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Abstract
Three years ago, SeBS, the serverless benchmarking suite, was in-
troduced to address the need for an automatic, representative, and
easy-to-use benchmarking framework for FaaS applications. SeBS
has been widely adopted in research projects and has evolved to in-
corporate new features addressing the changing landscape of FaaS
platforms. As serverless workflows and services continue to grow
in size and complexity, there is an ongoing need to support emerg-
ing application classes. In this paper, we outline both the progress
made and the roadmap for supporting new workloads and frame-
works, while identifying upcoming trends and paradigm shifts to
provide researchers with reliable and reproducible benchmarks.
The serverless community needs an open and portable benchmark-
ing framework to drive future progress, and SeBS aims to fulfill this
crucial role.

CCS Concepts
• Computer systems organization→ Cloud computing; • Soft-
ware and its engineering → Cloud computing; • General and
reference → Metrics; Performance; Evaluation; Measurement.
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1 Past
The Serverless Benchmark Suite (SeBS) was introduced in 2020 as
a comprehensive framework for evaluating Function-as-a-Service
(FaaS) platforms [5], supporting three major commercial serverless
systems: AWS Lambda, Azure Functions, and Google Cloud Func-
tions. In addition to providing a collection of real-world serverless
functions, SeBS offered an integrated solution for automatic bench-
marking: the framework allows users to automatically build deploy-
ment artifacts of selected functions, deploy them to the selected
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cloud platform, invoke functions, and conduct performance analy-
sis. This approach helps to ensure reproducible experiments, as
deployment artifacts are consistently built following standardized
recipes, regardless of the packaging requirements or cloud platform
specifications. Among the core design principles weremodular-
ity and focus on the cloud-agnostic approach. The modular ar-
chitecture allows seamless integration of new serverless systems,
benchmarks, and programming languages through a plugin-like
system. By implementing cloud-agnostic benchmarks with a uni-
fied API that abstracts away provider-specific details, SeBS enables
fair comparisons across different serverless platforms.

In recent years, the serverless computing landscape has changed
significantly, with new types of workloads, a focus on data move-
ment, and increased complexity of serverless applications. To main-
tain relevance and continue serving the research community effec-
tively, SeBS needs to evolve to address these emerging trends.

2 Present
Since its initial benchmark release, SeBS has significantly expanded
its capabilities, platform support, and measurement framework. In
this section, we summarize the major updates and current work in
progress, focusing on the new types of experiments and measure-
ments that these changes enabled.

Languages. SeBS has been extended to support two new pro-
gramming languages: C++ and Java. These additions allow bench-
marking across different cold start scenarios: from the minimal
overhead of compiled languages in C++ to Java’s heavy runtime,
which prompted cloud providers to introduce function snapshot-
ting. Additionally, C++ support enables future benchmarking of
high-performance and GPU-accelerated functions, while Java sup-
port will facilitate the inclusion of microservice benchmarks like
TeaStore.

Deployment. SeBS now supports a wider range of serverless
platforms, including OpenWhisk, Fission, and Knative. While ini-
tially, all functions were deployed as ZIP code packages to provide
a shared and fair evaluation baseline among cloud providers, SeBS
now includes container support. This allows users to circumvent
code size limits and evaluate how different deployment methods
affect performance. Containers are now the default deployment
method for both Knative and OpenWhisk. Finally, benchmark func-
tions have been adapted to support the aarch64 architecture, re-
flecting the growing adoption of ARM architecture in clouds.

Cloud Services. The initial SeBS release provided a unified in-
terface for object storage, where each benchmark configuration
only has to define the data that needs to be uploaded to the cloud.
SeBS has now expanded to support additional cloud service types,
specifically NoSQL databases and queues. For NoSQL, SeBS imple-
ments a unified interface of key-value storage with primary and
sorting keys, using underneath DynamoDB on AWS, CosmosDB
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Figure 1: Past, present, and proposed future of SeBS: addressing the ever-changing serverless with new features and benchmarks.

on Azure, and Firestore in Datastore mode on Google Cloud. On
open-source platforms, it can deploy ScyllaDB with its DynamoDB
adapter to provide similar semantics. This integration of serverless
key-value storage enables the representation of workloads where
dynamic components of cloud services are offloaded to serverless
functions.

Similarly, we have been working on supporting cloud queues in
SeBS to enable data exchange and invoking functions by pushing
new messages to the queue. This new trigger capability allows
us to include dynamic applications that do not fit into the static
form of a workflow, such as microservices. With queues triggering
function invocations, these applications can be built in a cloud-
native fashion while maintaining reliable execution. Furthermore,
queues can guarantee the FIFO ordering of invocations, which is
needed in applications like serverless ZooKeeper [4]. Finally, queues
will allow for future support of asynchronous function invocations
by providing a channel to return execution results back to the user.
SeBS currently supports SQS on AWS, StorageQueue on Azure, and
PubSub on Google Cloud, with plans to incorporate RabbitMQ for
open-source platforms in the future.

Benchmarks. Contributions to SeBS include new benchmarks
and applications that cover a broader spectrum of serverless use
cases and scenarios. These additions include website backends: a
web application that uses NoSQL storage underneath, utility func-
tions performing optical character recognition with Tesseract and
PDF generation with Puppeteer, and an ML inference performing
image captioning. These benchmarks provide greater diversity in
common workloads that use serverless as a scalable backend for
web and cloud services.

Experiments. Additionally, SeBS has been extended with new
experiments to measure the latency and bandwidth of various
serverless communicationmodes, including cloud storage, in-memory
caches, and direct communication through NAT hole punching.
These experiments provide crucial performance data needed to un-
derstand how the reduced I/O performance impacts data-intensive

workloads, such as data analytics, high-performance computing,
and machine learning training [3, 15].

Workflows. A significant enhancement to SeBS is the inclusion
of a whole new category of serverless applications: workflows [13].
Serverless workflows are built as a graph of functions with standard
control-flow operations, allowing to represent more complex com-
puting pipelines and even entire applications. SeBS now provides
a unified and cloud-agnostic workflow specification model that
is translated into a vendor-specific representation for AWS Step
Functions, Azure Durable Functions, and Google Cloud Workflow.
Experiments measure the latency, cost, and scalability of serverless
workflows, using six different workflows that spanweb applications,
machine learning, data analytics, and high-performance computing.

3 Future
We will continue development of SeBS by supporting more lan-
guage runtimes, such as Golang and WebAssembly (WASM), and
adding serverless new platforms, e.g., funcX [2] or rFaaS [6]. To ac-
commodate ongoing changes in serverless and meet the new needs
of the research community, we propose five major extensions that
will increase the usability of the benchmark suite and future-proof
it for new classes of workloads.

WorkloadGenerators.With the increasing availability of server-
less traces from various cloud providers, researchers can now bench-
mark serverless applications using realistic workloads. We plan
to integrate trace-driven execution alongside standard invocation
policies in SeBS, and we believe that it might become the default
invocation method in the future. Since most traces are too large in
scope and size, we will rely on existing approaches that provide
downscaling of invocation rates [11, 14].

Bring-Your-Own-Function. We plan to extend support for
benchmarking custom applications by allowing users to provide
their own function code, dependencies, and input. This will enable
the execution of all SeBS experiments, letting users benefit from
fully automated testing while evaluating their own applications.
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Profiling Serverless observability is another example of vendor
lock-in, as functions typically depend on cloud services to locate
performance bottlenecks and estimate the impact of external ser-
vices. To understand the end-to-end latency of large serverless
applications, it is necessary to combine profiling data from different
functions to create a single application graph. We plan to include
an existing FaaS profiler to analyze performance at the level of
functions and whole applications [17]. Since the profiler does not
offload tracing tasks to an existing cloud service, such as X-Ray on
AWS, it can also be used with open-source and research platforms.

GPU Benchmarks. Accelerators are becoming increasingly
important, with machine learning inference being one particular
workload that benefits the most. However, practical deployments
of GPU-accelerated functions run into many performance issues of
cold starts and device sharing [7, 16]. We plan to enhance SeBS with
GPU functions, focusing on common machine learning inference
kernels and applications from scientific computing. Furthermore,
we want to focus on experiments targeting GPU-specific challenges,
such as the impact of co-location and overheads of checkpointing.

Serverless Services. Serverless applications have already been
noticed as an important workload for benchmarking in FaaS [1, 9,
12]. We plan to include new microservice-style workloads [8, 10] to
test the full spectrum of cloud services in a single benchmark. This
will support both complete invocations and more granular bench-
marking of individual system components. Furthermore, comparing
with already supported workflows will highlight the strengths and
weaknesses of both programming models.

4 Conclusions
SeBS has evolved significantly since its inception, and the ongoing
work on hardware acceleration, programming models, and bench-
mark diversity addresses the new trends in serverless development.
With the proposed changes, we expect the tool to make serverless
research more productive by eliminating the custom and often man-
ual work needed to prepare experiments. We anticipate that SeBS
will remain a valuable tool for both researchers and practitioners
in the serverless computing community.
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