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Abstract
We present the first-ever global simulation of the full Earth system
at 1.25 km grid spacing, achieving highest time compressionwith an
unseen number of degrees of freedom. Our model captures the flow
of energy, water, and carbon through key components of the Earth
system: atmosphere, ocean, and land. To achieve this landmark
simulation, we harness the power of 8192 GPUs on Alps and 20 480
GPUs on JUPITER, two of the world’s largest GH200 superchip
installations. We use both the Grace CPUs and Hopper GPUs by
carefully balancing Earth’s components in a heterogeneous setup
and optimizing acceleration techniques available in ICON’s code-
base. We show how separation of concerns can reduce the code
complexity by half while increasing performance and portability.
Our achieved time compression of 145.7 simulated days per day
enables long studies including full interactions in the Earth system
and even outperforms earlier atmosphere-only simulations at a
similar resolution.

CCS Concepts
• Applied computing→ Earth and atmospheric sciences.

Keywords
Climate and earth system modeling, GPU and CPU hybrid comput-
ing, 1 km global grid-spacing
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1 JUSTIFICATION FOR ACM GORDON BELL
PRIZE FOR CLIMATE MODELLING

We achieve the first-ever simulations of the full Earth system on
a 1.25 km global grid at highest time compression with an unseen
number of degrees of freedom. Our innovations productively lever-
age the hybrid architecture of 20 480 GH200 superchips harmoniz-
ing and scaling the simulation of diverse physical, chemical, and
biological processes.
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2 Performance Attributes

Attribute title Attribute value

Category achievement Scalability, time-to-solution
Type of method used Finite volume with explicit

implicit two-time-level predic-
tor–corrector time-stepping

Results reported on the basis of Whole application
Precision report Double precision
System scale Near full system
Measurement mechanism Timers

3 Overview of the Problem
Climate change is one of the greatest challenges facing societies
and ecosystems. How human activities influence the climate de-
pends on a complex interplay among diverse physical, biological,
and chemical processes within the Earth system, whose non-linear
interactions are coupled across a wide range of spatial and temporal
scales. The varied processes, time, and spatial scales involved make
their computation an extraordinary challenge.

At the heart of the challenge is the ambition to incorporate scales
and processes necessary to physically couple the cycles of water, en-
ergy, and carbon – the alpha and omega of climate science. Coupling
the energy and water cycle requires resolving the gravest modes of
convective instability, which most of us experience as weather. The
qualitative change in a model able to resolve the dominant modes
of moist convection explains why global scale simulations at 1 km
have long been the holy-grail for those interested in the physics of
the climate and climate change [31, 32, 34].

Coupling the cycles of water and energy to that of carbon re-
sults in a manifestly more complex system. Flows of carbon among
Earth’s spheres depend on biogeochemical and dynamical processes
in the ocean, and a cacophony of processes within the land bio-
sphere [6]. This then adds process complexity (biology, chemistry)
to the scale complexity of the physical climate system.

Crowning these difficulties is the requirement that they be re-
solved without overly compromising system throughput. The tem-
poral compression 𝜏, expresses this throughput in units of simulated
time versus actual time. Scientifically interesting studies are enabled
by a 𝜏 of a few tens, to a few hundreds. With 𝜏 = 30 it becomes easy
to study the diurnal cycle, and starts to become practical to study
interannual variability, and hence Earth’s main modes of forced
variability.

With 𝜏 = 300 it becomes easy to study interannual variability,
and multi-decadal simulations start to become practical. This en-
ables studies of changes observed over the instrumental record; the
exploration of scenarios of future changes to inform adaptation; or
the investigation of irreversible changes that can have a bearing on
mitigation efforts [30].

In the past, researchers adopted one of two methods to circum-
vent an inability to explicitly incorporate scales and processes nec-
essary to physically couple the cycles of water, energy, and carbon
with sufficient temporal compression. One method was to restrict
models to a particular component of the Earth system to capture
scale interactions at short time-scales and / or over limited do-
mains [27, 28]. The second method was to forgo scale interactions,
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use statistical representations of fast and fine processes and include
as many processes as possible of the full Earth system [3, 30]. The
former could take advantage of high-performance computing. The
latter entailed a computing paradigm that favors simple and smaller
computing architectures [4]. From a scientific perspective, by adopt-
ing the first approach, researchers decoupled the carbon from the
water and energy cycles to understand water and energy. In the
second approach, the water cycle was decoupled from the energy
and carbon cycles to study energy and carbon. In this paper we are
first to demonstrate how new heterogeneous computing architectures
make it now possible to simulate the coupled water, energy, and car-
bon cycles all on a 1.25-km-scale global mesh and with a temporal
compression that allows numerical experimentation on timescales of
years to decades.

The size of the challenge of computing the coupling of water, en-
ergy, and carbon with a temporal compression sufficient to answer
meaningful scientific questions can be appreciated by considering
that a global, km-scale mesh with roughly 100 layers spanning
the depth of the atmosphere, respectively the ocean, entails about
5 × 1010 spatial degrees of freedom – or grid cells. When these are
combined with prognostic quantities associated with these cells,
e.g., the state of the atmosphere and ocean, plus tracers for H2O,
CO2, and O3 in the atmosphere, and 19 biogeochemical quantities
in the ocean, properties describing the state of soils, the terrestrial
biosphere (e.g., plant functional types and various carbon pools),
and surface snow and ice, the result is roughly 1 × 1012 physical-
spatial degrees of freedom for our largest configuration (Table 2).
Storing those degrees of freedom alone requires 8 TiB of main mem-
ory in double precision, more than the biggest announced trillion-
parameter AI models. The particular challenge of simulating the
Earth system at km-scale resolution then becomes one of taming
the heterogeneity of a gargantuan system without compromising
either the computational weak or strong scaling.

To meet this computational challenge requires harmonizing the
representation of the system across a code base that incorporates an
enormous range of processes operating at very different timescales
with different spatial discretizations. For example, by virtue of its
much greater mass, the ocean moves slowly, and can be marched
forward with time steps five or ten fold longer than used by the
atmosphere. Where as the computational effort in the ocean is dom-
inated by a few large computational kernels, over the land (and to a
lesser extent in the atmosphere) it is distributed over a large number
of processing elements, posing challenges for multi-threading, es-
pecially on GPUs. Over the land and the atmosphere, the governing
equations allow a local representation of the processes, while over
the ocean a global solver is still required, thereby imposing different
computational constraints. The relatively simple dynamics of each
degree of freedom, and the strong coupling among degrees of free-
dom, means the final computations are not arithmetically intensive
and hence memory bandwidth limited. The required harmoniza-
tion of the code elements thus requires a meticulous management
of an enormous flow of data through a complex computational
architecture.

Figure 1: Schematic showing the main components of the
Earth system in ICON and the exchange of energy, water, and
carbon among them. Table 2 presents the degrees of freedom
assigned to each component.

4 Current State of the Art
ICON [23] is a unified global numerical weather forecast and cli-
mate modeling framework. It uses a nonhydrostatic formulation of
the atmosphere and performs its computations on a icosahedral-
triangular C grid as described in [8]. In the vertical it uses a terrain
following hybrid sigma height grid for the atmosphere [17]. It in-
cludes components for atmosphere, land, the terrestrial biosphere
(vegetation), ocean, and sea ice, and ocean biogeochemistry (see Fig-
ure 1). It is mostlywritten in Fortran and uses a hybridMPI/OpenMP
approach for parallelization. Additionally, the atmosphere and land
components have been ported to GPUs using OpenACC [9].

The configuration of ICON benchmarked for this study has no
counterpart. It unifies two separate approaches (§3) that, until now,
have defined the state of the art. These are: (i) simulations that are
performed to resolve fine and fast scales globally for single compo-
nents of the Earth system on state-of-the-art computing facilities;
and (ii) complex Earth system models that are run by approxi-
mating the behavior of fast and fine scales with statistical models,
configurations which then do not benefit from high-performance
computing.

Two recent benchmarks define the high-performance frontier
for Earth system simulations. The Simple Cloud-Resolving E3SM
Atmosphere Model (SCREAM) was implemented from scratch us-
ing C++ and Kokkos. Its highest resolution was configured with
Δ𝑥 = 3.25 km and 128 vertical levels (with a somewhat coarser,
Δ𝑥 = 4.875 km physics grid). SCREAM achieved a 𝜏 = 458 by
scaling across 8192 nodes – 32 768 Instinct MI250X GPUs – on Fron-
tier [33], an accomplishment recognized by the inaugural Gordon
Bell Prize for Climate Modeling. At a Δ𝑥 = 3.5 km, similar to the
SCREAM benchmark, a Fortran implementation of the atmosphere

127



SC ’25, November 16–21, 2025, St Louis, MO, USA Klocke et al.

Table 1: Overview of current state of the art km-scale climate simulations, their horizontal grid spacing, included Earth system
components (A - Atmosphere, L - Land, V - Vegetation, O - Ocean, B - Biogeochemistry, C - Carbon), the system they ran on, the
temporal compression 𝜏 (e.g., Simulated Days Per Day) and a rescaled value 𝜏∗1.25 corresponding to the expected performance on
the same resource but with Δ𝑥 = 1.25 km.

Model Δ𝑥 / km Components Resource 𝜏 𝜏∗

SCREAM [33] 3.25/4.875 A L - - - - ≈87 % Frontier GPU 458 26
ICON 1.25 A L - O - - ≈95 % Lumi GPU 69 69
NICAM (H. Yashiro pers.) 3.5 A L - - - - ≈26 % Fugaku CPU ≈ 365 17
this work 1.25 A L V O B C ≈85 % JUPITER GPU 145.7 145.7

model NICAM has reported 𝜏 ≈ 365, for a simulation on 40 960
nodes or 26 % of Fugaku (H. Yashiro personal communication). The
different temporal compressions of the applications can be roughly
related to each other by calculating a reference 𝜏, which we call
𝜏∗ . It rescales the 𝜏 from previous applications to estimate its value
were the calculations performed with Δ𝑥 = 1.25 km on the same
resource, i.e., 𝜏∗ = (1.25/Δ𝑥)3𝜏Δ𝑥 . This yields 𝜏∗ of 17 and 26 for
both NICAM and SCREAM, respectively (Table 1). At even finer
scales, a Δ𝑥 = 0.22 km version of NICAM has has been run across
half of Fugaku [19], but its performance characteristics are not
available.

Other components than the atmosphere of the Earth system
have greater throughput and more varied coding paradigms. For
instance, global ocean models have been developed using a variety
of programming paradigms, including Python with a JAX back-
end [12] and Julia [35], with 𝜏∗ ≈ 500 being reported [35]. Over the
land surface, continental scale simulations of ground water flow at
Δ𝑥 = 1 km have been performed and while performance measures
are not given, the ability to iterate them to steady state suggests
even larger values of compression [21]. For both the ocean and for
the atmosphere, high-resolution simulations over regional domains
are common [10, 25], but because 𝜏 is determined by the finest
scales, regional models do not introduce new computing challenges.
With the advent of machines like Alps, Fugaku, Frontier, or the
emerging JUPITER, 𝜏 has ceased to be restricted by domain size for
global domains with Δ𝑥 > 500m. Hence looking across component
models it appears that the fundamental roadblock is the scaling of
the global atmosphere component, for which the state of the art is
𝜏∗ ≈ 20, and the important challenge of tying all the components
together in a heterogeneous computing environment.

Fully-coupled Earth system models are typically run at much
coarser resolution and with less computational power. For the
carbon cycle the consensus has been that even simulations at
Δ𝑥 = 10 km are out of reach [26]. One reason for this has been
the interest in using them to explore centennial scale variability,
which only becomes practical with 𝜏 ≈ 3000. To compare GPU and
CPU performance and to also measure the energy consumption for
running on GPUs vs running on CPUs we did additional simula-
tions with a coupled atmosphere-ocean 10 km configuration on the
Levante supercomputer (Figure 2). For ICON we achieve about a
factor of 2 less throughput on the A100 nodes of Levante compared
to the GH200 nodes. On GPUs, strong scaling begins to decline at
𝜏 ≈ 798 on 40 GH200 nodes. Reducing resolution by a factor of

ten could, with perfect weak scaling, increase 𝜏 by a factor of ten
but would not provide enough work for a GPU node. This puts a
practical limit of about 𝜏 = 3192 and Δ𝑥 = 40 km, which could ef-
fectively utilize 2.5 GH200 nodes. In comparison, on the CPU nodes
(2×AMD 7763) strong scaling starts leveling off at a larger 𝜏 albeit at
a much higher node count (see also Mauritsen et al. [20]), and less
dramatically as increased cache efficiency partially offsets the lack
of computation. This makes it possible to dial the resolution back
further and achieve a larger 𝜏, without making the computation
too small. This however comes at a considerable cost in power,
with time to solution demanding 4.4 times as much power on CPUs
(Figure 2, right). Which explains why, until now, Earth system mod-
els tend to be run at coarser resolutions on older computational
architectures with smaller node counts. An additional factor is that
a model with Δ𝑥 = 40 km must parameterize (statistically repre-
sent) many processes that a model running at finer resolution can
represent explicitly. This makes the model much more complex and
its individual components difficult to separate and unit test. The
model becomes more challenging to adapt to different computing
paradigms even if doing so were computationally advantageous.

The first atmosphere-ocean-coupled km-scale models running at
km-scale were developed by the group at the Max Planck Institute
for Meteorology, working with the German Climate Computing
Center in Hamburg [16, 20]. They initially reported 𝜏 = 20 for Δ𝑥 =

2.5 km on 600 Levante CPU nodes. First simulations were performed
for a few simulated months, later multi-decadal simulations have
been conducted with a Δ𝑥 of 5 km and 10 km [29]. In parallel, a
version of the ECMWF’s IFS atmosphere model has been coupled
to two different ocean models at horizontal grid-spacing of up to
4.4 km [24] for which they achieved a 𝜏 ≈ 100 on 100 nodes of
Levante.

Recently a 5 km configuration of ICON was used to simulate
the annual cycle with ocean biogeochemistry included [22]. While
still being considerable simpler, this version comes closest to the
configuration we describe here. Because it used the same code base
as used here and its performance characteristics were not explored,
it is not included in Table 1.

5 Innovations Realized
Our main innovations that enable this work are arranged along
two main axes: (1) exploiting functional parallelism by efficiently
mapping components to specialized heterogeneous systems and (2)
simplifying the implementation and optimization of an important
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Figure 2: Strong scaling on CPUs and GPUs of the coupled 10 km ICON (without biogeochemistry submodel) on Levante (left).
Nearly four-fold improved energy efficiency on Levante GPUs vs CPUs (right).

component by separating its implementation in Fortran from the
optimization details of the target architecture.

5.1 Exploiting the Earth System’s Complexity to
Flexibly Utilize System Parallelism

The additional challenge of simulating the Earth system (as opposed
to just the coupled atmosphere and ocean) is that a great number of
additional components need to be modeled and their computation
needs to be harmonized (see Table 2). What makes the problem
challenging is that these components have different performance
characteristics and none of them dominates the runtime. This leads
to the well-known flat performance profile of Earth system models
which makes optimization a painstaking task. To address this, we
adopted different strategies, as illustrated schematically in Figure 3.

Figure 3: Mapping of the Earth system components (from
Figure 1) to the GH200 superchip with indicated innovations.
On the platforms tested, four superchips are on each node.
For our benchmarking experiments, we utilized 10 MPI pro-
cesses with each 6OpenMP threads for the ocean on the CPUs
and 1 MPI process for the GPU of each GH200 superchip.

For the atmosphere component, two approaches were tested.
Originally, the entire atmosphere was GPU-accelerated with Ope-
nACC [9]. For this project we also replaced the OpenACC implemen-
tation of one of the largest kernels with a DaCe [1] implementation,
as described further below. Both implementations allow us to keep
the data resident on the GPU throughout the whole simulation and
avoid memory transfers between the GPU and the CPU, which can
be prohibitively expensive on some architectures. The boundary
exchange is done via MPI point-to-point communications, which is
implemented in a way that it can employ direct GPU-GPU trans-
fers with GPUDirect RDMA. The atmosphere component is highly
optimized for parallel GPU execution as we will elaborate later.

For the land component (JSBach), the introduction of an inter-
active biospheremodel introduced a very large number of additional
small GPU kernels. The small kernel problem was exacerbated by
the small number of soil levels (5), which results in little computa-
tional intensity. Launching many small kernels on the GPU incurs
a significant latency overhead and becomes very expensive. An
innovative way to reduce this cost is to employ CUDA Graphs
for the OpenACC kernels. CUDA Graphs record the kernel call
flow of a component (like JSBach) and replay it exactly the same
way in subsequent calls to this component. Recording causes a
slightly increased latency for the first invocation, however, all the
subsequent replays are virtually latency-free. Moreover, due to the
JSBach model implementation operating on multiple independent
plant functional types, many of the executed kernels may run si-
multaneously using CUDA graphs. Overall, we observe a speedup
for the land and vegetation parts of the model on the order of 8-10×
depending on the grid-spacing.

While the ocean component has been ported with OpenACC
to run on GPUs, it poses a special challenge for efficient scaling, es-
pecially on GPUs. This arises because filtering of fast wind-driven
surface waves introduces a tightly-coupled 2d-equation-system
distributed over all ranks to solve for its barotropic mode. The
computational characteristic of this solver is dominated by global
communication, while the computations in between communica-
tion are very small. In contrast to the land model, which directly
exchanges fluxes with the atmospheric component on the atmo-
spheric timestep, and therefore needs to run on GPUs (for most
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architectures), the slow evolution of the ocean allows it to be much
more loosely coupled to the atmosphere and thus run concurrently
to the atmosphere and land components. Only energy, water and
carbon are exchanged between the atmosphere and the ocean at a
coupling timestep every 10 simulated minutes through the coupler
YAC [13]. These properties – a global solver, loose coupling, and a
much larger 𝜏 – make the ocean very well suited to exploit CPU
resources. Hence we take advantage of this flexibility to utilize the
hybrid computational power of both CPUs and GPUs on the same
nodes when available. Specifically, for the GH200 superchip we run
the ocean on the Grace CPUs which are a powerful resource that
would otherwise be underutilized. Given that most other simulations
rely mostly on GPUs, by mapping the Earth system workload smartly,
we essentially run the ocean component for free.

Table 2: Earth system model global grid configurations for
ICON, showing the number of grid cells, vertical level and
prognostic variables for each component model used in the
scaling runs. Nominal resolution for ICON is given as the
square root of the mean cell area. Velocity components nor-
mal to the triangle edges are counted as 1.5 prognostic vari-
ables. Land has four physical state variables on five levels, 21
additional carbon pools, plus the leaf area index as predicted
variables, associated with up to 11 plant functional types
(reported in the levels column for vegetation). Degrees of
freedom are calculated as the product of the spatial degrees
of freedom times their number of prognostic variables.

Δ𝑥 / km cells ×108 levels vars Δ𝑡 / s

10 km: 1.2 × 1010 deg. of freedom
Atmosphere 10 0.05 90 12.5 75
Land “ 0.015 5 4 “
Vegetation “ “ ≤ 11 22 “
Ocean & sea-ice “ 0.037 72 5 600
Biogeochemistry in ocean “ ” ” 19 “

1.25 km: 7.9 × 1011 deg. of freedom
Atmosphere 1.25 3.36 90 12.5 10
Land “ 0.98 5 4 “
Vegetation “ “ ≤ 11 22 “
Ocean & sea-ice “ 2.38 72 5 60
Biogeochemistry in ocean “ ” ” 19 “

The biogeochemistry component of the ocean, HAMOCC,
involves a large number of tracers (prognostic variables in Table 2)
that interact with one another and are transported through the
ocean. HAMOCC does not have a global solver, but shares the large
𝜏 of the ocean (compared to the atmosphere) due to the slow trans-
port, and the loose coupling with the fast atmosphere. This makes
HAMOCC better adapted for GPUs than the ocean dynamical core.
To exploit more parallelism and gain flexibility in its implementa-
tion, a concurrent version of HAMOCC has been developed [18],
which allows it to be run on GPUs through OpenACC instrumenta-
tion of the Fortran code. A downside of this approach is that large
three-dimensional fields need to be exchanged between the ocean
dynamical core and HAMOCC at every ocean timestep. Therefore
exploiting concurrent GPU parallelism in HAMOCC is not bene-
ficial in all cases. For a powerful enough CPU like on the GH200
superchip it is also possible to include the biogeochemistry together

with the ocean on the CPU, as it shares two of the features (loose
coupling and larger 𝜏) and thus can more efficiently use a resource
that would otherwise be idle. In our setup, we run HAMOCC together
with the ocean component on the CPU and also essentially get it for
free, concurrent to the GPU execution.

5.1.1 Final Mapping. Summing up, our setup is as follows: For
the atmosphere and land models we use four MPI ranks per node,
each assigned to a GPU and pinned to the CPU cores of the same
superchip. These ranks launch kernels on the GPU and can use a
number of helper threads. In addition, for the ocean, sea ice, and bio-
geochemistry, we use 40 MPI ranks with six OpenMP threads each
per node, ten ranks each pinned to its respective NUMA domain.
Some of these ranks could also be utilized for asynchronous output.
In total, we use 244 of the 288 available cores per node leaving the
remaining cores available to support GPU and operating system
services and reduce noise [15].

To maximize throughput with our approach of utilizing all com-
ponents of the system we require a delicate load balancing. Since
the GPUs are significantly more powerful than the CPUs, we aim
to keep the GPUs running at full capacity at all times. This re-
quires the ocean component to consistently run faster than the
atmosphere, ensuring that the ocean component rather than the
atmosphere waits at the synchronization points where the coupler
exchanges fluxes between the components. However, assigning too
many CPU resources to the ocean to make it arbitrarily fast can
actually slow down the atmosphere. An important advantage of
the GH200 superchips is their ability to flexibly partition power
consumption between CPUs and GPUs, which enables further per-
formance optimization of heterogeneous configurations for specific
node counts.

This is due to a key characteristic of the systems targeted by
this project: CPU and GPU components share a common power
and thermal budget – 660W per superchip on Alps and 680W per
superchip on JUPITER (see Table 3) – which is substantially lower
than the maximum combined power capacity of both components
(1000W, according to NVIDIA). As a result, power distribution
must also be carefully balanced, adding even more complexity to
the setup. Fortunately, climate models – and especially the ICON
atmosphere component – are predominantly memory-bandwidth
bound, meaning the GPU does not require its full theoretical power
budget, which is largely used by the compute facilities of the device.

5.2 Separation of Concerns: From Fortran to GPU
To achieve performance and scalability on today’s heterogeneous
systems, ICON’s code base has evolved to support a wide range
of configurations: from pragmas enabling OpenMP and OpenACC
parallelization, to Intel, Cray, GCC, and NEC vector annotations
to macros that duplicate code to reorder loops. For example the
dynamical core, the most compute-intensive part of the most ex-
pensive atmosphere component, contains 2728 non-empty Fortran
source lines of code, of which less than 50 % are actually describing
the computation. The remaining lines of code are optimizations
for specific architectures implemented using OpenACC (20 %) and
other directives (12 %) as well as duplicated code reordering loops
(6 %). The following figure shows a small code excerpt from ICON’s
dynamical core illustrating three different families of pragmas and
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how macros and duplicate loop headers are used to specialize for
different architectures.

!$ACC PARALLEL DEFAULT(PRESENT) ASYNC(1)

!$ACC LOOP GANG VECTOR TILE(32, 4)

#ifdef __LOOP_EXCHANGE

DO jc = i_startidx, i_endidx

!DIR$ IVDEP

DO jk = 1, nlev

z_ekinh(jk,jc,jb) = &

#else

!$NEC outerloop_unroll(4)

DO jk = 1, nlev

DO jc = i_startidx, i_endidx

z_ekinh(jc,jk,jb) = &

#endif

p_int%e_bln_c_s(jc,1,jb)*z_kin_hor_e(ieidx(jc,jb,1),jk,ieblk(jc,jb,1)) + &

p_int%e_bln_c_s(jc,2,jb)*z_kin_hor_e(ieidx(jc,jb,2),jk,ieblk(jc,jb,2)) + &

p_int%e_bln_c_s(jc,3,jb)*z_kin_hor_e(ieidx(jc,jb,3),jk,ieblk(jc,jb,3))

ENDDO

ENDDO

!$ACC END PARALLEL

duplicate loop header code

duplicate loop header code

OpenACC GPU pragmas

CPU vectorization pragma

NEC-specific pragma

some lines down, more OpenMP pragmas

The resulting duplication makes not only the initial development
costly but makes extending or maintaining the code excessively
complicated. For example, changing a loop would require updating
all copies consistently. Updating any source code would need to
also update the describing pragmas accordingly. Yet, the systems
described by those annotations may not even be available to the
programmer at the time of the change.

We recognize that the Fortran language itself specifies the com-
putations in a way that allows us to extract their dataflow depen-
dencies. We extend DaCe [1], a parallel datacentric compilation
framework, with a Fortran language parser specialized to the dy-
namical core code. We then remove all pragmas and macros from
the code to create the cleanest form with only about 1400 lines of
code (less than 50 %).

We use our new parser to read this sequential Fortran code
into DaCe’s internal "Stateful Dataflow Graph" (SDFG) representa-
tion [1], maintaining all of the code’s semantics while representing
data movement explicitly. This representation naturally enables us
to analyze independent pieces of code and loops and extract the
maximum parallelism, which we can then map again to different
target architectures such as GPUs or CPUs.

DaCe has been demonstrated to optimize the established weather
and climate code FV3 after it has been rewritten in a Python di-
alect [2]. The innovation in this work is that we use the unmodified
sequential Fortran code of ICON to achieve a similar result. This
demonstrates a clear separation of concerns between the application
scientist writing her Fortran code and the performance engineer us-
ing transformations and code-generation to accelerate it on various
architectures.

To achieve this separation of concerns, DaCe allows the perfor-
mance engineers to write "performance metaprograms" that trans-
form a piece of a SDFG into a new representation targeted at specific
devices. We designed and wrote a series of such metaprograms to
transform the dynamical core code into a fast representation for
GH200 GPUs as well as CPUs. We note that all the optimizations are
without changes to the original Fortran code and thus invisible to
the climate scientist. If the Fortran code is changed but maintains a
similar computational structure, then the transformations continue
to apply as they are matched to dataflow structures on the SDFG,
see Ben-Nun et al. [1] for details.

We illustrate one code-specific optimization out of many that we
applied: The ICON dynamical core performs its computations on an
icosahedral grid composed of triangles and its dual grid composed
of mostly hexagons and 12 pentagons. This structure requires a
significant amount of index lookups in arrays to determine grid
indices. Some of these indices can be reused by carefully reordering
computations [11]. By leveraging the freedom offered by our maxi-
mally parallel representation, we can reduce the number of integer
index lookups required per grid point by an average factor of 8×.

After our transformations, the whole dynamical core code trans-
formed via DaCe consistently outperforms the manually tuned
OpenACC implementation - starting from the sequential Fortran
implementation and requiring no pragmas or manual data layout
transformations. The following figure shows an overview of the
achieved performance for the 10 km setup comparing the version
with manual pragmas (blue) to the DaCe implementation (orange)
for the GPU execution on GH200.

As the dynamical core is memory-bound, we evaluate the sus-
tained bandwidth during execution for both the OpenACC and
DaCe implementations. Assuming that 100% busy DRAM would
yield a bandwidth of 4 TiB/s onGH200GPUs, we convert the DRAM
utilization percentages reported by Nsight for these kernels to aver-
age bandwidth in different experiment configurations as is shown
in the following figure.

Write BW

Read BW

1.46x
1.51x

1.45x

As the 128 GH200 configuration reflects the same work per chip
as our hero run (see Figure 4), it would achieve more than 15 PiB/s
sustained memory bandwidth, which is about 50 % peak.

6 How Performance Was Measured
6.1 Earth System Model Configuration
Computational benchmarks were performed using the coupled
Earth system model ICON including the atmosphere, land (with
dynamic vegetation), ocean, sea-ice, ocean biogeochemistry, hy-
drological discharge from land to ocean, and the carbon exchange
between the components. The model was initialized with the Earth
system state on the 1st of January 2020. For the ocean and its bio-
geochemical state a separate spin-up simulation was performed
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using prescribed surface conditions from reanalysis of the atmo-
sphere. The initial atmospheric state was interpolated from reanal-
ysis onto the computational grid and carbon-pools were initialized
from separately spun-up states. For our simulations, we consider a
development configuration with 10 km horizontal resolution and
a configuration to run at scale with 1.25 km horizontal resolution.
Both configurations only differ in their horizontal grid and the
timestep length.

6.2 System Details
The multi-component setup of ICON presented in this work is
enabled by NVIDIA’s Grace Hopper GH200 superchip in the Alps
and JUPITER systems. The superchip combines in one package an
ARM CPU, Grace, with 72 cores and 120GB LPDDR5 memory, and
a Hopper GPU with 96GB HBM3memory. Both parts are connected
by the NVLink-C2C bus with 900GB/s bandwidth, allowing high-
bandwidth, cache-coherent access to the two memories [7]. The
CPU and the GPU share one combined Thermal Design Power
(TDP), in which power is dynamically distributed first to the CPU
and the remainder to the GPU. The TDP value is system-dependent.

JUPITER Alps

# Nodes 5884 2688
# Superchips per Node 4 4
# Superchips 23 536 10 752
Superchip TDP 680W 660W
Interconnect InfiniBand NDR200 Slingshot-11
Inj. Bandwidth / Node 4 × 200Gbit/s 4 × 200Gbit/s
Table 3: High-performance computing systems used.

JEDI/JUPITER. JUPITER, which is currently being installed at the
Jülich Supercomputing Centre in Germany, is expected to be the first
European (HPL) exascale computer. The system currently consists
of 5884 nodes (23 536 GH200 superchips), connected with NDR200
InfiniBand. ICON is one of the driving applications for the design
of JUPITER [14]. Through early access we used JEDI, a single rack
(48 node) development platform, to prepare larger runs on Alps and
then JUPITER.

The code and setup we demonstrate here will be used in produc-
tion to simulate 13 months at 1.25 km, an unprecedented scale for
the simulation of the fully coupled Earth systemx.

Alps. Alps is a supercomputer operated by the Swiss National Su-
percomputing Centre CSCS that deploys 2688 nodes with the total
of 10 752 GH200 superchips to reach 435 PFLOP/s HPL performance
on the TOP500 list (place 7; November 2024). The interconnect is
Slingshot-11. An overview of both systems is presented in Table 3.

Software Infrastructure. On JUPITER, CUDA 12.6, NVIDIA HPC
SDK 25.5, and OpenMPI 5.0.5 with support for CUDA-aware MPI
were used. Alps supports a very similar environment with Cray-
MPICH instead of OpenMPI. The final runs on Alps used CUDA 12.8,
NVIDIAHPC SDK 25.3 and Cray-MPICH 8.1.32. Because ICON runs
so close to the machine limits, it is sensitive to the balance of many
low-level system parameters at different node counts. Moving from

JEDI, where the initial development happened, to Alps, involved
the close cooperation of the operators to harmonize these settings
and maintain good performance across the entire system.

6.3 Performance Metrics
The most relevant performance metric for climate simulations is
the temporal compression 𝜏, which describes the model throughput
in units of simulated time versus actual time. We derive 𝜏 from
the time it takes to simulate 3 hours in the 1.25 km configuration
(24 hours in the 10 km configuration) excluding the initialization
time. Initialization takes a measurable amount of time in our short
benchmark runs. However, in a production setup when the model
is run for hours its contribution to the overall run time is relatively
small, which is why we exclude it here. The simulation time is
measured independently for the atmosphere/land and ocean/sea-
ice/biogeochemistry components. Included in timings is the cou-
pling time, i.e., the amount of time atmosphere/land have to wait for
ocean/sea-ice/biogeochemistry and vice versa. Ideally, the coupling
time should be close to zero for the computational expensive atmo-
sphere/land components running on the GPUs, meaning that they
do not have to wait for the ocean/sea-ice/biogeochemistry compo-
nents to finish their calculations. Timings are measured based on
the CPUs time stamp counter. Measurements are taken across all
ranks and the maximum value is presented.

6.4 I/O Performance Metrics
ICON has a number of different I/O schemes for various use-cases.
Most notable are asynchronous schemes for model output, output
via the coupling interface, writing and reading of restarts, and
distributed reading of initial and boundary conditions.

Checkpoint/restart means that the model dumps the complete
state from memory to disk. Since the state is huge, efficient and fast
I/O is necessary. Checkpoint/restart I/O in ICON has a number of
modes, from rank-0-I/O to asynchronous multi-file-I/O. We employ
the synchronous multi-file variant, where a configurable subset
of ranks collects the variables and writes them to one file each.
Reading, in turn, can be done with a different subset of ranks,
where each rank reads parts of the files and distributes the data to
the corresponding ranks.

With the asynchronous output scheme, additional MPI tasks are
assigned to output servers. Output fields are communicated to these
servers via MPI one-sided remote memory access in configurable
intervals, additional operations (averaging, accumulating, interpo-
lation to different output grid in vertical and/or horizontal) can be
applied. Disk I/O takes place concurrently to the model integration.
The overhead in computational resources depends on the number
of fields and desired storage frequency. The required bandwidth to
the storage is low and impact on neighbor exchange is small, so that
I/O does not appreciably impact 𝜏 .Moreover, this is something that
is aided by increased temporal sparsity output as Δ𝑥, and hence
the timestep, becomes small, while the output frequency remains
constant.

7 Performance Results
We performed four sets of benchmark experiments. With our 10 km
development configuration, we ran a series of simulations for one

132



Computing the Full Earth System at 1km Resolution SC ’25, November 16–21, 2025, St Louis, MO, USA

20
48

30
72

40
48

81
92

12
28

8
16

38
4
20

48
0

32.68

59.46

96.7

145.7

Strong/Weak Scaling - ICON Earth System on Alps/JUPITER

10 km with 1.25 km time-step Alps
1.25 km Alps
1.25 km JUPITER

32 48 64 96 12
8

19
2

25
6

38
4

32 64  128  256  512

195.0

367.0

517.9
638.2

1206.8
Strong Scaling - ICON 10 km Earth System
Alps
JEDI

Number of GH200 superchips

Figure 4: Strong scaling of the full ICON Earth system model at 1.25 km grid-spacing (left). The gray line shows scaling with a
configuration with a factor 64 less grid cells (10 km resolution) as the 1.25 km configuration but using the same timestep, serving
as a reference line assuming perfect weak-scaling. Strong scaling of the ICON Earth system model with 10km grid-spacing on
Alps and JEDI (right)

simulated day each on 32 to 128 GH200 superchips on the JEDI
system to measure strong scaling. The same configuration was also
run on Alps, where we extended the strong-scaling measurements
to 512 superchips. Results are shown in Figure 4 on the right-hand
side. Performance on the two systems is comparable, with slightly
better performance on JEDI for low superchip counts, while the
performance on Alps is slightly better for higher superchip counts.
The scaling curve flattens when approaching to 512 superchips. At
this point only about 10 800 horizontal grid cells are distributed
to each GPU for calculations, which is too little to fully utilize the
GPU compute power in our configuration with 90 levels.

To measure weak-scaling, we performed another set of exper-
iments with the 10 km configuration on Alps, where we use the
same time steps of 10 s as needed for the 1.25 km computations. In-
creasing the grid-spacing of the computational mesh from 10 km to
1.25 km grid-spacing corresponds to a 64 fold increase of grid cells
in the horizontal (Table 2). This means, the 10 km configuration
has the same computational load on 32 superchips, as the 1.25 km
setup on 2048 superchips (Figure 4, left).

Finally, we also performed scaling simulations with the 1.25 km
full Earth system configuration of ICON on Alps and JUPITER. The
smallest node count we could fit the configurationwith its nearly 1×
1012 degrees of freedom (see Table 2) is 2048 superchips of JUPITER
(≈10% of the full system) achieving a temporal compression of
𝜏 = 32.7. The production setup scales well to 20 480 superchips, the
maximum number of nodes to which we had access for the strong
scaling experiment, achieving a temporal compression of 𝜏 = 145.7
on JUPITER and 𝜏 = 91.8 on 8192 superchips of Alps (see Figure 4).

Weak scaling results from the benchmarks with the 10 km config-
uration with the time step of the 1.25 km configuration (gray curve
showing the 10 km ICON Earth system model in the left plot of fig-
ure 4), gives a weak scaling efficiency of about 90 % while increasing
the size of the computational problem by a factor of 64. For 384 su-
perchips with the 10 km resolution (with the 1.25 km timestep), we
get 𝜏 ≈ 167. Applying this to the 1.25 km configuration, accounting

for the 90 % weak scaling estimated above, gives a 𝜏 = 150 for the
1.25 km model on 24 576 superchips (which corresponds to the full
JUPITER system).

Our complex Earth system model configuration requires all com-
ponents to scale similarly well to achieve results up to highest
superchip counts of the largest machines. We have configured the
model so that the most computationally expensive component dic-
tates the maximum time compression achievable. At superchip
counts not yet available to us on Jupiter, global communication in
the 2d solver in the ocean model can become a bottleneck. Perfor-
mance tests at lower node counts give us confidence that a recent
refactoring of this global solver will allow us to maintain scaling of
the 1.25 km configuration across the entirety of JUPITER.

Since our 1.25 km setup runs for 3 simulated hours, we did not
write any output during the time loop but wrote restart files con-
sisting of the full model states at the end of the simulation. We
measured I/O performance based on the reading and writing of
these restart files. For the 1.25 km setup the restart files have a size
of 9265.50GiB for the atmosphere and 7030.91GiB for the ocean
respectively. To read and write the restart files for the ocean part,
we ran up to 2579 processes when running on 8000 superchips. Stag-
gered reading allows us to read the restart at a rate of 615.61GiB/s.
The writing of the ocean restart file at the end of the simulation
achieved a rate of 198.19GiB/s.

8 Implications
Until now it has not been possible to represent the interaction be-
tween the fine and fast scales that mediate the interactions between
water and energy – for instance the daytime heating over land that
causes afternoon thunderstorms – with the large and slow scales of
the carbon reservoirs they influence. These reservoirs collectively
define the land biosphere, which then go on to influence how the
fast and fine scales develop in the future. Figure 5 shows those
Earth system component interactions through the flow of carbon
between them.

133



SC ’25, November 16–21, 2025, St Louis, MO, USA Klocke et al.

Figure 5: Snapshot of phytoplankton, near-surface wind and air-sea CO2 flux at 2020-01-01 03:00. On the left, phytoplankton
concentration on a logarithmic scale between 10−9 kmol Pa/m3 and 10−6 kmol Pa/m3 are shown. In the center, surface winds
are displayed with color limits in the range from 0m/s to 20m/s. On the right, the air-sea/land carbon flux is illustrated with
the color scale spanning ±4 · 10−7kg m−2 s−1 and green values implying carbon uptake and blue values indicating carbon release
for ocean and land (values over the ocean were multiplied by 30 to enhance visibility). Insets highlight specific regions: water
mass upwelling off the coast of Chile (left), near-surface wind patterns over the mountains of the Balkans (center), and CO2
flux off the coast of Tasmania (right).

For the first time, we simulate the impact of small scales on
the carbon flows, globally. More tangibly, this means we represent
the global fluxes of carbon as the net result of local interactions
between vegetation, topographic features, watersheds, local wind
systems, ocean eddies and a realistic representation of the spatial
and intensity distribution of precipitation. Capturing these types
of interactions require a model with local (km-scale) granularity,
globally, an explicit representation of a diverse array of Earth sys-
tem processes, and a throughput (or time-compression) of about
100. The computational challenge was thought to be unachievable,
forcing researchers to focus on approaches that would otherwise
be suboptimal (e.g. [5]). We show that this thinking was wrong,
and km-scale global models of the full Earth system are realizable
on today’s technology.

Our computations bring Earth system modeling to the domain
of high-performance computing. Previous and pioneering studies
demonstrated the relevance of exascale computing for studies of the
physical climate system [27, 33]. This existing capability is helping
to uncover new physics, for instance in how imposed changes to
the land-surface influence the atmosphere [36]. By expanding this
capability we demonstrate that it can now also be used to study
the Earth system in all its fullness. This opens up new and exciting
scientific frontiers.

One implication of our work is to show that the complexity of
the problem, one of the aspects thought to make it difficult, makes
it tractable. This is because it allows us to pair the physical com-
plexity with the complexity of today’s computational environments
to expose different types of parallelism and use machines more

efficiently than for simpler problems. In our case this means using
the powerful CPU on the GH200 superchip to couple the rest of the
Earth system to the atmosphere, more or less for free. We also show
how a flexible structuring of the solvers, to use GPUs or CPUs or,
as in the case of the ocean biogeochemistry, to run concurrently
or as part of the main kernels, makes it possible to change the
configuration to efficiently adapt to very different architectural
profiles.

Our achievement also demonstrates the potential of new ap-
proaches to help separate the concerns of domain scientists and
computer scientists, which makes it possible for them to work more
closely together. Using the Data Centric programming paradigm
we optimize a large kernel of a native Fortran code to run more
efficiently on a demanding computational architecture than the
originally heavily optimized Fortran implementation instrumented
with various libraries. Our approach preserves the readability of
the code, making it easier to maintain and modify and retaining its
familiarity for the domain scientist. Hence, a further implication
of our work, beyond showing the relevance of high performance
computing to Earth system modeling, is to show the relevance of
computer scientists to Earth system scientists.

Looking forward, with the capability already achieved, new ma-
chines with architectures similar to those used to perform our
benchmarks are coming on line. JUPITER is roughly 2.5 times larger
than Alps when at full capacity. With the performance demon-
strated for 1024 nodes of JUPITER (𝜏 = 59.5, Figure 4), this amounts
to an ability to simultaneously simulate two scenarios of future
warming, each for thirty years, with three ensemble members to
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sample variability, in a little less than half a year. This has enor-
mous and enduring potential to provide full global Earth system
information on local scales about the implications of future warming
for both people and eco-systems, information that otherwise would
not exist.
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