
SeBS 2.0: Keeping up with the Clouds
Marcin Copik
ETH Zurich
Switzerland

marcin.copik@inf.ethz.ch

Alexandru Calotoiu
ETH Zurich
Switzerland

alexandru.calotoiu@inf.ethz.ch

Torsten Hoefler
ETH Zurich
Switzerland

htor@inf.ethz.ch

Abstract
Three years ago, SeBS, the serverless benchmarking suite, was in-
troduced to address the need for an automatic, representative, and
easy-to-use benchmarking framework for FaaS applications. SeBS
has been widely adopted in research projects and has evolved to in-
corporate new features addressing the changing landscape of FaaS
platforms. As serverless workflows and services continue to grow
in size and complexity, there is an ongoing need to support emerg-
ing application classes. In this paper, we outline both the progress
made and the roadmap for supporting new workloads and frame-
works, while identifying upcoming trends and paradigm shifts to
provide researchers with reliable and reproducible benchmarks.
The serverless community needs an open and portable benchmark-
ing framework to drive future progress, and SeBS aims to fulfill this
crucial role.

CCS Concepts
• Computer systems organization→ Cloud computing; • Soft-
ware and its engineering → Cloud computing; • General and
reference → Metrics; Performance; Evaluation; Measurement.

Keywords
Serverless, Function-as-a-Service, FaaS, Benchmark
ACM Reference Format:
Marcin Copik, Alexandru Calotoiu, and Torsten Hoefler. 2025. SeBS 2.0:
Keeping up with the Clouds. In The 3rd Workshop on SErverless Systems,
Applications and MEthodologies (SESAME’ 25), March 30-April 3, 2025, Rot-
terdam, Netherlands. ACM, New York, NY, USA, 3 pages. https://doi.org/10.
1145/3721465.3721867

SeBS implementation: https://github.com/spcl/serverless-benchmarks

1 Past
The Serverless Benchmark Suite (SeBS) was introduced in 2020 as
a comprehensive framework for evaluating Function-as-a-Service
(FaaS) platforms [5], supporting three major commercial serverless
systems: AWS Lambda, Azure Functions, and Google Cloud Func-
tions. In addition to providing a collection of real-world serverless
functions, SeBS offered an integrated solution for automatic bench-
marking: the framework allows users to automatically build deploy-
ment artifacts of selected functions, deploy them to the selected

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SESAME’ 25, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1557-0/2025/03
https://doi.org/10.1145/3721465.3721867

cloud platform, invoke functions, and conduct performance analy-
sis. This approach helps to ensure reproducible experiments, as
deployment artifacts are consistently built following standardized
recipes, regardless of the packaging requirements or cloud platform
specifications. Among the core design principles weremodular-
ity and focus on the cloud-agnostic approach. The modular ar-
chitecture allows seamless integration of new serverless systems,
benchmarks, and programming languages through a plugin-like
system. By implementing cloud-agnostic benchmarks with a uni-
fied API that abstracts away provider-specific details, SeBS enables
fair comparisons across different serverless platforms.

In recent years, the serverless computing landscape has changed
significantly, with new types of workloads, a focus on data move-
ment, and increased complexity of serverless applications. To main-
tain relevance and continue serving the research community effec-
tively, SeBS needs to evolve to address these emerging trends.

2 Present
Since its initial benchmark release, SeBS has significantly expanded
its capabilities, platform support, and measurement framework. In
this section, we summarize the major updates and current work in
progress, focusing on the new types of experiments and measure-
ments that these changes enabled.

Languages. SeBS has been extended to support two new pro-
gramming languages: C++ and Java. These additions allow bench-
marking across different cold start scenarios: from the minimal
overhead of compiled languages in C++ to Java’s heavy runtime,
which prompted cloud providers to introduce function snapshot-
ting. Additionally, C++ support enables future benchmarking of
high-performance and GPU-accelerated functions, while Java sup-
port will facilitate the inclusion of microservice benchmarks like
TeaStore.

Deployment. SeBS now supports a wider range of serverless
platforms, including OpenWhisk, Fission, and Knative. While ini-
tially, all functions were deployed as ZIP code packages to provide
a shared and fair evaluation baseline among cloud providers, SeBS
now includes container support. This allows users to circumvent
code size limits and evaluate how different deployment methods
affect performance. Containers are now the default deployment
method for both Knative and OpenWhisk. Finally, benchmark func-
tions have been adapted to support the aarch64 architecture, re-
flecting the growing adoption of ARM architecture in clouds.

Cloud Services. The initial SeBS release provided a unified in-
terface for object storage, where each benchmark configuration
only has to define the data that needs to be uploaded to the cloud.
SeBS has now expanded to support additional cloud service types,
specifically NoSQL databases and queues. For NoSQL, SeBS imple-
ments a unified interface of key-value storage with primary and
sorting keys, using underneath DynamoDB on AWS, CosmosDB

https://doi.org/10.1145/3721465.3721867
https://doi.org/10.1145/3721465.3721867
https://github.com/spcl/serverless-benchmarks
https://doi.org/10.1145/3721465.3721867


SESAME’ 25, March 30-April 3, 2025, Rotterdam, Netherlands Copik, et al.

SeBS: The Serverless Benchmark Suite

Performance, Cost, Overheads
Container Eviction

I/O, Communication
Cloud Workflows & Services

GPU & Serverless Services
Workload Generators

Research
Platforms

Evaluate platforms benchmarksserverless with realistic

AWS Lambda Azure Functions Google Cloud
Functions

Cloudflare
Workers

Figure 1: Past, present, and proposed future of SeBS: addressing the ever-changing serverless with new features and benchmarks.

on Azure, and Firestore in Datastore mode on Google Cloud. On
open-source platforms, it can deploy ScyllaDB with its DynamoDB
adapter to provide similar semantics. This integration of serverless
key-value storage enables the representation of workloads where
dynamic components of cloud services are offloaded to serverless
functions.

Similarly, we have been working on supporting cloud queues in
SeBS to enable data exchange and invoking functions by pushing
new messages to the queue. This new trigger capability allows
us to include dynamic applications that do not fit into the static
form of a workflow, such as microservices. With queues triggering
function invocations, these applications can be built in a cloud-
native fashion while maintaining reliable execution. Furthermore,
queues can guarantee the FIFO ordering of invocations, which is
needed in applications like serverless ZooKeeper [4]. Finally, queues
will allow for future support of asynchronous function invocations
by providing a channel to return execution results back to the user.
SeBS currently supports SQS on AWS, StorageQueue on Azure, and
PubSub on Google Cloud, with plans to incorporate RabbitMQ for
open-source platforms in the future.

Benchmarks. Contributions to SeBS include new benchmarks
and applications that cover a broader spectrum of serverless use
cases and scenarios. These additions include website backends: a
web application that uses NoSQL storage underneath, utility func-
tions performing optical character recognition with Tesseract and
PDF generation with Puppeteer, and an ML inference performing
image captioning. These benchmarks provide greater diversity in
common workloads that use serverless as a scalable backend for
web and cloud services.

Experiments. Additionally, SeBS has been extended with new
experiments to measure the latency and bandwidth of various
serverless communicationmodes, including cloud storage, in-memory
caches, and direct communication through NAT hole punching.
These experiments provide crucial performance data needed to un-
derstand how the reduced I/O performance impacts data-intensive

workloads, such as data analytics, high-performance computing,
and machine learning training [3, 15].

Workflows. A significant enhancement to SeBS is the inclusion
of a whole new category of serverless applications: workflows [13].
Serverless workflows are built as a graph of functions with standard
control-flow operations, allowing to represent more complex com-
puting pipelines and even entire applications. SeBS now provides
a unified and cloud-agnostic workflow specification model that
is translated into a vendor-specific representation for AWS Step
Functions, Azure Durable Functions, and Google Cloud Workflow.
Experiments measure the latency, cost, and scalability of serverless
workflows, using six different workflows that spanweb applications,
machine learning, data analytics, and high-performance computing.

3 Future
We will continue development of SeBS by supporting more lan-
guage runtimes, such as Golang and WebAssembly (WASM), and
adding serverless new platforms, e.g., funcX [2] or rFaaS [6]. To ac-
commodate ongoing changes in serverless and meet the new needs
of the research community, we propose five major extensions that
will increase the usability of the benchmark suite and future-proof
it for new classes of workloads.

WorkloadGenerators.With the increasing availability of server-
less traces from various cloud providers, researchers can now bench-
mark serverless applications using realistic workloads. We plan
to integrate trace-driven execution alongside standard invocation
policies in SeBS, and we believe that it might become the default
invocation method in the future. Since most traces are too large in
scope and size, we will rely on existing approaches that provide
downscaling of invocation rates [11, 14].

Bring-Your-Own-Function. We plan to extend support for
benchmarking custom applications by allowing users to provide
their own function code, dependencies, and input. This will enable
the execution of all SeBS experiments, letting users benefit from
fully automated testing while evaluating their own applications.



SeBS 2.0: Keeping up with the Clouds SESAME’ 25, March 30-April 3, 2025, Rotterdam, Netherlands

Profiling Serverless observability is another example of vendor
lock-in, as functions typically depend on cloud services to locate
performance bottlenecks and estimate the impact of external ser-
vices. To understand the end-to-end latency of large serverless
applications, it is necessary to combine profiling data from different
functions to create a single application graph. We plan to include
an existing FaaS profiler to analyze performance at the level of
functions and whole applications [17]. Since the profiler does not
offload tracing tasks to an existing cloud service, such as X-Ray on
AWS, it can also be used with open-source and research platforms.

GPU Benchmarks. Accelerators are becoming increasingly
important, with machine learning inference being one particular
workload that benefits the most. However, practical deployments
of GPU-accelerated functions run into many performance issues of
cold starts and device sharing [7, 16]. We plan to enhance SeBS with
GPU functions, focusing on common machine learning inference
kernels and applications from scientific computing. Furthermore,
we want to focus on experiments targeting GPU-specific challenges,
such as the impact of co-location and overheads of checkpointing.

Serverless Services. Serverless applications have already been
noticed as an important workload for benchmarking in FaaS [1, 9,
12]. We plan to include new microservice-style workloads [8, 10] to
test the full spectrum of cloud services in a single benchmark. This
will support both complete invocations and more granular bench-
marking of individual system components. Furthermore, comparing
with already supported workflows will highlight the strengths and
weaknesses of both programming models.

4 Conclusions
SeBS has evolved significantly since its inception, and the ongoing
work on hardware acceleration, programming models, and bench-
mark diversity addresses the new trends in serverless development.
With the proposed changes, we expect the tool to make serverless
research more productive by eliminating the custom and often man-
ual work needed to prepare experiments. We anticipate that SeBS
will remain a valuable tool for both researchers and practitioners
in the serverless computing community.

Acknowledgments
This work would not have been possible without the contributions
of our students and collaborators: Laurent Brandner, Nico Graf,
Sascha Kehrli, Prajin Khadka, Abhishek Kumar, Oana Rosca, Larissa
Schmid, Mahla Sharifi, Malte Wächter, and Paweł Żuk. Abhishek
Kumar and Prajin Khadka have been supported through the Google
Summer of Code program. This project has received funding from
the European Research Council (ERC) under the European Union’s
Horizon 2020 program (grant agreement PSAP, No. 101002047), and
from the Swiss State Secretariat for Education, Research and Inno-
vation (SERI) under the SwissTwins project. We thank AmazonWeb
Services for supporting the development of SeBS projects with cred-
its through the AWS Cloud Credit for Research, and Google Cloud
Platform through the Google Cloud Research Credits program with
the award GCP19980904.

References
[1] [Online; accessed 6. March 2025]. vSwarm - Serverless Benchmarking Suite.

https://github.com/ease-lab/vSwarm.

[2] Ryan Chard, Yadu Babuji, Zhuozhao Li, Tyler Skluzacek, Anna Woodard, Ben
Blaiszik, Ian Foster, and Kyle Chard. 2020. funcX: A Federated Function Serving
Fabric for Science. In Proceedings of the 29th International Symposium on High-
Performance Parallel and Distributed Computing (Stockholm, Sweden) (HPDC ’20).
Association for Computing Machinery, New York, NY, USA, 65–76. doi:10.1145/
3369583.3392683

[3] Marcin Copik, Roman Böhringer, Alexandru Calotoiu, and Torsten Hoefler. 2023.
FMI: Fast and Cheap Message Passing for Serverless Functions. In Proceedings
of the 37th International Conference on Supercomputing (Orlando, FL, USA) (ICS
’23). Association for Computing Machinery, New York, NY, USA, 373–385. doi:10.
1145/3577193.3593718

[4] Marcin Copik, Alexandru Calotoiu, Pengyu Zhou, Konstantin Taranov, and
Torsten Hoefler. 2024. FaaSKeeper: Learning from Building Serverless Services
with ZooKeeper as an Example. In Proceedings of the 33rd International Sym-
posium on High-Performance Parallel and Distributed Computing (Pisa, Italy)
(HPDC ’24). Association for Computing Machinery, New York, NY, USA, 94–108.
doi:10.1145/3625549.3658661

[5] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Podstawski, and
Torsten Hoefler. 2021. SeBS: A Serverless Benchmark Suite for Function-as-a-
Service Computing. In Proceedings of the 22nd International Middleware Conference
(Québec city, Canada) (Middleware ’21). Association for Computing Machinery,
New York, NY, USA, 64–78. doi:10.1145/3464298.3476133

[6] Marcin Copik, Konstantin Taranov, Alexandru Calotoiu, and Torsten Hoefler.
2023. rFaaS: Enabling High Performance Serverless with RDMA and Leases. In
2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
897–907. doi:10.1109/IPDPS54959.2023.00094

[7] Henrique Fingler, Zhiting Zhu, Esther Yoon, Zhipeng Jia, Emmett Witchel, and
Christopher J Rossbach. 2022. DGSF: Disaggregated GPUs for serverless functions.
In 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 739–750.

[8] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, et al. 2019. An
open-source benchmark suite for microservices and their hardware-software
implications for cloud & edge systems. In Proceedings of the Twenty-Fourth In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems. 3–18.

[9] Martin Grambow, Tobias Pfandzelter, Luk Burchard, Carsten Schubert, Max Zhao,
and David Bermbach. 2021. BeFaaS: An Application-Centric Benchmarking
Framework for FaaS Platforms. In 2021 IEEE International Conference on Cloud
Engineering (IC2E). 1–8. doi:10.1109/IC2E52221.2021.00014

[10] Zhipeng Jia and EmmettWitchel. 2021. Nightcore: efficient and scalable serverless
computing for latency-sensitive, interactive microservices. In Proceedings of the
26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems. 152–166.

[11] Christos Katsakioris, Chloe Alverti, Konstantinos Nikas, Dimitrios Siakavaras,
Stratos Psomadakis, and Nectarios Koziris. 2024. FaaSRail: Employing Real Work-
loads to Generate Representative Load for Serverless Research. In Proceedings of
the 33rd International Symposium on High-Performance Parallel and Distributed
Computing (Pisa, Italy) (HPDC ’24). Association for Computing Machinery, New
York, NY, USA, 214–226. doi:10.1145/3625549.3658684

[12] Joel Scheuner, Simon Eismann, Sacheendra Talluri, Erwin van Eyk, Cristina Abad,
Philipp Leitner, and Alexandru Iosup. 2022. Let’s Trace It: Fine-Grained Serverless
Benchmarking using Synchronous and Asynchronous Orchestrated Applications.
arXiv:2205.07696 [cs.DC] https://arxiv.org/abs/2205.07696

[13] Larrisa Schmid, Marcin Copik, Alexandru Calotoiu, Laurin Brandner, Anne Kozi-
olek, and Torsten Hoefler. 2025. SeBS-Flow: Benchmarking Serverless Cloud
FunctionWorkflows. In Proceedings of the Twentieth European Conference on Com-
puter Systems (Rotterdam, Netherlands) (EuroSys’25). Association for Computing
Machinery, New York, NY, USA. doi:10.1145/3689031.3717465

[14] Dmitrii Ustiugov, Dohyun Park, Lazar Cvetković, Mihajlo Djokic, Hongyu Hè,
Boris Grot, and Ana Klimovic. 2023. Enabling In-Vitro Serverless Systems Re-
search. In Proceedings of the 4th Workshop on Resource Disaggregation and Server-
less (Koblenz, Germany) (WORDS ’23). Association for Computing Machinery,
New York, NY, USA, 1–7. doi:10.1145/3605181.3626191

[15] Michael Wawrzoniak, Ingo Müller, Rodrigo Fraga Barcelos Paulus Bruno, and
Gustavo Alonso. 2021. Boxer: Data analytics on network-enabled serverless
platforms. In 11th annual conference on innovative data systems research (CIDR
2021). ETH Zurich.

[16] Hao Wu, Yue Yu, Junxiao Deng, Shadi Ibrahim, Song Wu, Hao Fan, Ziyue Cheng,
and Hai Jin. 2024. {StreamBox}: A Lightweight {GPU}{SandBox} for Serverless
Inference Workflow. In 2024 USENIX Annual Technical Conference (USENIX ATC
24). 59–73.

[17] Malte Wächter, Marcin Copik, Alexandru Calotoiu, and Torsten Hoefler. 2022.
FaaS-Profiler: Serverless Tracing and Profiling. https://www.serverlesscomputing.
org/wosc8/demos/d2. Demo at 8th Workshop on Serverless Computing.

https://github.com/ease-lab/vSwarm
https://doi.org/10.1145/3369583.3392683
https://doi.org/10.1145/3369583.3392683
https://doi.org/10.1145/3577193.3593718
https://doi.org/10.1145/3577193.3593718
https://doi.org/10.1145/3625549.3658661
https://doi.org/10.1145/3464298.3476133
https://doi.org/10.1109/IPDPS54959.2023.00094
https://doi.org/10.1109/IC2E52221.2021.00014
https://doi.org/10.1145/3625549.3658684
https://arxiv.org/abs/2205.07696
https://arxiv.org/abs/2205.07696
https://doi.org/10.1145/3689031.3717465
https://doi.org/10.1145/3605181.3626191
https://www.serverlesscomputing.org/wosc8/demos/d2
https://www.serverlesscomputing.org/wosc8/demos/d2

	Abstract
	1 Past
	2 Present
	3 Future
	4 Conclusions
	Acknowledgments
	References

