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Function placement with microsecond-scale allocations. Isolated execution with HPC-native containers, e.g, Sarus.

Reducing cold startups latency with warm containers. Distributed communication and high-performance I/O.

?  How to efficiently share the GPU device between functions while keeping the multi-tenant isolation?

HPC serverless combines the high performance with cloud elasticity. While fine-grained 
functions have been improved with fast networks and filesystems, they lack GPU computing.

Space-Sharing with Multiprocessing (NVIDIA MPS) Device Partitioning (Virtualization, NVIDIA MIG)
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from different processes.
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Spatial multiplexing of kernels 
from different applications in 
Multi-Process Service (MPS).
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Many device instances 
with virtualization or 
physical partitioning in
Multi-Instance GPU (MIG).

Why do we need to share GPUs?

GPUs are growing larger: from A100 to H100, memory and FLOPs increased 
by 2x and 2.6x. Fine-grained functions cannot fully utilize large device.

4.77x speedup,
but at the cost of
7x more resources!

Why not use NVIDIA MPS?

 Data Movement in API Remoting

Data movement adds large overheads in network-based API 
remoting. We add mignificient_malloc to allocate host data in 

shared memory. Then, local API remoting adds minor 
overhead to native cudaMemCpy (A100 GPU). 

CPU vs GPU Time Distribution

MPS is not designed for multi-tenant 
workloads. Side-channel attacks are 
possible on co-located kernels.

NVIDIA MPS is a common choice
for GPU sharing, but it does not 
satisfy multi-tenancy requirements 
of serverless functions.

MPS has no performance isolation, 
and co-located kernels compete for 
memory bandwidth.

MPS has no error containment: a GPU 
failure on a single tenant is 
propagated to everyone, requiring 
reinitialization of CUDA context and 
restart of kernels.

MIG: 1g instance size

Rodinia applications spend time primarily on 
CPU and memory management (V100 GPU). 

By limiting the exclusive GPU access to 
kernels only, we can improve system 

throughput and GPU utilization.

MIGnificient Functions with CPU and Data Movement Overlap

Traditional Functions with Exclusive GPU Access

Fast Function Switching

Functions have to process the request, transfer data to the device, and schedule GPU kernels.
When using high-level languages like Python, they can spend more time on CPU than on GPU.

MIGnificient quickly transitions to the next tenant after the current one finishes GPU computations, 
and overlaps data transfers to increase utilization.

MIGnificient: Secure Functions on Partitioned GPUs

Fast API Remoting
over shared memory

Serverless systems 
dispatch invocations to

MIGnificient nodes.

Functions execute CPU 
and GPU code with 

minimal code changes.

MIGnificient is a new GPU-accelerated serverless design that provides multi-tenant isolation and high 
performance. Functions are executed on the same node as GPU and isolated by CPU containers. MIG is used 

to partition the device into smaller units for high efficiency and concurrent execution. Thanks to local API 
remoting, we limit function access to the device, preventing side-channel attacks in concurrent execution.

STREAM Benchmark on MPS, 1000 invocations
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Active GPU operations
on A100 MIG.

Fast Function Switching

We evaluated our system with 2 concurrent clients sending 10 
requests to the same function. We deployed MIGnificient 

orchestrator with HTTP gateway and bare-metal executors on 
an RTX 4070 GPU. We compare our function switching approach 

against native CUDA execution (no isolation) and sequential 
execution (exclusive GPU access). With two clients, we increase 

throughput of isolated execution up to 1.9x.

MIGnificient Native 
Benchmark Overlap CPU + 

Data Transfer 
Overlap 

CPU 
Sequential 

Time 
Sharing 

528.8 ± 14.6 515.9 ± 18.2 990.5 ± 112 505.3 ± 2.5 BFS 

103 ± 9.9 102.9 ± 10.1 195.1 ± 22.2 92.1 ± 0.8 hotspot 

27.5 ± 0.7 28.3 ± 1.9 53.3 ± 6 18 ± 0.3 ResNet-50 

26.4 ± 0.9 26.2 ± 0.7 49.2 ± 5.5 15.4 ± 0.5 AlexNet 

27.8 ± 1 28.5 ± 1.2 54.5 ± 6.5 23.6 ± 1 Vgg19 

41.4 ± 3.1 46.5 ± 3.9 65.8 ± 7.5 40.2 ± 2.5 BERT-SQuaD 

All GPU 
Ops (%) 

GPU Kernels 
& Memcpy (%) 

Execution 
Time (s) 

Benchmark 

9.20 0.46 1.79 BFS 

54.56 24.28 0.52 Gaussian 

30.48 0.26 0.49 Hotspot 

30.29 1.65 0.32 Pathfinder 

75.77 3.67 0.21 srad_v1 

Lukewarm Functions

Lukewarm 
functions:

CPU container 
retained, GPU 
memory data 
kept warm in 
host memory.

BERT ResNet-50 

1332 MB 142 MB Model Size 

730.2 ms 107 ms Load Time 

214.47 ms 23.45 ms Swap Time 

To estimate benefits of lukewarm functions, we 
compare just the cost of initializing ML model in 

PyTorch with time of swapping a warm model data 
from host memory (RTX 4070 GPU). A cold container 

needs to additionally initialize CPU container with 
Python, CUDA context, and PyTorch.


