
MIGnificient: Fast, Isolated, and
GPU-Enabled Serverless Functions

 High-Performance Serverless: Tailoring Function-as-a-Service to HPC Needs

Time-Sharing

Source Code

Marcin Copik, Alexandru Calotoiu,
Pengyu Zhou, Lukas Tobler,

Torsten Hoefler

Function placement with microsecond-scale allocations. Isolated execution with HPC-native containers, e.g, Sarus.

Reducing cold startups latency with warm containers. Distributed communication and high-performance I/O.

? How to efficiently share the GPU device between functions while keeping the multi-tenant isolation?

HPC serverless combines the high performance with cloud elasticity. While fine-grained
functions have been improved with fast networks and filesystems, they lack GPU computing.

Space-Sharing with Multiprocessing (NVIDIA MPS) Device Partitioning (Virtualization, NVIDIA MIG)

4

1 2

3

Streaming
Multiprocessors

F1 F2

GPU Memory
Performance and
security isolation.

Approaches to Sharing GPUs Between Co-located Functions

Wasted compute
power due to lack
of device sharing

High-Performance
Serverless Projects

Project Artifact

 Device switches between kernels
from different processes.

Streaming
Multiprocessors

F1 F2

GPU Memory

Multi-Process
Service

Increased utilization and
lower overhead of
context switch

No multitenancy,
fault tolerance, and
performance isolation

Spatial multiplexing of kernels
from different applications in
Multi-Process Service (MPS).

5 GB 5 GB 5 GB 5 GB 5 GB 5 GB 5 GB 5 GB

5 MB 5 MB 5 MB 5 MB 5 MB 5 MB 5 MB 5 MB

GPC GPC GPC GPC GPC GPC GPC

Memory

L2 Cache

Compute

1g.5gb 1g.5gb 2g.10gb 3g.20gb

Example MIG partitioning:
four slices of sizes
1, 1, 2, and 3.

F1 F2

Memory Memory

Multi-tenancy and
performance isolation.

Lower utilization
when processes gain
exclusive access.

Many device instances
with virtualization or
physical partitioning in
Multi-Instance GPU (MIG).

Why do we need to share GPUs?

GPUs are growing larger: from A100 to H100, memory and FLOPs increased
by 2x and 2.6x. Fine-grained functions cannot fully utilize large device.

4.77x speedup,
but at the cost of
7x more resources!

Why not use NVIDIA MPS?

 Data Movement in API Remoting

Data movement adds large overheads in network-based API
remoting. We add mignificient_malloc to allocate host data in

shared memory. Then, local API remoting adds minor
overhead to native cudaMemCpy (A100 GPU).

CPU vs GPU Time Distribution

MPS is not designed for multi-tenant
workloads. Side-channel attacks are
possible on co-located kernels.

NVIDIA MPS is a common choice
for GPU sharing, but it does not
satisfy multi-tenancy requirements
of serverless functions.

MPS has no performance isolation,
and co-located kernels compete for
memory bandwidth.

MPS has no error containment: a GPU
failure on a single tenant is
propagated to everyone, requiring
reinitialization of CUDA context and
restart of kernels.

MIG: 1g instance size

Rodinia applications spend time primarily on
CPU and memory management (V100 GPU).

By limiting the exclusive GPU access to
kernels only, we can improve system

throughput and GPU utilization.

MIGnificient Functions with CPU and Data Movement Overlap

Traditional Functions with Exclusive GPU Access

Fast Function Switching

Functions have to process the request, transfer data to the device, and schedule GPU kernels.
When using high-level languages like Python, they can spend more time on CPU than on GPU.

MIGnificient quickly transitions to the next tenant after the current one finishes GPU computations,
and overlaps data transfers to increase utilization.

MIGnificient: Secure Functions on Partitioned GPUs

Fast API Remoting
over shared memory

Serverless systems
dispatch invocations to

MIGnificient nodes.

Functions execute CPU
and GPU code with

minimal code changes.

MIGnificient is a new GPU-accelerated serverless design that provides multi-tenant isolation and high
performance. Functions are executed on the same node as GPU and isolated by CPU containers. MIG is used

to partition the device into smaller units for high efficiency and concurrent execution. Thanks to local API
remoting, we limit function access to the device, preventing side-channel attacks in concurrent execution.

STREAM Benchmark on MPS, 1000 invocations

Function Server

O
rc

h
e
s
tr

a
to

r

HPC Container

1
RAM

Parallel
Filesystem 2

3
Storage

HPC Container

4 Function Server

RAM

?

Active GPU operations
on A100 MIG.

Fast Function Switching

We evaluated our system with 2 concurrent clients sending 10
requests to the same function. We deployed MIGnificient

orchestrator with HTTP gateway and bare-metal executors on
an RTX 4070 GPU. We compare our function switching approach

against native CUDA execution (no isolation) and sequential
execution (exclusive GPU access). With two clients, we increase

throughput of isolated execution up to 1.9x.

MIGnificient Native
Benchmark Overlap CPU +

Data Transfer
Overlap

CPU
Sequential

Time
Sharing

528.8 ± 14.6 515.9 ± 18.2 990.5 ± 112 505.3 ± 2.5 BFS

103 ± 9.9 102.9 ± 10.1 195.1 ± 22.2 92.1 ± 0.8 hotspot

27.5 ± 0.7 28.3 ± 1.9 53.3 ± 6 18 ± 0.3 ResNet-50

26.4 ± 0.9 26.2 ± 0.7 49.2 ± 5.5 15.4 ± 0.5 AlexNet

27.8 ± 1 28.5 ± 1.2 54.5 ± 6.5 23.6 ± 1 Vgg19

41.4 ± 3.1 46.5 ± 3.9 65.8 ± 7.5 40.2 ± 2.5 BERT-SQuaD

All GPU
Ops (%)

GPU Kernels
& Memcpy (%)

Execution
Time (s)

Benchmark

9.20 0.46 1.79 BFS

54.56 24.28 0.52 Gaussian

30.48 0.26 0.49 Hotspot

30.29 1.65 0.32 Pathfinder

75.77 3.67 0.21 srad_v1

Lukewarm Functions

Lukewarm
functions:

CPU container
retained, GPU
memory data
kept warm in
host memory.

BERT ResNet-50

1332 MB 142 MB Model Size

730.2 ms 107 ms Load Time

214.47 ms 23.45 ms Swap Time

To estimate benefits of lukewarm functions, we
compare just the cost of initializing ML model in

PyTorch with time of swapping a warm model data
from host memory (RTX 4070 GPU). A cold container

needs to additionally initialize CPU container with
Python, CUDA context, and PyTorch.

