
MIGnificient: Fast, Isolated, and GPU-Enabled
Serverless Functions

1st Marcin Copik
ETH Zürich

2nd Alexandru Calotoiu
ETH Zürich

3rd Pengyu Zhou
University of Toronto

4th Lukas Tobler
AYES

5th Torsten Hoefler
ETH Zürich

I. INTRODUCTION

The security of High-Performance Computing is becoming
more important with new applications in machine learning and
medical data processing. At the same time, the convergence
of HPC and cloud computing brings a demand for work-
load co-location and resource sharing. Instead of providing
security guarantees through exclusive resource locations and
physical isolation, HPC systems must offer new methods that
retain high utilization. These have to include GPUs that have
become essential in HPC systems: accelerators are used by
68% of the first 50 systems on the TOP500 list. However,
GPUs are often underutilized, as even workloads like machine
learning training spend a significant fraction of their time
on communication and CPU tasks. The growing capabilities
of each new GPU generation make it even more difficult to
saturate the device with a single application. These devices
could be shared in Function-as-a-Service (FaaS), a new cloud
programming model designed around fine-grained functions.
There, functions execute on resources assigned by the load bal-
ancer, allowing system operators to boost utilization through
dynamic scheduling. While traditional functions use containers
and microVMs to share CPUs, they need a new model to
securely and efficiently co-locate computations on GPUs.

II. WHY A NEW APPROACH?

While functions can be co-located on NVIDIA GPUs
through time sharing and software-based spatial sharing, both
methods are ill-suited for serverless workloads. On NVIDIA
GPUs, CUDA runtime allows two processes to share a GPU
through time slicing. Two processes have isolated memory
address spaces and kernel co-location is not possible: GPU
runtime switches users on the device and uses compute pre-
emption to evict GPU context. The frequent context switches
add performance overheads, and functions can overallocate
memory. NVIDIA Multi-Processing Service (MPS) provides
spatial sharing through a dedicated server that implements
resource multiplexing, limiting memory allocation and use
of computing resources. MPS has been commonly used to
share a GPU by workloads from a single user, but it is
not designed for multi-tenant applications. Thus, this solution
is ill-suited for serverless functions: concurrent execution
creates an opportunity for security attacks, and MPS offers no
performance isolation. Furthermore, it lacks error containment
- a GPU error caused by a single kernel forces all co-

5 GB 5 GB 5 GB 5 GB 5 GB 5 GB 5 GB 5 GB

5 MB 5 MB 5 MB 5 MB 5 MB 5 MB 5 MB 5 MB

GPC GPC GPC GPC GPC GPC GPC

Memory

L2 Cache

Compute

1g.5gb 1g.5gb 2g.10gb 3g.20gb

Fig. 1. An example of partitioning the A100 GPU into four independent
slices: 3g, 2g, 1g, and 1g.

Partitioned GPU

MIGnificient on GPU-Enabled Node

Active ContainerActive Container

Orchestrator

Memory
Store

Device
Manager

Container
ManagerIdle Container

Idle Container
Idle Container

GPU Memory

gpuless

Active Container

gpuless gpuless

GPU 0

GPU Memory

GPU 1

Fig. 2. MIGnificient design: multi-tenant () serverless functions share a
GPU device with fault tolerance (), high performance (), and security ().

located functions to restart from scratch or implement complex
checkpoint/restart mechanisms.

Instead, we turn to NVIDIA Multi-Instance GPU (MIG),
where the entire device is composed of seven computing
units, each one with independent caches and memory systems
(Fig. 1). However, to achieve high utilization, a single static
device partition should be securely shared between functions.

III. MIGNIFICIENT DESIGN

We propose a new approach that combines the elasticity
of Function-as-a-Service (FaaS) with the isolation of phys-
ical GPU partitioning. In MIGnificient, we provide spatial
isolation through concurrent execution on different device
partitions, preventing side-channel attacks and performance
interference (Fig. 2). We limit the use of computing resources
of a single GPU partition to one function at a time, while
permitting CPU phases and data transfers of functions to exe-
cute concurrently. We employ local API remoting to control
kernel invocations and memory transfers, preventing memory
overuse and improving resource management in virtualized
API. Thanks to the co-location of CPU and GPU parts on the
same machine and using shared memory for communication,

MIGnificient is not limited by network performance and does
not rely on insecure NVIDIA MPS.

To fully utilize the device, we propose faster function
switching on a single MIG partition: we permit overlapping
CPU tasks and memory transfers while forbidding simultane-
ous kernel execution. Thus, functions receive exclusive access
to GPU computing without performance interference but do
not occupy expensive hardware when not needed.

MIGnificient provides a unified model for optimized server-
less GPU functions. Through virtualization of API calls, the
system could support swapping GPU pages (memory store)
and load balancing between MIG partitions through migration
(device manager). MIGnificient is independent of the CPU
sandbox type, as API remoting removes the need for direct
GPU access. We expect the device partitioning trend to stay in
the future, as the devices grow in size. MIG is supported in the
Grace Hopper and upcoming Blackwell architectures [1], and
Intel Data Center Max GPUs can be divided programmatically
into independent sub-devices [2].

IV. EVALUATION

Function Time Distribution First, we execute Rodinia
benchmarks on a V100 GPU and measure the total distribution
of time spent across CPU and GPU parts. These estimate the
improvements that can be obtained through fast switching. We
split the runtime into active GPU usage through kernels and
memory transfers, and compute the total GPU time, which
includes memory allocations. While some applications can
spend up to 25% of their time actively using GPU, many spend
most of their time on the CPU and I/O operations. While initial
CUDA memory allocations can be a major source of overhead,
function containers can avoid this problem by reusing warm
resources.

Local API Remoting To offer competitive performance, the
shared memory-based API remoting of MIGnificient needs to
execute calls to the CUDA API with negligible overhead. We
evaluate the performance of memory copying as data move-
ment tends to be the denominating bottleneck of GPU-based
applications. We execute a pair of host-to-device and device-
to-host CUDA copy operations on MIG partitions 1g and 7g of
A100 GPU. We compare the native CUDA execution against
MIGnificient when using mignificient_malloc to al-
locate host-based pages in shared memory. The comparison
against MIGnificient shows increased overhead when using
a container, motivating the need for containers customized
for HPC environments, as proposed previously in the XaaS
model [3].

REFERENCES

[1] NVIDIA, “Nvidia multi-instance gpu,” 2024, MIG in Blackwell GPUs,
Accessed: 2024-03-23. [Online]. Available: https://www.nvidia.com/en-
us/technologies/multi-instance-gpu/

[2] Intel, “Multi-stack gpu architecture,” 2024, oneAPI GPU
Optimization Guide, Accessed: 2024-03-23. [Online]. Available:
https://www.intel.com/content/www/us/en/docs/oneapi/optimization-
guide-gpu/2024-0/multi-stack-gpu-architecture.html

[3] T. Hoefler, M. Copik, P. Beckman, A. Jones, I. Foster, M. Parashar,
D. Reed, M. Troyer, T. Schulthess, D. Ernst, and J. Dongarra, “Xaas:
Acceleration as a service to enable productive high-performance cloud
computing,” Computing in Science and Engineering, no. 01, pp. 1–11,
apr 2024.

