory
configuration𝑀 , we represent the relative duration of func-
tion suspension as 𝑆𝑀 and compute the normalized critical
path 𝑇 ′

𝐶
= 𝑇𝐶 ∗ (1 − 𝑆𝑀). We observe the largest relative dis-

crepancy on two benchmarks, MapReduce (Figure 13b) and
Machine Learning (Figure 13c). The overall trend observed in
Section 7.2 remains unchanged: Google Cloud demonstrates
the longest critical path duration. The suspension time ex-
plains the shorter critical path on Azure as compared to AWS
and GCP for benchmarks with low-memory configurations:
Azure functions receive larger CPU allocations.

Cold Starts. Cold invocations add significant overhead to
the function execution [23]. Table 5 shows the frequency of
cold starts in our measurements, with cold starts identified
using the containerID (see Section 4.3). Azure Durable per-
forms significantly better, experiencing almost no cold starts,
likely because function apps on Azure can hold many invo-
cations concurrently [23]. While the low scalability causes
high orchestration overheads, it benefits the computations
by putting them in warm containers. Figure 12 shows the im-
pact of cold starts on the critical path and overhead. We show
only the duration of warm starts on Azure Durable, as all
benchmarks show a very low amount of cold starts on Azure.
On AWS and GCP, however, there is a high percentage of
cold starts in our measurement data. We therefore collected
another 60 workflow invocations with at least one warm
function and show the critical path for the resulting com-
pletely warm invocations. Google Cloud and AWS functions
perform up to 2.0× and 4.5× better, respectively, achieving
almost the same performance as Azure. Thus, cold starts are
a major factor influencing the slowdown and performance
instability observed in many benchmarks.

Conclusions. Our experiments show that Azure achieves
short critical paths due to larger CPU allocations and less
cold starts. To minimize the critical path, benchmarks using
a low-memory configuration and only being executed occa-
sionally can therefore be deployed to Azure. High-memory
configurations, however, get higher CPU shares on AWS and
GCP. GCP shows the slowest critical path even for warm

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Schmid et al.

0 200 400 600 800
Time [s]

0

8

16

24

32

40

48

56

#C
on

ta
in

er
s

Google Cloud
AWS
Azure

(a) Video Analysis

0 100 200 300 400 500 600
Time [s]

0

20

40

60

80

100

120

140

#C
on

ta
in

er
s

Google Cloud
AWS
Azure

(b) ExCamera

0 5 10 15 20 25
Time [s]

0

20

40

60

80

100

120

140

#C
on

ta
in

er
s

Google Cloud
AWS
Azure

(c) MapReduce

0 5 10 15 20 25
Time [s]

0

4

8

12

16

20

24

28

#C
on

ta
in

er
s

Google Cloud
AWS
Azure

(d) Trip Booking

0 5 10 15 20 25 30 35
Time [s]

0

8

16

24

32

40

48

56

#C
on

ta
in

er
s

Google Cloud
AWS
Azure

(e)Machine Learning

Figure 11. Scaling profiles: the number of distinct containers used for 30 consecutive workflow invocations.

Cold starts State transitions
Benchmark AWS GCP Azure AWS GCP
Video 86.94% 68.61% 3.89% 7 20
MapReduce 100% 68.17% 1.0% 14 54
Trip Booking 100% 38.24% 0.6% 9 16
ExCamera 73.58% 69.34% 0.94% 21 73
ML 100% 99.26% 2.60% 6 18
1000Genome 98.16% 72.40% 7.72% 26 96

Table 5. Relative #cold starts and #state transitions.

Google Cloud AWS Azure
 .
 .

0
2
4
6
8

10
12
14
16

Du
ra

tio
n

[s
]

Cold Start
Warm Start

(a)Machine Learning, 1024MB.

Google Cloud AWS Azure
 .
 .

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Du
ra

tio
n

[s
]

Cold Start
Warm Start

(b) MapReduce, 256MB.

Figure 12. Critical path (opaque) and overhead (hatched) of
warm and cold invocations.

invocations, while AWS can be competitive to Azure, making
it a good choice for frequently executed workflows.

7.4 RQ3: Usability for Scientific Workflows
There is rising interest in the scientific community to use
serverless solutions [28], accompanied by experimentation
with serverless offerings of the platforms [51] and manage-
ment systems for serverless execution of workflows [41, 42,
61, 62]. However, they do not consider the workflow or-
chestration systems the cloud platforms offer. We use the
scientific benchmark 1000Genome to compare cloud services
and the HPC system Ault using nodes equipped with Intel(R)
6154@3.00GHz CPU, repeating measurements five times.
First, we compare the runtime of the total workflow, as

shown in Figure 14a. While the workflow execution time
is, on average, 457.7s and 259.8s on GCP and AWS, respec-
tively, the execution takes only 7.7s on Ault. GCP exhibits a
coefficient of variation of 12.2%, while AWS has a coefficient
of variation of only 3.3% - even lower than 4.1% on Ault.

Interestingly, I/O takes less than one second on AWS, mean-
ing that the computation is slower in the cloud. Then, we
compare the scaling behavior of the different platforms for
the individuals task of the workflow. We employ strong
scaling, i.e., adding more jobs while keeping the size of the
input file the same, resulting in smaller chunks per job. Fig-
ure 14b shows the speedup of 1.96 and 1.95 on AWS, 1.91
and 1.95 on GCP, and 1.51 and 1.24 on Ault for 10 and 20
jobs w.r.t. 5 and 10 jobs, respectively. The cloud platforms
achieve a nearly-optimal speedup, which is not surprising
given the high overhead for the baseline execution.

7.5 RQ4: Pricing
We compare the average cost of executing a workflow and
estimate the prices, as shown in Table 3, p. 3. Functions in-
voked during the execution of a workflow are billed based
on the integral of memory and duration. Figure 15 visual-
izes the cost of workflow execution split into two groups:
function execution (opaque) and the cost of orchestrating
the state machine (hatched). Note that, due to Azure’s billing
and measurement system, we could only retrieve an aver-
age cost value over all workflow invocations. Even though
the Trip Booking benchmark is a simple pipeline with error
catching, running it with workflow orchestration still adds
significant state transition costs. Azure is the most expen-
sive service for the 1000Genome benchmark. Google Cloud
is the most expensive for MapReduce due to the high num-
ber of state transitions. AWS Step Functions are the most
expensive solution for the other four benchmarks because
functions cost 6.7×more for computation than Google Cloud
Functions. The price charged for state transitions is nearly
identical between AWS and Google Cloud, even though AWS
charges 2.5× more: the AWS state language requires fewer
states to implement the benchmarks (Table 5). Overall, we
observe that Azure is expensive for workflows where it is
also the slowest platform, such as for 1000Genome, but of-
fers the cheapest pricing for benchmarks it also executes
fastest, such as ML and MapReduce. Contrary to that, AWS
shows high pricing for benchmarks it is fastest, such as Video
Analysis and ExCamera

In addition to execution and orchestration costs, work-
flows generate charges when accessing the object and NoSQL
storage. While the prices of read and write operations on the

SeBS-Flow: Benchmarking Serverless Cloud Function Workflows EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

128 256 512 1024 2048
Memory configuration [MB]

0

20

40

60

80

Su
sp

en
sio

n
tim

e
[%

]

AWS
AWS Docs
Azure
Google Cloud
Google Cloud Docs

(a) Relative suspension,
𝑁 = 5000, warm.

Google Cloud AWS Azure
0

2

4

6

8

10

12

14

Du
ra

tio
n

[s
]

Normalized
Original

(b) Critical path of MapRe-
duce, 256MB, burst.

Google Cloud AWS Azure
0

2

4

6

8

10

12

14

Du
ra

tio
n

[s
]

Normalized
Original

(c) Critical path of Machine
Learning, 1024MB, burst.

Figure 13. Analysis of OS noise.

5
Number of individuals jobs

0

1000

2000

3000

4000

5000

6000

Du
ra

tio
n

[s
]

259.77 457.71

4590.18

7.69

AWS
Google Cloud
Azure
Ault

(a) Complete workflow.

5 10 20
Number of individuals jobs

0

50

100

150

200

Du
ra

tio
n

[s
]

AWS
Google Cloud
Azure
Ault

(b) individuals.

Figure 14. Scalability of 1000Genome workflow.

object storage are the same across clouds, the billing models
for key-value storage differ: DynamoDB charges according
to the amount of data read and written in strictly defined size
increments; CosmosDB applies the same pricing to request
units but does not explicitly define expected consumption;
and Datastore has higher costs per operation but makes the
cost independent of the item size. To understand the impact
of this, we analyze the full execution of the Trip Booking
benchmark. One workflow invocation requires three inser-
tions and three deletions, with all items taking at most a
few hundred bytes. While the estimated storage costs are
similar on each platform, between ¢0.68 and ¢1.08 per 1000
executions, they impact the final cost differently. NoSQL op-
erations add only 2.74% and 6.72% of the total price on AWS
and GCP, respectively. The total execution cost on Azure
is just ¢2.4. There, the estimated cost of CosmosDB request
units is equal to ¢0.68 and adds 28.5% of workflow price.

7.6 RQ5: Evolution of Performance
Finally, we assess the performance stability over time by com-
paring July 2022 and January 2024 results. The executions
from 2022 contain 30 invocations per workflow using Python
3.7, in cloud regions europe-west for Azure, europe-west-1
for GCP, and us-east-1 for AWS. The 2024 invocations are
run in the same regions, except for GCP in us-east1, and use
Python 3.8. Figure 16 shows the results. The critical path and
overhead of the MapReduce and ML benchmark are approxi-
mately the same on Google Cloud. The runtime on AWS is
quite stable without any notable differences between 2022
and 2024. Azure has a stable duration of the critical path.
While the overhead for MapReduce is the same in 2024 as
in 2022, the overhead of ML has been approximately halved
from 2022 to 2024.

7.7 Threats to Validity
A threat to the external validity is our choice of benchmark
applications. We mitigate this by using applications from
different domains that correspond to previous findings on
the characterization of workflow use cases [27, 28]. Regard-
ing internal validity, the different geographical regions and
different week days we conducted our measurements on
could have an impact. While we repeat each experiment six

times to obtain stable results, there could be performance
variability based on the time of day. However, systematically
investigating this is beyond the scope of our work.

8 Related Work
Multiple benchmark suites have been proposed to cover dif-
ferent aspects of serverless computing, from microarchitec-
ture to the application level [3, 15, 23, 43, 50, 67, 71]. However,
all of them consider only the execution of single functions.
Das et al. [24] benchmark serverless edge computing plat-
forms. Other performance studies of serverless applications
focus on non-workflow orchestration systems, e.g., using
cloud storage and queue triggers [37, 38, 64, 68]. Grambow
et al. [37] propose BeFaaS, providing an application bench-
markmodeling an online shopwhere the functions communi-
cate using synchronous and asynchronous calls. In contrast,
SeBS-Flow targets serverless workflow orchestrations.

ServerlessBench [79] considers a function chainmicrobench-
mark orchestrated by AWS Step Functions, but only mea-
sures runtime of the workflow and time in between func-
tion invocations for varying payload sizes. Kousiouris et
al. [44] use microbenchmarks to estimate the overhead of
orchestration in OpenWhisk. López et al. [33] investigate the
orchestration overhead with microbenchmarks of function
chains and parallel functions. Shahidi et al. [66] evaluate the
performance and cost of two stateful workflows on AWS
and Azure. Barcelona-Pons et al. [16] use a microbenchmark
to test the performance of fork-join parallelism in work-
flow orchestrators. With SeBS-Flow, we provide not only
microbenchmarks, but also six applications from different do-
mains that can automatically be deployed to different cloud
platforms. Based on these benchmarks, we present a broader
evaluation of the performance of cloud platforms.
Wen et al. [77] conducts a performance investigation of

serverless workflows using two applications andmicrobench-
marks with varying numbers of functions, payload size, and
parallelism. While they measure the execution time and esti-
mate overhead, they do not evaluate scalability, billing, or
investigate overhead sources. Instead, we focus on a wider
collection of applications and propose a unifying model that
allows developers to deploy and evaluate a single implemen-
tation across many cloud platforms. Moreover, we make all

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Schmid et al.

Google Cloud AWS Azure0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Pr
ice

 [$
]

(a) Video Analysis

Google Cloud AWS Azure0.0

0.1

0.2

0.3

0.4

0.5

Pr
ice

 [$
]

(b) MapReduce

Google Cloud AWS Azure0.00

0.05

0.10

0.15

0.20

0.25

Pr
ice

 [$
]

(c) Trip Booking

Google Cloud AWS Azure0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Pr
ice

 [$
]

(d) ExCamera

Google Cloud AWS Azure0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Pr
ice

 [$
]

(e)Machine Learning

Google Cloud AWS Azure0

10

20

30

40

50

Pr
ice

 [$
]

(f) 1000Genome

Figure 15. Price per 1000 workflow executions: function costs are opaque and state transition costs are translucent.

Google Cloud AWS Azure
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Du
ra

tio
n

[s
]

2022
2024

(a) MapReduce.

Google Cloud AWS Azure
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Du

ra
tio

n
[s

]
2022
2024

(b) ML.

Figure 16. Comparison of critical path (opaque) and over-
head (hatched) between 2022 and 2024, burst invocations.

benchmark codes available and provide a ready-to-use bench-
marking platform. Finally, we evaluated serverless Google
CloudWorkflows instead of the non-serverless Google Cloud
Composer. XFBench [45] provides chaining of different func-
tions and deploying them to AWS Step Functions and Azure
Durable Functions, while we focus on realistic and complete
applications. Moreover, they do not consider cloud-native
data movement between functions via cloud storage, do not
evaluate the overhead of their platform transcription, and
can not compare pricing between platforms.

Other authors analyzed the productivity of workflow lan-
guages and proposed alternative models. AFCL [60] is a cus-
tom and provider-independent orchestration language for
serverless workflows, implemented on top of AWS Step Func-
tions and IBMComposer. Burckhardt et al. explore the seman-
tics of Durable Functions [20] and propose Netherite [19], a
new engine to replace Azure Durable Functions.

9 Conclusions
We propose SeBS-Flow, the first benchmark suite for server-
less workflows. We follow the established benchmark design
principles: introduce a platform-agnostic workflow model,
propose a collection of six representative applications, and
integrate them into an existing benchmark suite to ensure
reproducibility and ease of use. We support the three ma-
jor cloud providers, and benchmarks can be ported to other
services by implementing a single interface transcribing our
model to the cloud-specific interface. We conduct a com-
prehensive and long-term evaluation of the performance
and cost of proposed benchmark applications, investigating
factors influencing the runtime and variance: cold startups,

noise, scheduling, and the storage I/O. With the new bench-
mark suite, we enable benchmarking of the same workflow
on different platforms, providing software developers and
researches with valuable insights regarding their different
behaviors and properties.

Acknowledgments
Larissa Schmid is supported by the pilot program
Core Informatics at KIT (KiKIT) of the Helmholtz
Association (HGF). This project has received fund-
ing from the European Research Council (ERC) under the
European Union’s Horizon 2020 program (grant agreement
PSAP, No. 101002047). We would also like to thank the Swiss
National Supercomputing Centre (CSCS) for providing us
with access to their HPC machine Ault. We thank Ama-
zon Web Services for supporting this research with credits
through the AWS Cloud Credit for Research, and Google
Cloud Platform through the Google Cloud Research Credits
program with the award GCP19980904.

Authorship Statement
The authors contributed to the paper as follows: M. Copik,
A. Calotoiu, and T. Hoefler conceived the initial idea and
L. Schmid, M. Copik, A. Calotoiu, and T. Hoefler designed
the study; L. Brandner implemented the initial model, and L.
Schmid extended and formalized it; L. Brandner implemented
the benchmarks and L. Schmid and M. Copik extended and
improved the implementation; L. Schmid and M. Copik col-
lected data; L. Schmid, M. Copik, and L. Brandner analyzed
and interpreted the results; L. Schmid and M. Copik con-
ducted the literature study; L. Schmid and M. Copik wrote
the draft manuscript; and L. Schmid, M. Copik, A. Calotoiu,
A. Koziolek, and T. Hoefler reviewed and revised the manu-
script.

References
[1] 2016. AWS Step Functions. https://aws.amazon.com/step-functions/.

Accessed 25-01-2024.
[2] 2019. Azure Durable Functions. https://learn.microsoft.com/en-us/

azure/azure-functions/durable/durable-functions-overview. Accessed
25-01-2024.

[3] 2020. FaaSTest. https://github.com/nuweba/faasbenchmark. Accessed:
2020-08-01.

[4] 2020. Google Cloud Workflows. https://cloud.google.com/workflows.
Accessed 25-01-2024.

https://aws.amazon.com/step-functions/
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://github.com/nuweba/faasbenchmark
https://cloud.google.com/workflows

SeBS-Flow: Benchmarking Serverless Cloud Function Workflows EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

[5] 2022. A Platform-Agnostic Model and Benchmark Suite for Serverless
Workflows. https://doi.org/10.3929/ethz-b-000574821. Master’s Thesis.

[6] 2023. Step Functions Workflow Collection: Saga Pattern.
https://github.com/aws-samples/step-functions-workflows-
collection/tree/main/saga-pattern-tf. Accessed: 2024-08-02.

[7] Accessed 04-02-2025. 1000 Genomes Project. https://www.
internationalgenome.org/.

[8] [Online; accessed 27. July 2024]. vSwarm - Serverless Benchmarking
Suite. https://github.com/ease-lab/vSwarm.

[9] Gojko Adzic and Robert Chatley. 2017. Serverless computing: eco-
nomic and architectural impact. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering (Paderborn, Germany)
(ESEC/FSE 2017). Association for Computing Machinery, New York,
NY, USA, 884–889. https://doi.org/10.1145/3106237.3117767

[10] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus
Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND:
Towards High-Performance Serverless Computing. In Proceedings of
the 2018 USENIX Conference on Usenix Annual Technical Conference
(Boston, MA, USA) (USENIX ATC ’18). USENIX Association, USA, 923–
935.

[11] AWS [Online; accessed 1 August 2024]. Iterating a Loop Us-
ing Lambda. https://docs.aws.amazon.com/step-functions/latest/dg/
tutorial-create-iterate-pattern-section.html.

[12] AWS Lambda Pricing [Online; accessed 1 August 2024]. AWS Lambda
Pricing. https://aws.amazon.com/lambda/pricing/.

[13] AWS Step Functions Pricing [Online; accessed 1 August 2024]. AWS
Step Functions Pricing. https://aws.amazon.com/step-functions/
pricing/.

[14] Azure Functions Pricing [Online; accessed 1 August 2024]. Azure
Functions Pricing. https://azure.microsoft.com/en-us/pricing/details/
functions/.

[15] Timon Back and Vasilios Andrikopoulos. 2018. Using a Microbench-
mark to Compare Function as a Service Solutions. In Service-Oriented
and Cloud Computing. Springer International Publishing, 146–160.
https://doi.org/10.1007/978-3-319-99819-0_11

[16] Daniel Barcelona-Pons, Pedro García-López, Álvaro Ruiz, Amanda
Gómez-Gómez, Gerard París, and Marc Sánchez-Artigas. 2019. FaaS
Orchestration of Parallel Workloads. In Proceedings of the 5th Interna-
tional Workshop on Serverless Computing (Davis, CA, USA) (WOSC ’19).
Association for Computing Machinery, New York, NY, USA, 25–30.
https://doi.org/10.1145/3366623.3368137

[17] Carsten Binnig, Donald Kossmann, Tim Kraska, and Simon Loesing.
2009. How is the Weather Tomorrow?: Towards a Benchmark for the
Cloud. In Proceedings of the Second International Workshop on Testing
Database Systems (Providence, Rhode Island) (DBTest ’09). ACM, New
York, NY, USA, Article 9, 6 pages. https://doi.org/10.1145/1594156.
1594168

[18] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (2001),
5–32. https://doi.org/10.1023/A:1010933404324

[19] Sebastian Burckhardt, Badrish Chandramouli, Chris Gillum, David
Justo, Konstantinos Kallas, Connor McMahon, Christopher S. Meik-
lejohn, and Xiangfeng Zhu. 2022. Netherite: Efficient Execution of
Serverless Workflows. Proc. VLDB Endow. 15, 8 (apr 2022), 1591–1604.
https://doi.org/10.14778/3529337.3529344

[20] Sebastian Burckhardt, Chris Gillum, David Justo, Konstantinos Kallas,
Connor McMahon, and Christopher S. Meiklejohn. 2021. Durable
Functions: Semantics for Stateful Serverless. Proc. ACM Program. Lang.
5, OOPSLA, Article 133 (oct 2021), 27 pages. https://doi.org/10.1145/
3485510

[21] Robert Chatley and Thomas Allerton. 2020. Nimbus: improving the
developer experience for serverless applications. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering:
Companion Proceedings (Seoul, South Korea) (ICSE ’20). Association
for Computing Machinery, New York, NY, USA, 85–88. https://doi.

org/10.1145/3377812.3382135
[22] M. Copik, M. Chrapek, L. Schmid, A. Calotoiu, and T. Hoefler. 2024.

Software Resource Disaggregation for HPCwith Serverless Computing.
In 2024 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS). IEEE Computer Society, Los Alamitos, CA, USA, 139–156.
https://doi.org/10.1109/IPDPS57955.2024.00021

[23] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Pod-
stawski, and Torsten Hoefler. 2021. SeBS: A Serverless Benchmark
Suite for Function-as-a-Service Computing. In Proceedings of the 22nd
International Middleware Conference (Québec city, Canada) (Middle-
ware ’21). Association for Computing Machinery, New York, NY, USA,
64–78. https://doi.org/10.1145/3464298.3476133

[24] Anirban Das, Stacy Patterson, and Mike Wittie. 2018. EdgeBench:
Benchmarking Edge Computing Platforms. In 2018 IEEE/ACM Inter-
national Conference on Utility and Cloud Computing Companion (UCC
Companion). IEEE. https://doi.org/10.1109/ucc-companion.2018.00053

[25] Datadog. 2024. The State of Serverless. https://www.datadoghq.com/
state-of-serverless/. Accessed: 2024-01-28.

[26] Oscar Dieste, Anna Grimán, and Natalia Juristo. 2009. Developing
search strategies for detecting relevant experiments. Empirical Soft-
ware Engineering 14 (2009), 513–539.

[27] Simon Eismann, Joel Scheuner, Erwin van Eyk, Maximilian Schwinger,
Johannes Grohmann, Nikolas Herbst, Cristina L. Abad, and Alexandru
Iosup. 2022. The State of Serverless Applications: Collection, Charac-
terization, and Community Consensus. IEEE Transactions on Software
Engineering 48, 10 (2022), 4152–4166. https://doi.org/10.1109/TSE.2021.
3113940

[28] Simon Eismann, Joel Scheuner, Erwin Van Eyk, Maximilian Schwinger,
Johannes Grohmann, Nikolas Herbst, Cristina L Abad, and Alexandru
Iosup. 2020. A review of serverless use cases and their characteristics.
arXiv preprint arXiv:2008.11110 (2020).

[29] Simon Eismann, Joel Scheuner, Erwin van Eyk, Maximilian Schwinger,
Johannes Grohmann, Nikolas Herbst, Cristina L. Abad, and Alexandru
Iosup. 2021. Serverless Applications: Why, When, and How? IEEE
Software 38, 1 (2021), 32–39. https://doi.org/10.1109/MS.2020.3023302

[30] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee,
Christos Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From
Laptop to Lambda: Outsourcing Everyday Jobs to Thousands of Tran-
sient Functional Containers. In 2019 USENIX Annual Technical Con-
ference (USENIX ATC 19). USENIX Association, Renton, WA, 475–488.
http://www.usenix.org/conference/atc19/presentation/fouladi

[31] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki
Balasubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivara-
man, George Porter, and Keith Winstein. 2017. Encoding, Fast
and Slow: Low-Latency Video Processing Using Thousands of Tiny
Threads. In 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17). USENIX Association, Boston, MA, 363–
376. https://www.usenix.org/conference/nsdi17/technical-sessions/
presentation/fouladi

[32] Hector Garcia-Molina and Kenneth Salem. 1987. Sagas. SIGMOD Rec.
16, 3 (dec 1987), 249–259. https://doi.org/10.1145/38714.38742

[33] Pedro García López, Marc Sánchez-Artigas, Gerard París, Daniel
Barcelona Pons, Alvaro Ruiz Ollobarren, and David Arroyo Pinto.
2018. Comparison of FaaS Orchestration Systems. In 2018 IEEE/ACM
International Conference on Utility and Cloud Computing Companion
(UCC Companion). 148–153. https://doi.org/10.1109/UCC-Companion.
2018.00049

[34] Google Cloud [Online; accessed 1 August 2024]. Invoke Cloud Func-
tions or Cloud Run. https://cloud.google.com/workflows/docs/calling-
run-functions.

[35] Google Cloud [Online; accessed 14 July 2024]. Cloud Functions Pricing.
https://cloud.google.com/functions/pricing.

[36] Google Cloud Workflows Pricing [Online; accessed 1 August
2024]. Google Cloud Workflows Pricing. https://cloud.google.com/

https://doi.org/10.3929/ethz-b-000574821
 https://github.com/aws-samples/step-functions-workflows-collection/tree/main/saga-pattern-tf
 https://github.com/aws-samples/step-functions-workflows-collection/tree/main/saga-pattern-tf
https://www.internationalgenome.org/
https://www.internationalgenome.org/
https://github.com/ease-lab/vSwarm
https://doi.org/10.1145/3106237.3117767
https://docs.aws.amazon.com/step-functions/latest/dg/tutorial-create-iterate-pattern-section.html
https://docs.aws.amazon.com/step-functions/latest/dg/tutorial-create-iterate-pattern-section.html
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/step-functions/pricing/
https://aws.amazon.com/step-functions/pricing/
https://azure.microsoft.com/en-us/pricing/details/functions/
https://azure.microsoft.com/en-us/pricing/details/functions/
https://doi.org/10.1007/978-3-319-99819-0_11
https://doi.org/10.1145/3366623.3368137
https://doi.org/10.1145/1594156.1594168
https://doi.org/10.1145/1594156.1594168
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.14778/3529337.3529344
https://doi.org/10.1145/3485510
https://doi.org/10.1145/3485510
https://doi.org/10.1145/3377812.3382135
https://doi.org/10.1145/3377812.3382135
https://doi.org/10.1109/IPDPS57955.2024.00021
https://doi.org/10.1145/3464298.3476133
https://doi.org/10.1109/ucc-companion.2018.00053
https://www.datadoghq.com/state-of-serverless/
https://www.datadoghq.com/state-of-serverless/
https://doi.org/10.1109/TSE.2021.3113940
https://doi.org/10.1109/TSE.2021.3113940
https://doi.org/10.1109/MS.2020.3023302
http://www.usenix.org/conference/atc19/presentation/fouladi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://doi.org/10.1145/38714.38742
https://doi.org/10.1109/UCC-Companion.2018.00049
https://doi.org/10.1109/UCC-Companion.2018.00049
https://cloud.google.com/workflows/docs/calling-run-functions
https://cloud.google.com/workflows/docs/calling-run-functions
https://cloud.google.com/functions/pricing
https://cloud.google.com/workflows/pricing
https://cloud.google.com/workflows/pricing
https://cloud.google.com/workflows/pricing

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Schmid et al.

workflows/pricing.
[37] Martin Grambow, Tobias Pfandzelter, Luk Burchard, Carsten Schu-

bert, Max Zhao, and David Bermbach. 2021. BeFaaS: An Application-
Centric Benchmarking Framework for FaaS Platforms. In 2021 IEEE
International Conference on Cloud Engineering (IC2E). 1–8. https:
//doi.org/10.1109/IC2E52221.2021.00014

[38] Ryan Hancock, Sreeharsha Udayashankar, Ali José Mashtizadeh, and
Samer Al-Kiswany. 2022. OrcBench: A Representative Serverless
Benchmark. In 2022 IEEE 15th International Conference on Cloud Com-
puting (CLOUD). 103–108. https://doi.org/10.1109/CLOUD55607.2022.
00028

[39] Torsten Hoefler and Roberto Belli. 2015. Scientific Benchmarking of
Parallel Computing Systems. ACM, 73:1–73:12. Proceedings of the In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis (SC15).

[40] Torsten Hoefler, Torsten Mehlan, Andrew Lumsdaine, and Wolfgang
Rehm. 2007. Netgauge: A Network Performance Measurement Frame-
work, In Proceedings of High Performance Computing and Communi-
cations, HPCC’07 (Houston, USA). 4782, 659–671.

[41] Qingye Jiang, Young Choon Lee, and Albert Y. Zomaya. 2017. Server-
less Execution of Scientific Workflows. In Service-Oriented Computing,
Michael Maximilien, Antonio Vallecillo, JianminWang, andMarc Oriol
(Eds.). Springer International Publishing, Cham, 706–721.

[42] Aji John, Kristiina Ausmees, Kathleen Muenzen, Catherine Kuhn,
and Amanda Tan. 2019. SWEEP: Accelerating Scientific Research
Through Scalable Serverless Workflows. In Proceedings of the 12th
IEEE/ACM International Conference on Utility and Cloud Comput-
ing Companion (Auckland, New Zealand) (UCC ’19 Companion). As-
sociation for Computing Machinery, New York, NY, USA, 43–50.
https://doi.org/10.1145/3368235.3368839

[43] Jeongchul Kim and Kyungyong Lee. 2019. FunctionBench: A Suite
of Workloads for Serverless Cloud Function Service. In 2019 IEEE
12th International Conference on Cloud Computing (CLOUD). IEEE.
https://doi.org/10.1109/cloud.2019.00091

[44] George Kousiouris, Chris Giannakos, Konstantinos Tserpes, and Teta
Stamati. 2022. Measuring Baseline Overheads in Different Orches-
tration Mechanisms for Large FaaS Workflows. In Companion of the
2022 ACM/SPEC International Conference on Performance Engineering
(Bejing, China) (ICPE ’22). Association for Computing Machinery, New
York, NY, USA, 61–68. https://doi.org/10.1145/3491204.3527467

[45] Varad Kulkarni, Nikhil Reddy, Tuhin Khare, Harini Mohan, Jahnavi
Murali, Mohith A, Ragul B, Sanjai Balajee, Sanjjit S, Swathika D, Vaish-
navi S, Yashasvee V, Chitra Babu, Abhinandan S. Prasad, and Yogesh
Simmhan. 2024. XFBench: A Cross-Cloud Benchmark Suite for Evalu-
ating FaaS Workflow Platforms. In 2024 IEEE 24th International Sym-
posium on Cluster, Cloud and Internet Computing (CCGrid). 543–556.
https://doi.org/10.1109/CCGrid59990.2024.00067

[46] lambda-vcpu Online; accessed 17 July 2024. Memory and Computing
Power. https://docs.aws.amazon.com/lambda/latest/operatorguide/
computing-power.html.

[47] Philipp Leitner, Erik Wittern, Josef Spillner, and Waldemar Hummer.
2019. A mixed-method empirical study of Function-as-a-Service soft-
ware development in industrial practice. Journal of Systems and Soft-
ware 149 (2019), 340–359. https://doi.org/10.1016/j.jss.2018.12.013

[48] Ashraf Mahgoub, Li Wang, Karthick Shankar, Yiming Zhang, Huang-
shi Tian, Subrata Mitra, Yuxing Peng, Hongqi Wang, Ana Klimovic,
Haoran Yang, et al. 2021. {SONIC}: Application-aware Data Passing
for Chained Serverless Applications. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21). 285–301.

[49] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Eshaan
Minocha, Sameh Elnikety, Saurabh Bagchi, and Somali Chaterji. 2022.
WISEFUSE: Workload Characterization and DAG Transformation for
ServerlessWorkflows. Proc. ACMMeas. Anal. Comput. Syst. 6, 2, Article
26 (June 2022), 28 pages. https://doi.org/10.1145/3530892

[50] Pascal Maissen, Pascal Felber, Peter Kropf, and Valerio Schiavoni. 2020.
FaaSdom: a benchmark suite for serverless computing. In Proceedings
of the 14th ACM International Conference on Distributed and Event-
Based Systems (Montreal, Quebec, Canada) (DEBS ’20). Association for
Computing Machinery, New York, NY, USA, 73–84. https://doi.org/
10.1145/3401025.3401738

[51] Maciej Malawski, Adam Gajek, Adam Zima, Bartosz Balis, and Kamil
Figiela. 2020. Serverless execution of scientific workflows: Experiments
with HyperFlow, AWS Lambda and Google Cloud Functions. Future
Generation Computer Systems 110 (2020), 502–514. https://doi.org/10.
1016/j.future.2017.10.029

[52] MapReduce [Online; accessed 27. July 2024]. A MapReduce
Overview. https://towardsdatascience.com/a-mapreduce-overview-
6f2d64d8d0e6.

[53] Caitie McCaffrey. 2015. Applying the Saga Pattern. https://www.
youtube.com/watch?v=xDuwrtwYHu8. Accessed: 2024-08-02.

[54] Alessandro Vittorio Papadopoulos, Laurens Versluis, André Bauer,
Nikolas Herbst, Jóakim von Kistowski, Ahmed Ali-Eldin, Cristina L.
Abad, José Nelson Amaral, Petr Tůma, and Alexandru Iosup. 2021.
Methodological Principles for Reproducible Performance Evaluation
in Cloud Computing. IEEE Transactions on Software Engineering 47, 8
(2021), 1528–1543. https://doi.org/10.1109/TSE.2019.2927908

[55] James L. Peterson. 1977. Petri Nets. ACM Comput. Surv. 9, 3 (sep 1977),
223–252. https://doi.org/10.1145/356698.356702

[56] John C. Platt. 1999. Probabilistic Outputs for Support Vector Machines
and Comparisons to Regularized Likelihood Methods. In ADVANCES
IN LARGE MARGIN CLASSIFIERS. MIT Press, 61–74.

[57] Redis Online; accessed 3 June 2024. Redis. https://redis.io/.
[58] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. 2015. Faster

R-CNN: Towards Real-Time Object Detection with Region Proposal
Networks. CoRR abs/1506.01497 (2015). arXiv:1506.01497 http://arxiv.
org/abs/1506.01497

[59] Sashko Ristov, Philipp Gritsch, David Meyer, and Michael Felderer.
2024. GoSpeechLess: Interoperable Serverless ML-based Cloud Ser-
vices. In Proceedings of the 2024 IEEE/ACM 46th International Conference
on Software Engineering: Companion Proceedings (Lisbon, Portugal)
(ICSE-Companion ’24). Association for Computing Machinery, New
York, NY, USA, 394–395. https://doi.org/10.1145/3639478.3643123

[60] Sasko Ristov, Stefan Pedratscher, and Thomas Fahringer. 2021. AFCL:
An Abstract Function Choreography Language for serverless workflow
specification. Future Generation Computer Systems 114 (2021), 368–382.
https://doi.org/10.1016/j.future.2020.08.012

[61] Rohan Basu Roy, Tirthak Patel, Vijay Gadepally, and Devesh Tiwari.
2022. Mashup: Making Serverless Computing Useful for HPC Work-
flows via Hybrid Execution. In Proceedings of the 27th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (Seoul,
Republic of Korea) (PPoPP ’22). Association for Computing Machinery,
New York, NY, USA, 46–60. https://doi.org/10.1145/3503221.3508407

[62] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. 2022. DayDream:
Executing Dynamic Scientific Workflows on Serverless Platforms with
Hot Starts. In SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis. 1–18. https://doi.org/
10.1109/SC41404.2022.00027

[63] Josep Sampe, Pedro Garcia-Lopez, Marc Sanchez-Artigas, Gil Vernik,
Pol Roca-Llaberia, and Aitor Arjona. 2021. Toward Multicloud Access
Transparency in Serverless Computing. IEEE Software 38, 1 (2021),
68–74. https://doi.org/10.1109/MS.2020.3029994

[64] Joel Scheuner, Simon Eismann, Sacheendra Talluri, Erwin van Eyk,
Cristina Abad, Philipp Leitner, and Alexandru Iosup. 2022. Let’s Trace
It: Fine-Grained Serverless Benchmarking using Synchronous and
Asynchronous Orchestrated Applications. arXiv:2205.07696 [cs.DC]

[65] Joel Scheuner and Philipp Leitner. 2020. Function-as-a-Service perfor-
mance evaluation: A multivocal literature review. Journal of Systems
and Software 170 (2020), 110708. https://doi.org/10.1016/j.jss.2020.

https://cloud.google.com/workflows/pricing
https://cloud.google.com/workflows/pricing
https://doi.org/10.1109/IC2E52221.2021.00014
https://doi.org/10.1109/IC2E52221.2021.00014
https://doi.org/10.1109/CLOUD55607.2022.00028
https://doi.org/10.1109/CLOUD55607.2022.00028
https://doi.org/10.1145/3368235.3368839
https://doi.org/10.1109/cloud.2019.00091
https://doi.org/10.1145/3491204.3527467
https://doi.org/10.1109/CCGrid59990.2024.00067
https://docs.aws.amazon.com/lambda/latest/operatorguide/computing-power.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/computing-power.html
https://doi.org/10.1016/j.jss.2018.12.013
https://doi.org/10.1145/3530892
https://doi.org/10.1145/3401025.3401738
https://doi.org/10.1145/3401025.3401738
https://doi.org/10.1016/j.future.2017.10.029
https://doi.org/10.1016/j.future.2017.10.029
https://towardsdatascience.com/a-mapreduce-overview-6f2d64d8d0e6
https://towardsdatascience.com/a-mapreduce-overview-6f2d64d8d0e6
https://www.youtube.com/watch?v=xDuwrtwYHu8
https://www.youtube.com/watch?v=xDuwrtwYHu8
https://doi.org/10.1109/TSE.2019.2927908
https://doi.org/10.1145/356698.356702
https://redis.io/
https://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.01497
https://doi.org/10.1145/3639478.3643123
https://doi.org/10.1016/j.future.2020.08.012
https://doi.org/10.1145/3503221.3508407
https://doi.org/10.1109/SC41404.2022.00027
https://doi.org/10.1109/SC41404.2022.00027
https://doi.org/10.1109/MS.2020.3029994
https://arxiv.org/abs/2205.07696
https://doi.org/10.1016/j.jss.2020.110708
https://doi.org/10.1016/j.jss.2020.110708
https://doi.org/10.1016/j.jss.2020.110708

SeBS-Flow: Benchmarking Serverless Cloud Function Workflows EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

110708
[66] Narges Shahidi, Jashwant Raj Gunasekaran, and Mahmut Taylan Kan-

demir. 2021. Cross-Platform Performance Evaluation of Stateful Server-
less Workflows. In 2021 IEEE International Symposium on Workload
Characterization (IISWC). 63–73. https://doi.org/10.1109/IISWC53511.
2021.00017

[67] Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. 2019.
Architectural Implications of Function-as-a-Service Computing. In
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture (Columbus, OH, USA) (MICRO ’52). Association
for Computing Machinery, New York, NY, USA, 1063–1075. https:
//doi.org/10.1145/3352460.3358296

[68] N. Somu, N. Daw, U. Bellur, and P. Kulkarni. 2020. PanOpticon: A
Comprehensive Benchmarking Tool for Serverless Applications. In
2020 International Conference on COMmunication Systems NETworkS
(COMSNETS). 144–151.

[69] N. Trcka, W.M.P. Aalst, van der, and N. Sidorova. 2008. Analyzing
control-flow and data-flow in workflow processes in a unified way. Tech-
nische Universiteit Eindhoven.

[70] Nikola Trčka, Wil M. P. van der Aalst, and Natalia Sidorova. 2009.
Data-Flow Anti-patterns: Discovering Data-Flow Errors in Workflows.
In Advanced Information Systems Engineering, Pascal van Eck, Jaap
Gordijn, and Roel Wieringa (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 425–439.

[71] Dmitrii Ustiugov, Theodor Amariucai, and Boris Grot. 2021. Analyz-
ing Tail Latency in Serverless Clouds with STeLLAR. In 2021 IEEE
International Symposium on Workload Characterization (IISWC). 51–62.
https://doi.org/10.1109/IISWC53511.2021.00016

[72] Jóakim v. Kistowski, Jeremy A. Arnold, Karl Huppler, Klaus-Dieter
Lange, John L. Henning, and Paul Cao. 2015. How to Build a Bench-
mark. In Proceedings of the 6th ACM/SPEC International Conference on
Performance Engineering (Austin, Texas, USA) (ICPE ’15). ACM, New
York, NY, USA, 333–336. https://doi.org/10.1145/2668930.2688819

[73] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. 2018. Peeking behind the Curtains of Serverless Plat-
forms. In Proceedings of the 2018 USENIX Conference on Usenix Annual
Technical Conference (Boston, MA, USA) (USENIX ATC ’18). USENIX
Association, USA, 133–145.

[74] Jinfeng Wen, Zhenpeng Chen, Xin Jin, and Xuanzhe Liu. 2023. Rise
of the Planet of Serverless Computing: A Systematic Review. ACM
Trans. Softw. Eng. Methodol. 32, 5, Article 131 (jul 2023), 61 pages.
https://doi.org/10.1145/3579643

[75] Jinfeng Wen, Zhenpeng Chen, and Xuanzhe Liu. 2022. Software en-
gineering for serverless computing. arXiv preprint arXiv:2207.13263
(2022).

[76] JinfengWen, Zhenpeng Chen, Yi Liu, Yiling Lou, YunMa, Gang Huang,
Xin Jin, and Xuanzhe Liu. 2021. An empirical study on challenges of
application development in serverless computing. In Proceedings of the
29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Athens,
Greece) (ESEC/FSE 2021). Association for Computing Machinery, New
York, NY, USA, 416–428. https://doi.org/10.1145/3468264.3468558

[77] Jinfeng Wen and Yi Liu. 2021. A Measurement Study on Server-
less Workflow Services. In 2021 IEEE International Conference on
Web Services (ICWS). IEEE, Los Alamitos, CA, USA, 741–750. https:
//doi.org/10.1109/ICWS53863.2021.00102

[78] Mark D Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg,
Gabrielle Appleton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-
Willem Boiten, Luiz Bonino da Silva Santos, Philip E Bourne, et al.
2016. The FAIR Guiding Principles for scientific data management and
stewardship. Scientific data 3, 1 (2016), 1–9.

[79] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian Lu,
Pingchao Yang, Chenggang Qin, and Haibo Chen. 2020. Characterizing
Serverless Platforms with Serverlessbench. In Proceedings of the 11th

ACM Symposium on Cloud Computing (Virtual Event, USA) (SoCC ’20).
Association for Computing Machinery, New York, NY, USA, 30–44.
https://doi.org/10.1145/3419111.3421280

https://doi.org/10.1016/j.jss.2020.110708
https://doi.org/10.1016/j.jss.2020.110708
https://doi.org/10.1109/IISWC53511.2021.00017
https://doi.org/10.1109/IISWC53511.2021.00017
https://doi.org/10.1145/3352460.3358296
https://doi.org/10.1145/3352460.3358296
https://doi.org/10.1109/IISWC53511.2021.00016
https://doi.org/10.1145/2668930.2688819
https://doi.org/10.1145/3579643
https://doi.org/10.1145/3468264.3468558
https://doi.org/10.1109/ICWS53863.2021.00102
https://doi.org/10.1109/ICWS53863.2021.00102
https://doi.org/10.1145/3419111.3421280

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Schmid et al.

A Artifact Appendix
A.1 Abstract
Our artifact contains the implementation of SeBS-Flow, data,
and analysis scripts. We provide the following components:

• sebs-flow-implementation - Source code of the bench-
mark suite.

• sebs-flow-artifact - Benchmarking results obtained for
the paper together with Python plotting and analysis
scripts used for data analysis.

A.2 Description & Requirements
A.2.1 How to access.
https://doi.org/10.5281/zenodo.14809924

A.2.2 Hardware dependencies. Unix system capable of
sending HTTP requests to the cloud.

A.2.3 Software dependencies.
• Docker (at least 19)
• Python 3.7+ with pip and venv
• libcurl and its headers must be available to install
pycurl

• Standard Linux tools and zip installed

A.2.4 Benchmarks. We provide benchmarks and data
used as part of the implementation in serverless-bench-
marks/benchmarks/600.workflows and serverless-bench-
marks/benchmarks-data/600.workflows.

A.3 Set-up
To install the benchmark suite with support for all platforms
used for our evaluation, use ./install.py –aws –azure
–gcp. This will create a virtual environment in python-venv,
and install necessary Python dependencies and third-party
dependencies. To use SeBS-Flow, the new Python virtual en-
vironment has to be activated: . python-venv/bin/activa-
te. To deploy benchmarks to a platform, account credentials
musst be supplied. See serverless-benchmarks/docs/plat-
forms.md for details.

For measuring the execution of serverless workflows, we
use a Redis instance deployed on a VM in the same cloud
region as the workflow and its resources. See serverless-
benchmarks/docs/workflows.md for details.

A.4 Evaluation workflow
A.4.1 Major Claims. RQ1: Runtime. We evaluate the run-
time differences between platforms by executing Experiment
E1. Results are shown in Figure 7 and 8 and discussed in Sec-
tion 7.2.
RQ2.1: Orchestration Overhead. We evaluate the overheads
caused by cloud storage I/O via executing Experiment E3
(Figure 8), by parallel scheduling via executing Experiment
E4 (Figure 10), and by the return payload via Experiment E5
(Figure 9b).

RQ2.2: Critical Path Discrepancy.We evaluate how the critical
path is impacted by OS noise via executing Experiment E6
(Figure 13) and using data from E1 (Figure 13b, 13c) and by
cold starts by analyzing the results from E1.
RQ3: Usability for Scientific Workflows.We evaluate how well
serverless workflow orchestrations are suited for execution
of scientific benchmarks by comparing execution times and
scaling of the workflow on cloud platforms and an HPC
system using data from E1 for 1000Genomes and with Ex-
periments E7 and E8 (Figure 14).
RQ4: Pricing. We evaluate the differences in pricing between
the cloud platforms by comparing execution cost of our ap-
plication benchmarks using data from E1 (Figure 15).

A.4.2 Experiments. All configuration files used are pro-
vided per platform and benchmark executed as part of the
artifact.
E1: Burst execution of application benchmarks. Execution of all
application benchmarks. The paper uses 180 burst workflow
executions per benchmark with 30 executions triggered at
once.
E2: Warm execution of application benchmarks. Execution
of Machine Learning and MapReduce benchmarks in warm
mode. The paper collects 60 workflow executions with at
least one warm function invocation per benchmark with 30
executions triggered at once.
E3: Parallel Download. Execution of the parallel download
microbenchmark with 20 functions downloading a file in
parallel, with filesizes from 210𝑏 to 228𝑏. The paper uses 30
burst executions triggered at once.
E4: Parallel Sleep. Execution of the parallel sleep microbench-
mark with 2 ≤ 𝑁 ≤ 16 functions and sleep durations of
1 ≤ 𝑇 ≤ 20s. The paper uses 30 burst executions triggered
at once.
E5: Function Chain. Execution of the function chain micro-
benchmark with 10 functions, with functions returning 25 ≤
𝑀218𝑏 sent to the next function. The paper uses 30 warm
executions.
E6: OS Noise. Execution of the selfish detour microbench-
mark collecting 𝑁 = 5000 events, executed with memory
configurations from 128MB to 2048MB. The paper uses 30
warm executions.
E7: Execution of 1000Genomes on HPC system. Execution of
the 1000Genomes workflow on an HPC system. The pa-
per uses five repetitions per configuration and a Intel(R)
6154@3.00GHz CPU. To reproduce the result that the execu-
tion on an HPC system is much faster, however, the workflow
can be run in virtually every HPC environment.
E8: Scaling of individuals task of 1000Genomes workflow.
Execution of the workflow 6101.1000-genome-individu-
als with inputs small-10 and small-20. The paper uses 180
burst workflow executions per input with 30 executions trig-
gered at once.

https://doi.org/10.5281/zenodo.14809924

SeBS-Flow: Benchmarking Serverless Cloud Function Workflows EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

A.5 Notes on Reusability
SeBS-Flow can be extended to evaluate workflow orchestra-
tions on new serverless platforms. Moreover, new workflow
benchmarks can be added to evaluate their performance on
different platforms. Repetition of benchmarks over time can
give insights into the evolution of performance.

	Abstract
	1 Introduction
	2 Background
	2.1 Developing Serverless Workflows
	2.2 Workflow Nets

	3 Serverless Workflows Model
	3.1 Transitions
	3.2 Resource Annotations

	4 Workflows Benchmark Suite
	4.1 Platform-Agnostic Workflow Definition
	4.2 Platform-Specific Transcription
	4.3 Benchmark Suite

	5 Benchmark Applications
	6 Evaluation of Workflow Model
	6.1 Expressiveness of our Model
	6.2 Overhead of our Model
	6.3 Threats to Validity

	7 Evaluation of Cloud Services
	7.1 Methodology
	7.2 RQ1: Runtime Differences among Platforms
	7.3 RQ2: Causes for Runtime and Stability Differences
	7.4 RQ3: Usability for Scientific Workflows
	7.5 RQ4: Pricing
	7.6 RQ5: Evolution of Performance
	7.7 Threats to Validity

	8 Related Work
	9 Conclusions
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation workflow
	A.5 Notes on Reusability

