
Process-as-a-Service: Unifying Elastic and Stateful
Clouds with Serverless Processes

Marcin Copik
ETH Zurich

Zurich, Switzerland
marcin.copik@inf.ethz.ch

Alexandru Calotoiu
ETH Zurich

Zurich, Switzerland
alexandru.calotoiu@.inf.ethz.ch

Gyorgy Rethy∗
Oracle Labs

Zurich, Switzerland
gyorgy.rethy@oracle.com

Roman Böhringer∗
OpenCore GmbH

Schindellegi, Switzerland
r.boehringer@opencore.ch

Rodrigo Bruno
INESC-ID, Instituto Superior
Técnico, University of Lisbon

Lisbon, Portugal
rodrigo.bruno@tecnico.ulisboa.pt

Torsten Hoefler
ETH Zurich

Zurich, Switzerland
htor@inf.ethz.ch

ABSTRACT
Fine-grained serverless functions power many new applica-
tions that benefit from elastic scaling and pay-as-you-use
billing model with minimal infrastructure management over-
head. To achieve these properties, Function-as-a-Service
(FaaS) platforms disaggregate compute and state and, conse-
quently, introduce non-trivial costs due to the loss of data
locality when accessing state, complex control plane inter-
actions, and expensive inter-function communication. We
revisit the foundations of FaaS and propose a new cloud
abstraction, the cloud process, that retains all the bene-
fits of FaaS while significantly reducing the overheads that
result from disaggregation. We show how established operat-
ing system abstractions can be adapted to provide powerful
granular computing on dynamically provisioned cloud re-
sources while building our Process as a Service (PraaS)
platform. PraaS improves current FaaS by offering data lo-
cality, fast invocations, and efficient communication. PraaS
delivers remote invocations up to 17× faster and reduces
communication overhead by up to 99%.

∗The work was done while at ETH Zurich.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SoCC ’24, November 20–22, 2024, Redmond, WA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1286-9/24/11. . . $15.00
https://doi.org/10.1145/3698038.3698567

CCS CONCEPTS
• Computer systems organization→ Cloud computing;
• Software and its engineering→ Cloud computing.

KEYWORDS
Serverless, Function-as-a-Service, Operating Systems
ACM Reference Format:
Marcin Copik, Alexandru Calotoiu, Gyorgy Rethy, Roman Böhringer,
Rodrigo Bruno, and Torsten Hoefler. 2024. Process-as-a-Service:
Unifying Elastic and Stateful Clouds with Serverless Processes. In
ACM Symposium on Cloud Computing (SoCC ’24), November 20–
22, 2024, Redmond, WA, USA. ACM, New York, NY, USA, 20 pages.
https://doi.org/10.1145/3698038.3698567

PraaS Implementation: https://github.com/spcl/praas
PraaS Artifact: https://github.com/spcl/praas-artifact

1 INTRODUCTION
In less than a decade, Function-as-a-Service (FaaS) has es-
tablished itself as one of the fundamental cloud program-
ming models. Users invoke stateless and short-running func-
tions and benefit from pay–as–you–use billing while cloud
providers gain more efficient resource usage and opportuni-
ties to reuse idle hardware [20, 66, 75]. Serverless functions
have been used in a wide spectrum of areas, ranging from
web applications, media processing, data analytics, machine
learning, to scientific computing [9, 28, 34, 48, 51, 53]. Al-
though FaaS has achieved remarkable success in reducing
the costs of burstable stateless computations, its adoption
to stateful applications such as data analytics and machine
learning is currently hampered by the limitations of its exe-
cution model [19, 34, 35, 57].
As an example of a popular workload that is difficult to

implement efficiently in FaaS, we take a cloud service de-
composed into microservices. These include online map ser-
vices, web-based editors such as LaTeX editors (Sec. 6.4), and

https://orcid.org/0000-0002-7606-5519
https://orcid.org/0000-0001-9095-9108
https://orcid.org/0009-0000-7141-1286
https://orcid.org/0009-0005-2203-2892
https://orcid.org/0000-0003-1578-5149
https://doi.org/10.1145/3698038.3698567
https://doi.org/10.1145/3698038.3698567
https://github.com/spcl/praas
https://github.com/spcl/praas-artifact

SoCC ’24, November 20–22, 2024, Redmond, WA, USA M. Copik, A. Calotoiu, G. Rethy, R. Böhringer, R. Bruno, T. Hoefler

Control

Plane

Serverless Process

Local State

Access [ns, us]

Local State

Access [ns, us]

Inter-Process

Communication [us,ms]

Functions in PraaS Services in PraaS

Load Balancer

FaaS

API

Serverless Process

Ephemeral Compute

Local State

Access [ns, us]

Ephemeral Compute

Local State

Access [ns, us]

Ephemeral Compute

Ephemeral Compute StateState

State State

Scale Up & Down

Data

Plane

Invocations

Figure 1: Cloud processes solve critical inefficiencies
inherent to functions while retaining scalability and
elasticity: stateful functions operate with same sim-
plicity as FaaS, while services can use functions more
efficiently.

social networks [29]. Functions are an attractive runtime
even for complex services, as serverless can offer decreased
costs and improved utilization for infrequent and variable
workloads [18]. While each microservice component can be
deployed as a function, a practical deployment requires an
efficient coordination between many microservices, sticky
sessions, and strong data locality when caching results of
prior requests. While the stateless nature of FaaS simplifies
scheduling and resource management, offloading the user
data and service state to a remote storage incurs major per-
formance and cost overheads. Furthermore, each request
will require multiple FaaS invocations traversing the control
plane many times.
Researchers have addressed the limitations of serverless

with a variety of solutions: the lack of state management in
functions [35, 57] was tackled with ephemeral storage [32, 36,
64, 73]. Repeated invocations over the same set of warmed-up
containers are optimized with faster network protocols [20,
33], and the lack of efficient communication is being solved
with direct communication and data locality [17, 43, 70, 72].
However, many of these solutions require non-serverless in-
frastructure with manual and non-elastic management, and
they often solve one of the limiting factors in FaaS while
not addressing the others. As a consequence, today’s FaaS
platforms still struggle to compete with the performance
and efficiency of classical stateful infrastructure [18, 31, 35].
Instead of designing new solutions to fight FaaS limitations,
we propose an enhanced programming model that combines
the FaaS elasticity with the performance of containers and
virtual machines.

The separation of data and computing in serverless is fun-
damentally inefficient and cannot be resolved by composing
FaaS with additional remote cloud systems. Instead, we in-
troduce a new abstraction: the cloud process. Similarly to
OS processes using threads for concurrent computations,
cloud processes run on a single machine and launch functions
within a shared environment (here, a function invocation

would be equivalent to a thread OS). The process provides
a persistent state that functions can use to cache storage
data, retain user sessions, memoize results, and keep invoca-
tion artifacts. When resources become scarce, PraaS follows
traditional-OS design and transparently swaps out the state
consisting of user-defined and durable objects and files, stor-
ing it in disks and cloud storage. Once the same instance of
a process becomes active, the state is lazily loaded to mem-
ory. While stateless functions require users to access remote
storage explicitly, adding performance and cost overhead to
every invocation, the process loads a state only during the
much less frequent restart.

The process strikes a new balance between serverless and
traditional stateful and server-based applications: the lifetime
of computing and storage is managed independently, but the
state is retained close to compute resources, improving data
locality and startup times. Traditional functions can now ef-
ficiently support stateful workloads with the same FaaS API,
while retaining the simplicity of the model where the cloud
provider is responsible for scaling resources (Figure 1). On
the other hand, services implemented on top of FaaS con-
sist of many functions connected with application-specific
communication and scheduling logic. Services often benefit
from having more control over resource provisioning than
in the simple FaaS interface: serverless workflows have their
own schedulers and executors [12, 15], parallel applications
use customized launchers and communicators [17, 34, 48],
and microservices have load balancers. A request that or-
chestrates many functions can be implemented much more
efficiently than in a programming model of functions with
coupled control and data paths. With processes, services
can specify what resources are needed while leaving to the
cloud provider the responsibility of deciding how they should
be provisioned.

Process-as-a-Service (PraaS) is inspired by classical OS
design and transfers concepts that have stood the test of
time in the context of granular cloud computing. Inter-
Process Communication defines a simple yet powerful
messaging interface based only on two operations: send and
recv, covering all types of function–to–function commu-
nication while hiding transport protocol: shared memory,
TCP, or RDMA. A message is sent to a mailbox of the pro-
cess hosting the destination function when the process is
active, or is stored externally while the process is swapped
out. Messages can be transferred between two concurrently
executing functions (message passing) but can also be used
as triggers for functions (invocation), effectively replacing
storage-based communication [34, 48]. Finally, instead of
applying optimizations to decrease control overheads, we
bypass the control plane overheads from the data path en-
tirely [52] by exposing a direct invocation channel to the
process that allows submitting the invocation payload as a

Process-as-a-Service: Unifying Elastic and Stateful Clouds with Serverless Processes SoCC ’24, November 20–22, 2024, Redmond, WA, USA

IaaS CaaS PraaS [This Paper] FaaS

Computation Unit Virtual machine Container Process Function

External Interface SSH, TCP, HTTP, RPC, RDMA SSH, TCP, HTTP, RPC HTTP, TCP HTTP

Lifetime Months Days, hours Minutes, hours Seconds

State Duration Persistent Persistent Persistent Ephemeral

State Location Local disk, memory Memory, cloud storage Memory, cloud storage Cloud storage

Provisioning Manual, minutes Semi-automatic, secs Automatic, msecs Automatic, msecs

Compute Resources Persistent Persistent Ephemeral Ephemeral

Billing Provisioned Provisioned Pay-as-you-go Pay-as-you-go

Scaling Down To Zero No No Yes Yes

Figure 2: Evolution of computing platforms in the cloud - PraaS enables state persistence for ephemeral workers.

message – effectively separating control and data paths in
the platform. By implementing responsibilities traditionally
associated with operating systems, PraaS is a step towards
a distributed cloud computing OS that provides a middle
ground between the performance of persistent allocations
and the elasticity of ephemeral workers (Figure 2).
We implemented PraaS atop AWS Fargate, a commercial

black-box system of serverless containers, and a custom de-
ployment of Docker containers. The new system consists
of a dedicated control plane, a client library, and a process
runtime that can be deployed in any container or virtual ma-
chine. We demonstrate that PraaS can scale with the same
flexibility as serverless functions while reducing remote in-
vocation latency by up to 17× and communication latency
by up to 99%.

We make the following contributions:

• Cloud processes The new cloud abstraction unit that
combines the elasticity and granularity of the function
with the state and communication channels.

• PraaS A novel computing model that brings high-
performance communication, increased data locality,
and a fast data plane to serverless.

• Experimental validation We provide open-source
implementations of PraaS on top of commercial and
open-source FaaS platforms, demonstrating high scal-
ability and efficiency in serverless benchmarks.

2 MOTIVATION
Function-as-a-Service (FaaS) has found its way to major
cloud providers with a fine-grained and elastic program-
ming model. Functions are stateless, and invocations can-
not rely on resources and data from previous executions.
Instead of using persistent and user-controlled virtual ma-
chines and containers, function instances are dynamically

Storage Type 1B 100 kiB 10 MiB

Persistent storage (S3) 15.4 ± 4.3 29.3 ± 8.5 113.6 ± 15.9
Key-value storage (DynamoDB) 4.2 ± 0.5 6.2 ± 0.6 n/a
In-memory cache (Redis on EC2) 0.5 ± 0.06 1.17 ± 1.3 114.8 ± 46.1

Table 1: Access time [ms] to remote storage from AWS
Lambda, mean with standard deviation. Python func-
tions with 2 GiB RAM, with Redis 7.4 on c3.xlarge.

placed in cloud-managed sandboxes, e.g., containers or mi-
cro virtual machines [7]. A cold invocation requires alloca-
tion of a new sandbox that significantly increases invoca-
tion latency [19, 45]. Subsequent warm invocations achieve
a lower latency by reusing existing sandboxes. Therefore,
cloud systems employ complex and sophisticated retention
and pre-warming strategies [21, 47, 62, 65], trading off higher
memory consumption for faster executions. In addition, flex-
ible pay-as-you-go billing is another significant advantage of
serverless systems: users are charged only for computation
time and resources used.
However, serverless has some prominent disadvantages:

poor locality of data due to the non-existence of local state,
high communication costs, and higher latency due to com-
plex control planes [19, 25, 35, 69]. PraaS addresses the limi-
tations while retaining the elasticity guarantees of FaaS.

2.1 Serverless State
The stateless nature of functions makes scalability and re-
source provisioning easier for the cloud provider, but places
significant constraints on the usability of FaaS systems. Com-
puting resources are allocated with ephemeral memory stor-
age that cannot be guaranteed to persist across invocations.
Since many applications require the retention of state be-
tween invocations, stateful functions place their state in
remote cloud storage [32, 64, 73]. While the function’s state
is located in storage far away from the compute resources,
fetching and updating the state adds dozens of milliseconds
of latency to the execution (Table 1), resulting in significant

SoCC ’24, November 20–22, 2024, Redmond, WA, USA M. Copik, A. Calotoiu, G. Rethy, R. Böhringer, R. Bruno, T. Hoefler

performance overhead [32, 73]. In the FaaS model, removing
remote storage access from the data path is impossible.

Serverless State In addition to user data placed in durable
and replicated cloud storage, applications manage data that
should be persisted for performance reasons. Caching is nat-
ural to many applications that manage user requests (sticky
sessions) and retain results that are likely to be used in the
future but are expensive to recompute, e.g., when fetching
large data items in microservices or in incremental compi-
lation. Finally, functions can produce ephemeral data, such
as partitioned collections in Spark and results consumed by
subsequent pipeline invocations [46]. This raises two impor-
tant issues: how to retain data in the ephemeral serverless
environment and how to match new invocations with the
cached state?
Existing solutions address the first problem with auto-

matically managed caches that retain storage data in func-
tions [49, 55]. However, these focus on remote storage and do
not support data produced by the function, and they cannot
persist data across cold invocations. To solve the second prob-
lem, researchers proposed grouping connected invocations
together through colors [6] and redesigning the program-
ming model in a data-flow manner [72]. These solutions
can optimize functions by redirecting new user requests to
warm instances that previously hosted similar invocations.
However, the locality is limited to warm containers as no
data is persisted after downscaling. To fully benefit from the
warm local state, the programming model must address both
problems simultaneously.

2.2 Serverless Communication
Communication in FaaS has always been constrained as in-
dustrial offerings do not offer direct communication, forcing
users to rely on storage or proxy-based communication - an
expensive solution with high latency that lacks a portable
API. State-of-the-art solutions implement communication
through cloud storage, increasing latency, costs, and appli-
cation complexity [34, 35, 43, 53]. Although direct network
communication between functions could alleviate perfor-
mance problems, functions do not offer the abstractions
needed to communicate between functions with a dynamic
lifetime. I.e., the message–passing paradigm cannot be ap-
plied directly to ephemeral functions, as the worker lifetime
is not well defined: new workers can be launched and ter-
minated by the provider at any time according to internal
scheduling and scaling policies that are completely unknown
to users. Furthermore, in typical FaaS deployments, functions
operate behind NAT and cannot accept incoming connec-
tions. Connections can be established with the help of hole
punching [26, 27], but it is a complex process that applies
only to two active functions simultaneously.

Furthermore, functions that want to receivemessages need
a full network stack, with a virtualized network device and a
public IP address assigned. Network configuration increases
startup latency and the cost of handling serverless workers.
In practice, functions do not operate as servers that accept
connections from many clients. Instead, functions need an
interface to communicate efficiently with other functions.

Many serverless applications could benefit from efficient
and direct communication: not only parallel applications in
machine learning, HPC, and data analytics [20, 70], but also
systems replacing traditional services that rely on direct and
ordered TCP connections [18, 68].

2.3 Serverless Control and Data Planes
Modern platforms implement dynamic function placement
through a centralized routing system [7]. It includes an ab-
straction of a REST API and a gateway with a persistent
network address and uses an HTTP connection to hide the
selection and allocation of function executors. The function
input is forwarded to the central management responsible for
authorization, allocation of resources, and routing to the se-
lected server. In AWS Lambda, the control logic is responsible
for authorizing requests, managing sandbox instances, and
placing execution on a cloud server [7]. In OpenWhisk [1],
the critical path for the function execution is even longer.
Each invocation includes a front-end web server, controller,
database, load balancer, and a message queue [58]. Finally,
the input data is moved to a warm or cold sandbox, and the
function returns the output through the gateway.

Expensive Requests The many steps of control logic
add double–digit millisecond latency to each invocation [7,
16] and require copying user payload multiple times, even
though subsequent invocations reuse the same warm sand-
box when available. The overhead of the control plane can
dominate the execution time and is much higher than the
network transmission time needed to transfer the input ar-
guments [19]. Serverless functions are predominantly short-
running [59] and, as a consequence, the relative overhead
on the multi-step function workflows and distributed appli-
cations is very high. Alternative approaches include man-
ual provisioning, reusing function instances, decentralized
scheduling, and direct invocations [8, 15, 20, 63, 72], but these
optimizations do not offer a solution generalizable to all FaaS
platforms and require manual scaling.

Request Alignment As shown before, functions benefit
from accessing the state associated with prior invocations.
However, FaaS control planes are oblivious to sticky sessions,
and each upcoming request can be placed in any warm con-
tainer. This leads to poor data locality, as functions cannot
access each other’s state unless it is placed in remote storage.
While functions do not have a concept of state, processes

Process-as-a-Service: Unifying Elastic and Stateful Clouds with Serverless Processes SoCC ’24, November 20–22, 2024, Redmond, WA, USA

do. There, the control plane could redirect invocation to an
instance specified by the unique identifier returned from the
previous request.

Request Multiplexing FaaS control planes tend to oper-
ate in a single-request mode: function container receives an
invocation and becomes unavailable until it returns the re-
sult. While this setting is appropriate for compute-intensive
workloads that consume all resources of a function, many
workloads are I/O-bound [39], and a single server could pro-
cess thousands of requests by employing event loops and
multithreading. However, functions are limited to a single
request by their invocation model. Serverless platforms allow
batching requests with the help of queues, but in addition to
increased costs of additional cloud services, batching intro-
duces the trade-off between optimal batch size and latency,
and complicates further the problem of poor state locality.

FaaS can be more than just a platform for irregular and
lightweight workloads. However, to tap into massively par-
allel and granular computing [40, 42], FaaS platforms must
first overcome critical limitations: complex control plane
involved in every invocation, lack of a fast and durable
state, and expensive storage-based communication.

3 CLOUD PROCESSES
The lack of state and data movement in functions made
serverless simple but resulted in major performance and us-
ability limitations (§2). We address these limitations with the
new concept of a cloud process, a natural extension of server-
less functions. Conceptually, we lift traditional OS processes
to the cloud. Processes are dynamically and automatically
allocated on abstracted cloud resources, and like functions
they execute in fine-grained and isolated environments. Each
process contains a controller that controls the state, invokes
functions, accumulates logs and metrics, and implements
message passing between processes.
The new cloud process model overcomes the limitations

of existing systems in three areas. (1) Processes are equipped
with persistent state which efficiently supports stateful ap-
plications (§3.1). (2) Inter-process communication defines data
movement between processes and removes the dependency
on external storage, enabling direct communication between
ephemeral workers (§3.3). (3) Processes are scaled automati-
cally by the cloud provider and use data plane that supports
fast function invocations bypassing the control plane (§3.2).
With the new process abstraction, we build PraaS, a platform
taking advantage of cloud processes’ new programming (§4).

A cloud process contains two new components to support
inter-process communication: a data plane communication
channel and a durable state, which includes all the memory
storing user data and a mailbox (Figure 3). When the cloud

1

2 Function

Mailbox

Process State

Process Controller

PraaS Control Plane

Communication Channel

Process

Function

Memory

Object

Logs

Executor

Filesystem

3
Files4

Swap In/Out
5

Figure 3: The process model in PraaS: ephemeral func-
tions are executed in a processs with shared and per-
sistent state. Communication channels provide quick
user access and data exchange between functions.

ACTIVE

Swap In

Invocations

Idle period

Swap out

Invocation

Invoke

Kill

KILLED SWAPPED

IDLE

Remove swapped state

Create

Figure 4: The life cycle of a cloud process. Process status
changes in reaction to user operations () or operator
scaling actions ().

control plane allocates a process, it assigns it an identifier
and a user-defined amount of resources. A communication
channel is then opened with the first invocation to transmit
the input and output data directly (1). Subsequent invoca-
tions can bypass the control plane and use the data plane
(2). Functions use data stored by previous invocations in the
state (3). The mailbox (4) handles invocations (§4.3) and
communication between processes (§4.2). This component
is allocated within the process and managed by the process
controller to minimize access latency and provide reliability;
messages may live longer than a single function invocation.
Finally, the state is guaranteed to persist across container
shutdowns, with the cloud responsible for swapping in and
out the data (5).

3.1 Locality with State
In FaaS, functions and microservices persist their state using
remote cloud storage. In PraaS, we distinguish between the
persistent and ephemeral state of an application. The per-
sistent state cannot be lost and must be stored in a highly
replicated storage to survive the crash of a virtual machine
or a container; here, processes behave identically to IaaS and
CaaS deployments. On the other hand, the ephemeral appli-
cation state can be recreated after a crash. For example, in the
case of the LaTeX microservice, the user files cached within
the process can be served directly. Similarly, processed files

SoCC ’24, November 20–22, 2024, Redmond, WA, USA M. Copik, A. Calotoiu, G. Rethy, R. Böhringer, R. Bruno, T. Hoefler

and the generated PDF do not have to be recomputed, which
could happen in FaaS when the container is evicted or invo-
cations from the same user arrive at different warm instances.
With a process state, we provide the opportunity for func-
tions to distinguish between durable data, which must use
replicated cloud storage in every type of deployment, and
ephemeral state that is kept local but not lost upon eviction,
as is the case in FaaS.

State Semantics Processes have a state that must always
be locally available to ensure minimal access latency, but
it does not perish once the sandbox is removed. The state
includes only a part of memory and the filesystem marked as
storing the durable data of functions, and the remaining part
of the working set is ephemeral (Figure 3). Thus, functions co-
located within the same process can share state objects and
improve data locality, e.g., by serving microservice requests
in a process and using the state as a cache for requests and
results. Functions within a single process can read and mod-
ify state, which operates as a reader-writer lock (Listing 1).
This simple communication interface incorporates new state
and communication features, requiring neither a complete
redesign of serverless applications [72] nor dedicated compil-
ers [30]. Depending on the underlying implementation and
capabilities of the programming language, functions receive
a data copy or obtain direct access to the shared memory.
PraaS processes are designed to be a single tenant only,

as all functions in a process share the same state data. The
isolation between functions handling different user data de-
pends on the implementation of business logic in functions.
If the function executes user code, then separate processes
should be used for different tenants.

State Lifetime The new state cannot restrict cloud
providers from scaling resources transparently, as in FaaS.
Processes should be serverless; the cloud operator makes all
allocation decisions, and users have no control over them.
To that end, we extend the FaaS function model with a new
state of being swapped out (Figure 4). A process is swapped
out only when the sandbox is evicted, which in FaaS happens
after several minutes of inactivity [19]. By introducing a per-
sistent swap, we remove the statelessness restriction from
FaaS while not adding any new limitations to the serverless
allocation model. A swapped process can be reactivated later
through a function invocation and an explicit reinitialization.
Similarly to FaaS, the allocation is not persistent: the cloud
provider controls the lifetime, and the process can be re-
moved at any point. Process state enables the persistence of
user data and execution of stateful functions without manual
state management by users. Note that a process hosting a
single function operates as a stateful FaaS (similar to a state-
ful entity in Durable Functions [13]), with the same ease of
scaling and reclaiming resources.

Access a copy or the original data over shared memory
data = state_write(key)
data_const = state_read(key)
Change process state
state_commit(key, data)
Send message over IPC
send(destination, key, data)
data = recv(source, key)
Invoke function
invoke(destination, function, data)

Listing 1: New communication interface for functions.

3.2 Invocations with Control and Data
Planes

Conceptually, a function invocation in a process is similar to
an allocation of a thread in a running program. A new thread
starts working with a fresh stack but can still access the pro-
cess in-memory state. We leave it up to the implementers
to decide if a function executes in a dedicated OS process
or a thread within the main OS process. In the latter case,
functions share the language runtime and can benefit from
reduced memory overhead. The process can handle multiple
function invocations simultaneously, and it is bounded by
the resource limitations of the underlying sandbox. Users
and cloud providers can limit the number of simultaneous
invocations an individual process can start, for example, by
setting the limit relative to the allocated memory. Larger
workflows are supported by distributing the workload across
multiple processes and communicating through the IPC in-
terface (§4.2).
The FaaS simplicity relies on automatic scaling, and pro-

cesses must support the same model for applications that
do not have custom scheduling policies. Thus, functions
can be invoked through the control plane, and invocation
requests can supply the process ID to hint the system on
which process to put the invocation. Additionally, orchestra-
tors and load balancers can invoke functions more efficiently
by sending the payload over the data plane (inter-process
communication). The process controller receives invocation
messages to start user functions. When the process reaches
its resource limit, the invocation is rejected, notifying the
control plane and orchestrators to scale up processes. When
the control plane sends an eviction notice due to inactivity,
the controller swaps the state to cloud storage.

Scaling Up New processes are allocated on-demand
through FaaS executions or via an explicit request to the
cloud control plane. Processes are allocated with a clean
state (creation) or retrieve a swapped state from the storage
and continue execution (swapping in). Since loading hun-
dreds of megabytes of state data would significantly increase

Process-as-a-Service: Unifying Elastic and Stateful Clouds with Serverless Processes SoCC ’24, November 20–22, 2024, Redmond, WA, USA

the cold startup time, and functions tend not to use the whole
state in every invocation, processes can start by loading only
the list of state contents. Actual data is loaded lazily: pro-
cesses load the data in the background, and prioritize objects
actually accessed by a function.
The fundamental assumption behind our process is that

it never scales beyond a single server, since such a design
radically simplifies handling memory and state. A process
spanning multiple machines requires a partitioned and dis-
tributed sharedmemory, which comes with non-trivial issues
in cache coherency, synchronization, and performance. In-
stead of using processes larger than a single machine, orches-
trators and schedulers allocate more processes to handle the
increased load. This decision does not affect the program-
ming model, as the communication interface available to
functions is the same for local and remote operations. When
possible, this communication will be optimized to use local
operations. Active communication channels do not prohibit
cloud operators from performing load balancing and consol-
idation, since processes can be migrated between machines.
Processes with an active connection to a migrating process
could receive a packet with migration details and later estab-
lish a connection to the new communication channel. This
design decision does not introduce additional complexity
into writing serverless functions, since data exchange be-
tween two functions always uses the same API, regardless
of whether the communication is intra- or inter-process.

Scaling Down Upon a process eviction, the sandbox is
terminated, and the state — including memory, part of filesys-
tem, and mailbox, as in Figure 3 — is swapped out to per-
sistent cloud storage. Processes are swapped implicitly by
the control plane according to the provider’s down-scaling
policy (fixed period of inactivity for example). In practice,
our API can be easily extended to allow users to explicitly
swap out processes. When scaling down, processes do not
accept any new invocation requests, and the state, together
with unread messages, is written to the store. If a specific
state is no longer required (for example, if the user deleted
the process), the swapped state can be completely removed
from the cloud storage.

3.3 Process Model with Communication
Compared to FaaS, functions executing in a cloud process
have to use only six new primitives to benefit from local state
and fast communication (Listing 1).We define twomessaging
routines that implement all communication tasks handled
by processes. A recv operation that has two required pa-
rameters only - the sender identifier and message name -
and returns the contents of a message with the given name
if such exists. A send operation takes three standard argu-
ments: the identifier of the target process, message name,

Retrieve prior road computations
prior_route = praas.state_read(req["route_id"])
Local computation
new_route = recompute_road(prior_route, req["destination"])
Microservice updates route with new conditions
route = praas.invoke("traffic", "optimize", new_route)
Store user data in the process state.
praas.state_commit(request["user"], route)
return route

Listing 2: Example of integrating process state into
microservices for online maps.

Control Plane

Process

State

Server

Cloud Storage

Server

Backup Queue

REST

Interface

Process

State

PraaS System

Control Path

Process

State

Data Path

Figure 5: Platform architecture of PraaS.

and the content of the message. Both routines accept a set
of optional flags to support copy and sharing semantics that
vary between programming languages.We define two special
identifiers SELF and ANY to support intra–process commu-
nication and receiving messages from an arbitrary sender.
These routines are optimized to transmit binary data as ef-
ficiently as possible and hide all details of the underlying
network transport and local communication. A simple inter-
face with just five functions expedites porting applications,
and function developers are not exposed to the complexity
of managing the state and establishing communication.
Example We highlight crucial features of the process

model with an example of an online map service (Listing 2).
A microservice design will split across functions different
tasks such as route finding, current traffic condition, or visu-
alization. User applications will create many route update
requests to change roads and receive the most recent traffic
updates. Processing each such request requires warm data
for a specific region. To avoid reinitializing the map cache
from scratch after a period of inactivity, functions store it in
the process state.

4 PRAAS: PROCESS–AS–A–SERVICE
With the cloud process model introduced above, we now
apply proven system design concepts (Table 2), and present
Process–as–a–Service, a new execution model and server-
less platform (Figure 5). Processes can be scaled automatically

SoCC ’24, November 20–22, 2024, Redmond, WA, USA M. Copik, A. Calotoiu, G. Rethy, R. Böhringer, R. Bruno, T. Hoefler

PraaS Concept Inspiration

Application Operating system.
Process POSIX process model.
Function Thread in a process.
State POSIX process memory.
State Persistence Swapping memory pages.
Communication Channel System-V message queues.
Communication Model Indirect message passing with mailboxes [61].

Data Plane Network data plane in Arrakis [52],
kernel bypass in RDMA.

Table 2: In PraaS, system design concepts are used
to lift the cloud process model into a distributed and
serverless space.

Grouping processes and functions into a logical unit
app_id = create_application()
delete_application(app_id)
FaaS Invocation on any process
result, pid = invoke(app_id, func, data)
FaaS Sticky Invocation on a selected process
result = invoke(app_id, func, data, pid)
PraaS Interface
pid, data_plane = create_process(app_id)
data_plane = swapin_process(app_id, pid)
status = swapout_process(app_id, pid)
delete_process(pid)

Listing 3: PraaS control plane REST interface.

by the cloud and are logically grouped into applications, en-
abling efficient communication and local invocations needed
by serverless services.

4.1 Process Management
In PraaS, processes are grouped to create scalable applica-
tions spanning multiple server machines. First, processes
are grouped into applications to create communication
partners for functions, a feature missing in current server-
less platforms. Then, we enhance the REST interface of the
control plane, focused on function invocations, with pro-
cess management operations (Listing 3). A PraaS application
provides group semantics for a set of processes, including
processes that are active and that have been swapped out
by the cloud provider. The system grows and shrinks with
changes in the workload according to automatic scalability
of functions (FaaS Model), and with user-driven scalability
to acommodate custom orchestrators and schedulers (PraaS
Model). However, process allocation is always controlled by
the cloud provider control plane, and we do not place any
restrictions in this regard. Therefore, low-latency schedulers
like the one in Lambda can be supported [7], and placement
can be optimized to increase communication locality.

FaaS Model PraaS is backwards-compatible with the FaaS
interface. Users can skip process management and directly

invoke functions. There, the platform automatically manages
a pool of processes and schedules function invocations over
them. Like in FaaS, the control plane implements standard
container management techniques to increase the frequency
of warm invocations. Unlike in FaaS, users can control the
routing of invocations into selected process instances by pro-
viding the process identifier pid in request headers. Thus,
processes can be used to implement sticky sessions [67] where
requests from a single user are always handled by the same
process. This type of invocation is best-effort: if the invo-
cation request is rejected by the process, the control plane
allocates a new clean process and sends the invocation there.
Thus, users benefit from both automatic scalability and state-
ful functions.

PraaS Model New processes receive a clean state by de-
fault, but they can be initialized from a previously swapped
state by providing the process identifier. To start a new pro-
cess, the user must specify the application, the container
image used, and the resource configuration (we omit some
details in Listing 3 for simplicity). Since not every invocation
now uses the control plane, processes report data plane met-
rics back to accumulate billing data, drive the down-scaling
policy, and update logs. Shifting accountability from the crit-
ical path of invocation to the control plane is essential to
enabling fast serverless computing.

4.2 Inter-Process Communication
PraaS offers efficient and disaggregated communication by
binding mailboxes and channels to the process instance. Our
communication model does not concentrate on function in-
vocations since they have a limited lifetime and might not
execute simultaneously, but it is focused on data movement
operations, allowing dynamically reshapable applications
to benefit from peer–to–peer communication. In an appli-
cation, processes know about each other’s existence and
can communicate directly. Instead of moving data from a
function to a function via a cloud proxy, it is transmitted
between cloud processes hosting functions that want to com-
municate, increasing performance and decreasing network
communication volume. Thus, communication services scale
up automatically with the processing units, data is always
locally available, and processes save the latency of reaching
an external service.

Messaging routines provide an abstraction for all commu-
nication in space and time between processes and functions.
When the message name indicates a function invocation, its
contents are interpreted as input payload for a new invoca-
tion (§4.3). All other messages are placed in the mailbox in
a recipient process, co-located with the process in the same
sandbox to minimize data copies.

Process-as-a-Service: Unifying Elastic and Stateful Clouds with Serverless Processes SoCC ’24, November 20–22, 2024, Redmond, WA, USA

Function A: send data to the mailbox of process_id
def sender(process_id, message_id, data):

praas.send(process_id, message_id, data)
Function B: gather received results
def receiver(message_id):

data = praas.recv(praas.ANY, message_id)

Listing 4: Communication between functions A and B
encodes data flow but does not expose the location nor
the status of the recipient.

Functions communicate by sending messages (send) into
the recipient’s mailbox. Recipient functions read messages
(recv) and optionally specify the source to match the exact
recipient. Since cloud processes communication target mail-
boxes, we establish message passing without enumerating
ephemeral and unreliable functions, as demonstrated in the
example of two functions exchanging data (Listing 4). The
communication interface stays the same, regardless of the
actual location of both functions, as they can execute in the
same process and in two different processes. Message names
encode focus on the data and its semantics, similar to storage-
based communication in FaaS that requires a key for object
and NoSQL storage, and multithreading in OS processes that
uses variable names for that purpose.

Asynchronous Communication The communication
may not happen synchronously as the receiver might be
swapped out. In such a scenario, messages can be delivered
to a backup queue and will be processed once the process has
been swapped in. Furthermore, senders are always identified
in the same way, which makes communication independent
of the distribution of functions across processes. PraaS com-
munication replaces pushing updates and polling for changes
in a cloud proxy, allowing serverless programs to benefit
from the higher bandwidth and lower costs of peer–to–peer
communication.

Scaling Management Distributed applications need to
control active workers and their location in the cloud. This
is even more important when using serverless resources,
as allocations are ephemeral and change often. However,
FaaS systems offer little to no support for controlling the
global state of an application. In PraaS, we propose that
all processes are equipped with an up-to-date list of active
and swapped-out processes, and with information needed to
establish IPC-style connections. The control plane is involved
in every scaling up and down operation and is responsible
for distributing updates to active processes. Functions are
notified of a change, allowing them to adjust communication
operations and support collective communication patterns,
even when they involve workers that can be swapped out.

Type Mechanism

Standard Each message creates a new function invocation.
Multi-Source Invocation waits for N messages with the same key.
Batch Invocation waits for N messages with any key.

Table 3: In PraaS, function invocation patterns are de-
fined as conditions on messages arriving in the cloud
process.

4.3 Function Invocations over Data Plane
PraaS helps to minimize FaaS latencies with fast and high-
throughput invocations via the data plane. In FaaS, a server-
less invocation includes authorizing the request, selecting
and optionally allocating resources, and redirecting the pay-
load to the executor function. Repeated control operations
are redundant when many execution requests are redirected
to the same warm container. Therefore, as long as the au-
thorization remains valid, users and schedulers can bypass
control operations and move data directly to the process.
The payload is sent from the user to the process mailbox,
and this single-hop approach helps achieve high throughput
on larger payloads. Thus, the invocation latency is bounded
only by the network fabric and the performance of function
executors in a process.
Serverless workflows may require complex function in-

teractions such as function chaining, conditional invocation,
and batching of input data. These often require external or-
chestrators and service-based triggers that increase costs
and complexity even for small workflows, e.g., a function
pipeline or an aggregation function taking more than one in-
put. To facilitate serverless programming, we propose basic
control and data policies that allow users to support dynamic
and configurable invocations (Table 3). Invocations are rep-
resented as regular messages whose names encode function
and an invocation key. These messages are tracked by the
process controller which accumulates provided invocation
keys and checks if any of the function triggers are satisfied.
More complex orchestrators can be implemented atop cloud
processes.

5 PRAAS IN PRACTICE
We implement PraaS as an extension to CaaS and FaaS plat-
forms to facilitate wide adoption and demonstrate the com-
patibility of our process model with existing systems. We
implement two distinct solutions: a custom PraaS control
plane that manually deploys processes, and a second imple-
mentation extending Knative and Kubernetes. While the first
implementation serves as the main prototype used in evalua-
tion, we use the Kubernetes deployment to demonstrate the
retrofitting of a serverless process model into state-of-the-art
CaaS and FaaS platforms.

SoCC ’24, November 20–22, 2024, Redmond, WA, USA M. Copik, A. Calotoiu, G. Rethy, R. Böhringer, R. Bruno, T. Hoefler

5.1 Main Prototype
We implement a PraaS control plane that deploys and pro-
cesses running on top of AWS Fargate, a cloud service
that outsources container management from the user, and
manually scheduled Docker containers on virtual machines.
Serverless containers offered by Fargate are allocated on de-
mand without resource provisioning for a Kubernetes cluster.
We use a container instead of running a cloud process directly
as a serverless function on AWS Lambda because Fargate
allows us to attach a public IP address to the container, a
feature necessary for direct communication. Note that the
IP is not exposed to the user code. Thanks to a resource con-
figuration scheme similar to AWS Lambda, we can compare
serverless containers with an equivalent resource allocation
as Lambda functions.
The solution consists of roughly 13.5 thousand lines of

code in C++, with an additional Python runtime for a pro-
cess (400 lines). The control plane exposes an HTTP interface
to end users (Listing 3), while the internal communication
between processes, the control plane, and the data plane is
done with binary serialized messages on top of TCP. We
offer users a C++ SDK that encapsulates the data plane com-
munication with a process and the REST requests needed
to communicate with the control plane. We use dedicated
libraries for event handling, I/O multiplexing, HTTP serving,
and data serialization. PraaS can be extended with deploy-
ment to new serving platforms, execution in new container
types, and new transport protocols and network fabrics, e.g.,
QUIC and RDMA.

Process We propose that as in other serverless platforms,
users deploy containers with function code and dependen-
cies, which are later extendedwith the PraaS process runtime.
In addition to the OS processes that execute user code, we add
controller. The controller handles invocation messages, accu-
mulates data plane metrics, manages state, and implements
swapping policies. Then, it uses TCP connections to prop-
agate messages to other processes. We support swapping
process data, such as state, unread messages, and dedicated
files, into S3 and Redis. Additionally, the direct deployment
to Docker containers running on virtual machines can swap
in and out to a locally mounted volume, demonstrating a
full hierarchy of storage options for warm and cold process
states.

Process State We define two modes of using the process
state: copying objects with serialization and serialization-
free object sharing. Objects are stored in binary form in
the former, and each call to recv returns a new copy. Func-
tions receive the object data from the process state by using
standard local IPC methods, such as POSIX message queues,
UNIX domain sockets, or shared memory. In the latter, ob-
jects are stored directly in a shared memory pool accessed

by all functions in the cloud process, providing serialization–
free and zero–copy access. For example, functions executing
in C-based languages can receive a pointer to a shared object.
On the other hand, Python functions require pickling data
for each state operation, but they can still benefit from a
process implementation that uses zero–copy shared memory
instead of traditional IPC methods to communicate between
functions and state. The state implementation is hidden from
the user, who only sees the state_* operations, allowing
cloud operators to decide where and how objects should
be stored and find a balance between access latency and
the cost of in-memory storage of user data. In the current
implementation, we use POSIX message queues instead of
shared memory since serverless platforms such as Lambda
and Fargate have limited support for shared memory devices.

5.2 Kubernetes
We demonstrate integration into existing serverless systems
with the second prototype built as an extension to Kuber-
netes [3] and Knative [2].1 There, we modify the control
plane to manage processes as pods and store information on
applications and processes in a Redis instance. Furthermore,
we replace the default down–scaling policies that terminate
a randomly selected or the least recently used container.
Instead, we terminate process containers with data plane
activity below a specified threshold. On Kubernetes, we man-
ually modify the scaling set, while in Knative, we use the
pod deletion cost mechanism to target selected containers.
We provide a custom process runtime implemented in

Python, running a FastAPI server to manage control plane
and data plane connections. The communication layer is
implemented on top of WebSockets. The platform includes
a function store, where users upload functions as Python
wheels that can be dynamically installed on processes.

6 EVALUATION
In this section, we focus on showing the practical benefits of
PraaS with respect to improving invocation latency, reduc-
ing the overhead of communication between functions, and
avoiding the need to rely on slower cloud storage by using
the local process state. We then evaluate the trade-offs of
PraaS and its cost compared to FaaS.

6.1 Lower Latency via the Data Plane
We start our evaluation of PraaS by comparing the latency
of function invocation over the data plane compared to us-
ing AWS Fargate. For this purpose, we invoke a function
that accepts a payload of a given size and returns it immedi-
ately - this is the serverless invocation equivalent of a no-op.
1An extended discussion of these platforms can be found in the Master
thesis [54].

Process-as-a-Service: Unifying Elastic and Stateful Clouds with Serverless Processes SoCC ’24, November 20–22, 2024, Redmond, WA, USA

10B 10 KiB 100 KiB 1 MiB 5 MiB
Message size [bytes]

10−1

100

101

102

In
vo

ca
tio

n
Ti

m
e

[m
se

c]

TCP (baseline) PraaS (Local) PraaS (Remote) AWS Lambda

Figure 6: Invocation latency of a no-op function in
PraaS on AWS Fargate, compared against TCP base-
line (dashed horizontal line).

We place the benchmarker application in a virtual machine
running Ubuntu 20.04 in the same cloud region, and invoke
warm AWS Lambda and PraaS functions. We report the me-
dian time between start and end of each invocation from
100 repetitions. We invoke a remote PraaS function on a
Fargate container with 1 CPU and 2 GB, which is equiva-
lent to the Lambda configuration with 1792 MB and 1 vCPU.
The version testing local follow-up invocations is using a
Fargate container with 2 vCPU. Finally, we measure the base-
line transfer over TCP by executing the netperf benchmark
between a virtual machine and the Fargate container.
The results shown in Figure 6 show a consistent, signifi-

cant benefit for using PraaS, with remote invocations having
virtually no overhead compared to the baseline of simply
transferring the payload over TCP. PraaS invocation have
significantly less latency compared to Lambda: remote in-
vocations are between 68% and 94% faster while local invo-
cations are between 94% and 99% faster. Local invocations
measure invocations of a follow-up function scheduled on
the same process rather than going through the control plane.
While much faster than alternatives (between 17 and 187
times faster than AWS Lambda), local invocations are limited
in the current prototype by POSIX message queues. Queues
are used within a single process to communicate between
controller and OS processes executing functions, which is a
bottleneck for communication.

The performance of message queues is limited by the max-
imum message size and number of messages in the queue;
in our case, the hard limits imposed by the OS are ten mes-
sages of 8 kiB. Large payloads have to be split into smaller
blocks, and the sender is required to push new messages
iteratively once the receiver polls a message from the queue.
Furthermore, the total memory allocated to message queues
is limited to 800 kiB, restricting the total number of message

10 B 1 kiB 10 kiB 1 MiB 5 MiB

EC2 UDS 19.8 20.1 100.9 562.6 2027
MQ 22.1 23.8 125 809.8 3629.7

Fargate UDS 23.3 23.4 44 284.7 1398.5
MQ 13.1 13.7 103.6 1204.2 5492.9

Table 4: Time of round-trip local communication [usec]
over message queues and Unix Domain Sockets, be-
tween two OS processes running on Fargate (2 vCPU, 4
GiB) and EC2 virtual machine (c3.xlarge, 4 vCPUs).

10B 10 KiB 100 KiB 1 MiB 5 MiB
Message size [bytes]

100

101

102

M
es

sa
ge

 la
te

nc
y

[m
se

c]

PraaS Send-Recv Redis AWS S3

Figure 7: Communication latency of two PraaS pro-
cesses running on Fargate with different communica-
tion channels.

queues with such parameters to ten. Thus, direct communi-
cation between two functions executing in the same PraaS
process is not feasible, and all messages have to be relayed
through the controller. As shown in Table 4, message queues
can add 4x overhead than Unix Domain Sockets. Performance
limitations of both IPC methods can be alleviated with zero-
copy shared memory communication when available on the
serverless platform.

6.2 Inter-Function Communication
An important concept in serverless workflows is chaining
functions to pass the output of one as input to the other
one. We now evaluate the impact of direct message passing
between processes compared to communication through
Redis and S3 for different payload sizes.
We design the experiment to send a single message be-

tween two PraaS processes across two Fargate containers
with 1 vCPU and 2 GB RAM. As baselines, we use a Redis
instance (allocated on a c4.xlarge EC2 VM) and AWS S3. Both
Redis and S3 are used to replace point-to-point communi-
cation. The sender uploads an object/key, and the receiver
reads it. For both storage systems, we use linear backoff to
avoid extraneous charges (S3) and overloading the service
(Redis), starting at 1 ms sleep and increasing by one with

SoCC ’24, November 20–22, 2024, Redmond, WA, USA M. Copik, A. Calotoiu, G. Rethy, R. Böhringer, R. Bruno, T. Hoefler

1 10 25 50 100
Number of reduction invocations

100000

10000

1000

100

10

In
pu

t s
ize

 [e
le

m
en

ts
]

13 15 11 11 11

39 51 49 51 53

44 52 51 50 49

40 54 55 53 54

30 31 32 32 33
20

30

40

50

(a) Speedup of reduction in PraaS over state in S3.

1 10 25 50 100
Number of reduction invocations

100000

10000

1000

100

10

In
pu

t s
ize

 [e
le

m
en

ts
]

1.2 1.2 1 1 1

2.1 2.1 2.1 2.1 2.1

2 2 1.9 2 1.9

1.9 1.9 1.9 1.9 2

2 2.1 2.1 2 1.9 1.2

1.4

1.6

1.8

2.0

(b) Speedup of reduction in PraaS over state Redis.

Figure 8: The reduction benchmark storing state.

each failed communication. For all cases, we measure the
round-trip latency of sending and receiving between the two
processes and divide the time by two. Results represent the
median out of 100 runs. All three benchmarks are executed
as PraaS functions.
Figure 7 presents the results of this experiment. PraaS

improves the latency against S3 from 77% to 99% (smallest
message) and against Redis from 39% to 93%. The benefits
are higher for small messages, which is particularly impor-
tant when considering deploying large stateful functions or
services [55]. In addition to latency reductions, PraaS avoids
significant costs and maintenance overheads associated with
using S3 and setting up (and scaling) Redis instances.
In PraaS, the communication times grow with message

size because of TCP performance and the dependency on
internal IPC methods. At 5 MiB, the PraaS communication
time reaches 61 ms, where the netperf reports almost 48
ms for remote data transfer. Then, message queues add 5.5
ms to transfer data between functions and their respective
controllers.

6.3 The benefits of Cloud Process State
We now evaluate how much time can be saved by using the
local process state PraaS provides instead of saving partial
results in cloud storage. The scenario where many workers
aggregate results using reduction functions is common in
many cloud applications, especially in distributed machine
learning. The reduction function needs to update the state
resulting from previous invocations whenever it is invoked

with new data. Instead of loading data from cloud storage,
updating and storing it again, serverless functions can skip
the first and last steps by keeping the data in the memory of
a warm container.

We evaluate a reduction that accumulates input data in a
vector of 8 byte integers. We make an optimistic assumption
that the result of the previous invocation is stored warm in
the function’s global memory, and only store the result in
storage to avoid data loss. We evaluate the function with
different input sizes and compute the time needed to invoke
the reduction a varying number of times. We run Fargate
with 1 vCPU and 2 GB memory in this benchmark and Re-
dis on a c4.xlarge machine. We repeat the measurements
100 times, and we show in Figure 8 the speedup provided
by PraaS using its persistent, swappable state compared to
storing the state in S3 or Redis. PraaS does not incur the
additional costs of running a separate in-memory cache that
Redis does.
PraaS is approximately 2× faster than Redis except for

the largest input sizes, where there is enough computation
to effectively hide the time needed to load and store partial
results. The speed-up compared to S3 is overwhelming - at
least 11 times faster, with some scenarios being over 50 times
faster.

6.4 Case Study - LaTeX Service
We demonstrate the benefits of state and data plane invoca-
tions with a case study of a serverless microservice handling
collaborative LaTeX editor, similar to the Overleaf project [4].
We implement four Python services that allow us to update
project files, retrieve the newest file version, recompile the
project, and retrieve the compiled PDF document. To support
online editing, serverless functions must use external stor-
age as two independent calls to a service might be placed in
different containers. On the other hand, functions in PraaS
offer a persistent state and data plane connection, which
guarantees that calls to a service for the same project are
handled using the same process. In PraaS, functions place
the contents of each file into the process memory. In both
implementations, functions cache the last state of the project
on the attached disk space and update locally stored files
only when needed. Thus, when recompilation is requested,
the function obtains keys and timestamps of project files
from process state (PraaS) and from S3 (Lambda), compares
timestamps with the locally cached files, and retrieves only
files newer than the local cache version. Finally, since the
process state is not replicated and user data could be lost in
the event of a container failure, we use it only as a cache:
update-file function stores the contents of the file both in
process memory and S3.

Process-as-a-Service: Unifying Elastic and Stateful Clouds with Serverless Processes SoCC ’24, November 20–22, 2024, Redmond, WA, USA

get-file
, Input 1

get-file
, Input 2

get-file
, Input 3

get-file
, Input 4

get-pdf

update-file
, Input 1

update-file
, Input 2

update-file
, Input 3

update-file
, Input 4

100

101

102

Ti
m

e
[m

s]

Lambda, 443 MiB
Lambda, 885 MiB

Lambda, 1769 MiB
Lambda, 3538 MiB

PraaS, 0.25 vCPU
PraaS, 0.50 vCPU

PraaS, 1 vCPU
PraaS, 2 vCPU

compile, Fa
ilure

compile, No Update

compile, Recompilation

103

104

Figure 9: LaTeX microservice benchmark with serverless functions (AWS Lambda) and processes (AWS Fargate),
serving LaTeX files from acmart 1.90a template [5]. Mean values with 95% confidence interval on a semi-log plot.

We evaluate each service with different inputs on AWS
Lambda with S3 storage, and PraaS processes deployed on
AWS Fargate. For compilation, we consider three scenar-
ios representing realistic use cases: empty run triggered by
reupload of an empty file, LaTeX failure caused by incor-
rect update erasing file’s contents, and recompilation after
updating multiple files. We change the Fargate container
allocations and Lambda memory configurations to measure
the impact of varying computing resources and I/O band-
width availability, repeating each invocation 50 times. We
measure the total client time of Lambda invocations and data
plane PraaS executions. Lambda memory is tuned to use the
same virtual CPU allocation as PraaS processes running in a
Fargate container.
Figure 9 shows that a persistent process state decreases

the overhead of running microservices in a serverless setting.
Even for a compute-intensive incremental LaTeX compila-
tion, a local state guarantees that a an empty compilation
run can be completed 1.23x - 1.91x faster than in a Lambda
function. Thanks to the data plane and warm state, LaTeX
files can be served to users up to 34.3x faster. When returning
a larger PDF file (571 kiB), get-file is 3.3x - 13.4x faster
in PraaS than on Lambda. PraaS has similar performance
to Lambda on update-file, as we persist user files on S3
in both scenarios for durability. Nonetheless, PraaS can exe-
cute this function up to 1.82x faster, with Lambda matching
our performance only on one 443 MB configuration that
performs better than larger allocations.

6.5 Case Study - Machine Learning
To demonstrate the benefits of PraaS, we apply it to a work-
load from the distributed machine learning framework Lamb-
daML [34]. We select the K-Means algorithm using the Higgs
dataset and port it to the PraaS Kubernetes implementation.
We compare PraaS against a version ported to Knative, which

200 k 400 k 600 k 800 k 1000 k
Number of instances per worker

50

100

150

200

250

300
Time [s] KMeans Execution Time

PraaS
Knative, S3
Knative, Redis

Figure 10: LambdaML with K-Means algorithm and
Higgs dataset. PraaS against Knative with S3 and Redis.

uses AWS S3 and Redis for communication. We use the origi-
nal communication primitives for S3, and implement custom
communication for Redis. In PraaS, we implement a naive
allreduce in PraaS where each worker broadcasts new results
to all other participants. Finally, we replace the original input
reading procedure: instead of manually partitioning of input
data uploaded to S3 buckets, we use a single input file and
let functions read data at specified offset.
We execute a weak scaling benchmark with 8 workers

on an AWS EKS cluster of consisting of 4 t3a.large EC2
nodes, each with 2 vCPUs and 8 GB of memory. We place
two functions within a single PraaS process, and we deploy
a 6-pod cluster of Redis 7.0.5 in the same cluster to provide
the highest data locality. We execute the benchmark for 100
epochs, and repeated the measurement 10 times. Results
shown in Figure 10 show that the IPC of PraaS performs
better than an in-memory cluster, we speed up the runtime
by 1.5 to 6 times against S3.

SoCC ’24, November 20–22, 2024, Redmond, WA, USA M. Copik, A. Calotoiu, G. Rethy, R. Böhringer, R. Bruno, T. Hoefler

0 20 40 60 80 100 120
Number of pods in Kubernetes cluster

0

200

400

600

800

1000

1200

1400

1600

1800

Po
d/

Pr
oc

es
s A

llo
ca

tio
n

Ti
m

e
[m

se
c]

PraaS on k8s has up to 15% higher
allocation cost in worst case than Kubernetes

Knative has a lower maximum
number of user pods due to
additional service containers.

Kubernetes (baseline) PraaS (Kubernetes) PraaS (Knative)

Figure 11: Allocating PraaS processes on managed Ku-
bernetes services.

6.6 Trade-Offs
While the new process model requires minor adjustments
to the lifecycle of serverless workers, these changes may
introduce non-negligible overheads. Now we look into costs
of process allocation, deallocation, and state swapping.
Process Allocation Allocating a process requires ac-

cessing a shared control plane state in Redis and deciding
whether process can be allocated, and to which application
it belongs. We run a benchmark that measures the time be-
tween user requesting a new process and receiving amessage
from it. We run this experiment on a four VM cluster using
t3.medium EC2 instances, with each instance supporting up
to 30 pods. We also ran this experiment on a larger deploy-
ment (cluster of 6 VMs with up to 160 pods) and the results
are very similar therefore we do not show both experiments.
Results from five repetitions show that PraaS introduces a
low overhead on top of Kubernetes and Knative (Figure 11).
This overhead results from the acquiring lock on Redis and
extra access to storage to check if there is a swapped state
that should be brought back from storage.

Process DeallocationDeallocating a process differs from
deallocating a FaaS function. When scaling down FaaS func-
tions, cloud operators only need to reduce some arbitrary
ephemeral workers to adjust the scale to the current work-
load. On the other hand, in PraaS, each process can have a
different activity on the data plane and we should deallocate
processes that are idle instead of the active ones. We evaluate
the added overhead of deallocation by comparing the time
between the process reporting low data plane metrics that
warrant deallocation and the moment the process receives
a termination signal. An external benchmark triggers the
deletion of a specific process and waits until the process re-
ports that it started the termination process. We evaluate the
benchmark at a different system load by varying the number
of active pods in the Kubernetes cluster, and repeat 5 times
for each configuration. The time needed to delete a container

1 MiB 5 MiB 10 MiB 50 MiB 100 MiB 200 MiB

Fargate 98.4 173 231.9 907.7 1719.3 3480.4
EC2 120.5 172.8 220.2 791.8 1525.7 2930.5
Table 5: Time of swapping [msec] in-memory state
into AWS S3, from a process executing in a Fargate
container and Docker container on EC2.

in Kubernetes and PraaS (which builds on Kubernetes) does
not differ significantly. Depending on workload and system
noise, the median is about 1.7 to 1.8 seconds, and this latency
comes primarily from Kubernetes logic to deallocate a pod.
On the other hand, the Knative cannot directly delete pods
but instead modifies deletion cost to guide the actual down-
scaling done by knative. There, we notice that this limitation
of a purely serverless platform increases deletion time to
over 60 seconds.

Swapping State PraaS retains containers in memory the
same way as traditional serverless [19], using idle memory to
increase warm startup frequency. Themajor difference is that
we swap out the state once the process container is evicted.
To understand the performance cost of this operation, we
execute a function that transfers in-memory state to S3, and
measure the time needed when executing on Fargate and in
a Docker container on EC2. Table 5 presents the mean result
from 20 repetitions. While swapping out 1 MB of data takes
about 100 ms, this does not increase linearly with the size:
swapping out 100x more data requires 12-17.5x more time.

Real-world Azure data demonstrates that 90% of the appli-
cations never consume more than 400MB of memory, and
50% of the applications allocate at most 170MB [59]. How-
ever, this estimate includes the entire memory of a function,
which contains not only the durable state but also additional
libraries, runtime, working memory, and temporary vari-
ables. In practice, only a fraction of data objects become
state, limiting state-swapping overhead. The swapped states
will also incur a storage cost proportional to the number
of swap-in/swap-out operations and the size of the state.
We estimate that this storage cost will not dominate the en-
tire infrastructure cost and might even be compensated by
reducing the initialization time that FaaS currently suffers.

6.7 Cost Analysis
Cost is another important trade-off of stateful serverless -
we need to store more data in the memory of an instance,
but at the same time, we can decrease costs by not making
additional requests to the storage. While the state data can be
often stored opportunistically in overprovisioned function
memory [49], we make a pessimistic assumption that the
process state requires additional memory. To evaluate PraaS,
we estimate the hosting cloud’s state in memory of a virtual
machine (𝑉) or a container (𝐶), and use it as an estimation

Process-as-a-Service: Unifying Elastic and Stateful Clouds with Serverless Processes SoCC ’24, November 20–22, 2024, Redmond, WA, USA

𝑉𝑚 ($/hr) 𝐶𝑚 ($/hr) 𝐹𝑚 ($/hr) 𝐺𝑉 𝐺𝐶

AWS x86 5.53 · 10−3 4.45 · 10−3 1.5 · 10−2 63.13% 70.37%
AWS ARM 3.53 · 10−3 3.56 · 10−3 1.2 · 10−2 70.53% 70.33%
Azure 4.95 · 10−3 4.45 · 10−3 1.23 · 10−2 59.73% 63.82%
Table 6: Cost of PraaS state in comparison to FaaS provi-
sioned instances, with𝑉𝑚 - cost ofmemorywhen chang-
ing from compute-optimized to memory-optimized
VMs, 𝐶𝑚 - memory cost in the managed container sys-
tem, and 𝐹𝑚 - fee for active serverless state. 𝐺𝑉 and 𝐺𝐶

are the cost decreases using VMs and containers rather
than provisioned FaaS to store state.

of the cost of hosting cloud process state in memory. Then,
we compare it against cost of provisioned FaaS instances (𝐹).
We select cloud platforms AWS (us-east region) and Azure
(East US region).

FaaS The only comparable feature on modern commer-
cial FaaS systems is a provisioned function instance, known
as provisioned concurrency on AWS Lambda and premium
plan for Azure Functions. Cloud providers guarantee ready
function instances to decrease cold startup frequency. While
arguably such functions are not serverless, such instances can
be treated as a limited substitute of warm and low-latency
state.2 There, in addition to paying for consumed computing
resources, users are charged the active state fee 𝐹𝑠 that de-
pends on the memory size and the duration of provisioning.

PraaS To estimate the cost of retaining PraaS state alive
in memory, we use the memory of other cloud services as
a proxy for the cost to the cloud operator. We select virtual
machines (𝑉) and managed containers (𝐶). First, we compute
the added cost of changing from a compute-optimized to a
memory-optimized virtual machine instances, needed to host
process states. We divide the difference in hourly cost by
the size of gained memory, which estimates the additional
cost of adding one gigabyte of DRAM to a machine hosting
PraaS (𝑉𝑚). OnAWS,we compare instances c6i (x86) and c6g
(ARM) against x2iedn (x86) and x2gd (ARM). On Azure, we
compare Fs and Edsv5 series. We find that 𝑉𝑚 is almost the
same for each instance size, with minor variations on Azure.
Then, we select the cost of allocating additional memory
when deploying PraaS on managed container systems 𝐶𝑚 ,
and we consider AWS Fargate and Azure Container Instances.
There, compute and memory are billed separately, and we
use cloud providers prices for each gigabyte of memory.

Summary By comparing the memory costs 𝑉𝑚,𝐶𝑚 of
PraaS deployment to the cost of provisioned storage 𝐹𝑚 on
FaaS, we estimate the cost decrease𝐺𝑉 and𝐺𝐶 of moving the
state from provisioned FaaS to VMs and containers, respec-
tively. The results presented in Table 6 prove that PraaS state

2AWS provisioned concurrency instances can be recycled and reinitialized,
making state persistence difficult, if not impossible, to implement in practice.

can be offered at a lower cost, by up to 70.5%, and the estima-
tion covers the cloud provider costs and profit included in the
price of a VM instance. Furthermore, the memory-optimized
instances come with additional SSD storage, which could be
used to implement a low-latency tier for swapped state at
no additional cost.

7 RELATEDWORK
PraaS combines several features that have been explored
in isolation in previous work. However, leveraging the new
cloud process abstraction, PraaS is, to the best of our knowl-
edge, the first platform to combine high-density sandboxes
with a local durable state that can communicate and be in-
voked without the involvement of external storage and the
control plane. Table 7 includes an overview of the main con-
tributions of each research area that we detail below.
Ephemeral Storage augments the spectrum of applica-

tions that benefit from FaaS by allowing functions to keep
state, even if disaggregated. Researchers have built stateful
functions on top of key-value stores specialized to server-
less [10, 64], and elastic ephemeral caches [36, 49, 53, 55]
which combine different placement strategies to manage
cost and performance. Others have gone a step further and
offered transaction support and fault tolerance atop FaaS [32]
to help developers build consistent and fault-tolerant systems
on ephemeral functions. Instead of relying on external cloud
services to work around the limitations of FaaS, we propose
rethinking and redesigning the underlying abstraction to
support state and communication. Similarly to stateful cloud
applications (such as microservices), applications built on
top of PraaS can be complemented with external databases
and caches to facilitate consistency and fault tolerance.
Function Control Planes have also been extensively

studied. Systems such as Speedo [22] and Nightcore [33]
optimize function orchestration by either accelerating the
control plane [22] or by completely skipping it [33] for in-
ternal function invocations. Other systems have looked into
how to optimize the data path by comparing different func-
tion communication strategies and automatically adapting
deployment decisions [43], by avoiding moving data and
allowing multiple functions to share the execution envi-
ronment [38], or by offering direct network access to func-
tions [70]. Pheromone [72] improves serverless workflows
by binding control logic with ephemeral data objects, and
Unum [41] proposes a decentralized orchestrator for FaaS
workflows. Finally, Palette [6] adds color-based locality hints
to serverless invocations.
Durable Functions [12, 13] (DF) extended FaaS’s pro-

gramming model by incorporating support for orchestration,
stateful entities, and critical sections. DFs build on exist-
ing cloud services to offer consistency and synchronization

SoCC ’24, November 20–22, 2024, Redmond, WA, USA M. Copik, A. Calotoiu, G. Rethy, R. Böhringer, R. Bruno, T. Hoefler

Areas of Research Durable State Invocation Communication Programming Model Density
Ephemeral Storage Remote Control Plane Proxy Stateless Function Low

Function Control Plane Remote Direct Proxy/Direct Stateless Function High
Durable Functions Local Control Plane Proxy Stateful Entity Low

Lightweight sandboxes Remote Control Plane Proxy/Direct Stateless Function High
PraaS Local Control Plane and Direct Direct Process High

Table 7: Comparison of different areas of related work with PraaS.

across all entities. Palette [6] proposes locality hints that can
be used to forward requests of a client to the same worker.
PraaS, on the other hand, proposes a general-purpose execu-
tion environment that looks similar to the one available in
an OS-level process. In fact, the process abstraction can be
used to implement traditional FaaS applications and state-
ful entities. PraaS offers basic orchestration primitives that
rely on message passing but more advanced orchestration
frameworks such as Unum could be easily integrated at the
application level. For communication, processes use mail-
boxes which can be implemented atop direct communication
or indirect communication via proxy/storage. Mailboxes do
not require the recipient to be alive upon sending nor the
sender to be alive upon receiving.

Lightweight sandboxes utilize specialized virtualization
engines [7, 23] that offer low startup times and memory foot-
print when compared to traditional virtual machine man-
agers. However, to continue improving the scalability and
elasticity of serverless applications, Software Fault Isolation-
based systems [11, 24, 60] have been proposed to co-execute
multiple invocations inside the same OS process. PraaS is, in
part, inspired by such systems by allowingmultiple functions
of the same user to execute concurrently inside a single pro-
cess (note that a PraaS process can be implemented different
sandboxing technology as long as it allows multiple func-
tions to share memory). By doing so, resource redundancy
is reduced and new opportunities for local communication
arise. Nu [56] proposes logical processes that span many
proclets executing on a distributed execution environment.
However, unlike PraaS, Nu is not designed for serverless
platforms as it assumes always-on stateful instances with
direct communication Finally, PraaS’s design does not pre-
clude orthogonal optimization techniques such as image
pre-initialization [8, 14, 23, 50] and unikernels [37, 44, 74] to
optimize process startup time and memory footprint.

8 DISCUSSION
A step towards a Cloud Operating System Distributed
operating systems have been an active research topic for a
long time, but, despite the efforts, researchers have not con-
verged on a scalable system that transparently distributes the
load and manages resources across multiple cloud machines

communicating via a shared messaging service [71]. Simi-
larly to the classical OS, a Cloud OS is expected to perform
several tasks, such as resource allocation, scheduling, and
file system management. We envision the cloud process as
one of the missing building blocks of a cloud OS.
Fault-tolerance Cloud processes should enjoy a level

of fault-tolerance comparable to using the non-serverless
infrastructure. By providing a swappable state, PraaS handles
intentional/planned failures (such as evictions) by removing
the ephemeral, on-spot executor but persisting state data.
If more data is generated than previously allocated to state
memory, the overflow can be pushed directly to storage and
enjoys the same guarantees as cloud queues.
Portability of PraaS Our process model makes no as-

sumptions on the underlying virtualization technology, and
is not restricted to any language, cloud, or serverless system.
In sum, PraaS can be used in all major cloud providers and
even allows platforms to offer specialized back-ends tailored
to the systems themselves, as long as the required operations
are supported.

9 CONCLUSIONS
PraaS is the next step towards a cloud computing OS. By
taking advantage of processes, applications benefit from a
low-latency state, fast invocations that bypass the control
plane, and fast communication between processes. PraaS
brings persistent state to ephemeral workers and offers a
speed-up of up to 55 times over using storage.

ACKNOWLEDGMENTS
This project has received funding from the Euro-
pean Research Council (ERC) under the European
Union’s Horizon 2020 program (grant agreement PSAP, No.
101002047), and from the Swiss State Secretariat for Educa-
tion, Research and Innovation (SERI) under the SwissTwins
project. This work was funded in part by Fundação para a
Ciência e a Tecnologia, under the project UIDB/50021/2020.
We thank Amazon Web Services for supporting this research
with credits through the AWS Cloud Credit for Research.
We also would like to thank anonymous reviewers and our
shepherd for helping us improve the manuscript.

Process-as-a-Service: Unifying Elastic and Stateful Clouds with Serverless Processes SoCC ’24, November 20–22, 2024, Redmond, WA, USA

REFERENCES
[1] 2016. Apache OpenWhisk. https://openwhisk.apache.org/. Accessed:

2024-10-19.
[2] 2021. Knative. https://knative.dev/. Accessed: 2024-10-19.
[3] 2021. Kubernetes. https://kubernetes.io/. Accessed: 2024-10-19.
[4] 2023. Overleaf: An open-source online real-time collaborative LaTeX

editor. https://github.com/overleaf/overleaf. Accessed: 2024-10-19.
[5] 2024. acmart: ACM consolidated LaTeX styles. https://github.com/

borisveytsman/acmart. Accessed: 2024-10-19.
[6] Mania Abdi, Samuel Ginzburg, Xiayue Charles Lin, Jose Faleiro, Go-

har Irfan Chaudhry, Inigo Goiri, Ricardo Bianchini, Daniel S Berger,
and Rodrigo Fonseca. 2023. Palette Load Balancing: Locality Hints
for Serverless Functions. In Proceedings of the Eighteenth European
Conference on Computer Systems (Rome, Italy) (EuroSys ’23). Asso-
ciation for Computing Machinery, New York, NY, USA, 365–380.
https://doi.org/10.1145/3552326.3567496

[7] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony
Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020.
Firecracker: Lightweight Virtualization for Serverless Applications.
In 17th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 20). USENIX Association, Santa Clara, CA, 419–434.
https://www.usenix.org/conference/nsdi20/presentation/agache

[8] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus
Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND:
Towards High-Performance Serverless Computing. In Proceedings of
the 2018 USENIX Conference on Usenix Annual Technical Conference
(Boston, MA, USA) (USENIX ATC ’18). USENIX Association, USA, 923–
935.

[9] Lixiang Ao, Liz Izhikevich, Geoffrey M. Voelker, and George Porter.
2018. Sprocket: A Serverless Video Processing Framework. In Proceed-
ings of the ACM Symposium on Cloud Computing (Carlsbad, CA, USA)
(SoCC ’18). Association for Computing Machinery, New York, NY, USA,
263–274. https://doi.org/10.1145/3267809.3267815

[10] Daniel Barcelona-Pons, Marc Sánchez-Artigas, Gerard París, Pierre
Sutra, and Pedro García-López. 2019. On the FaaS Track: Building
Stateful Distributed Applications with Serverless Architectures. In
Proceedings of the 20th International Middleware Conference (Davis, CA,
USA) (Middleware ’19). Association for Computing Machinery, New
York, NY, USA, 41–54. https://doi.org/10.1145/3361525.3361535

[11] Sol Boucher, Anuj Kalia, David G. Andersen, and Michael Kamin-
sky. 2018. Putting the "Micro" Back in Microservice. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18). USENIX Association,
Boston, MA, 645–650. https://www.usenix.org/conference/atc18/
presentation/boucher

[12] Sebastian Burckhardt, Badrish Chandramouli, Chris Gillum, David
Justo, Konstantinos Kallas, Connor McMahon, Christopher S. Meik-
lejohn, and Xiangfeng Zhu. 2022. Netherite: Efficient Execution of
Serverless Workflows. Proc. VLDB Endow. 15, 8 (apr 2022), 1591–1604.
https://doi.org/10.14778/3529337.3529344

[13] Sebastian Burckhardt, Chris Gillum, David Justo, Konstantinos Kallas,
Connor McMahon, and Christopher S. Meiklejohn. 2021. Durable
Functions: Semantics for Stateful Serverless. Proc. ACM Program. Lang.
5, OOPSLA, Article 133 (oct 2021), 27 pages. https://doi.org/10.1145/
3485510

[14] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger,
and Jonathan Appavoo. 2020. SEUSS: Skip Redundant Paths to Make
Serverless Fast. In Proceedings of the Fifteenth European Conference
on Computer Systems (Heraklion, Greece) (EuroSys ’20). Association
for Computing Machinery, New York, NY, USA, Article 32, 15 pages.
https://doi.org/10.1145/3342195.3392698

[15] Benjamin Carver, Jingyuan Zhang, Ao Wang, Ali Anwar, Panruo Wu,
and Yue Cheng. 2020. Wukong: A Scalable and Locality-Enhanced
Framework for Serverless Parallel Computing. In Proceedings of the
11th ACM Symposium on Cloud Computing (Virtual Event, USA) (SoCC
’20). Association for Computing Machinery, New York, NY, USA, 1–15.
https://doi.org/10.1145/3419111.3421286

[16] Ryan Chard, Yadu Babuji, Zhuozhao Li, Tyler Skluzacek, Anna
Woodard, Ben Blaiszik, Ian Foster, and Kyle Chard. 2020. FuncX:
A Federated Function Serving Fabric for Science. In Proceedings of
the 29th International Symposium on High-Performance Parallel and
Distributed Computing (Stockholm, Sweden) (HPDC ’20). Associa-
tion for Computing Machinery, New York, NY, USA, 65–76. https:
//doi.org/10.1145/3369583.3392683

[17] Marcin Copik, Roman Böhringer, Alexandru Calotoiu, and Torsten
Hoefler. 2023. FMI: Fast and Cheap Message Passing for Serverless
Functions. In Proceedings of the 37th International Conference on Super-
computing (Orlando, FL, USA) (ICS ’23). Association for Computing
Machinery, New York, NY, USA, 373–385. https://doi.org/10.1145/
3577193.3593718

[18] Marcin Copik, Alexandru Calotoiu, Pengyu Zhou, Konstantin Tara-
nov, and Torsten Hoefler. 2024. FaaSKeeper: Learning from Build-
ing Serverless Services with ZooKeeper as an Example. In Proceed-
ings of the 33rd International Symposium on High-Performance Par-
allel and Distributed Computing (Pisa, Italy) (HPDC ’24). Associa-
tion for Computing Machinery, New York, NY, USA, 94–108. https:
//doi.org/10.1145/3625549.3658661

[19] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Pod-
stawski, and Torsten Hoefler. 2021. SeBS: A Serverless Benchmark
Suite for Function-as-a-Service Computing. In Proceedings of the 22nd
International Middleware Conference (Middleware ’21). Association for
Computing Machinery. https://doi.org/10.1145/3464298.3476133

[20] Marcin Copik, Konstantin Taranov, Alexandru Calotoiu, and Torsten
Hoefler. 2023. rFaaS: Enabling High Performance Serverless with
RDMA and Leases. In 2023 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). 897–907. https://doi.org/10.1109/
IPDPS54959.2023.00094

[21] Nilanjan Daw, Umesh Bellur, and Purushottam Kulkarni. 2020. Xanadu:
Mitigating Cascading Cold Starts in Serverless Function Chain De-
ployments. In Proceedings of the 21st International Middleware Confer-
ence (Delft, Netherlands) (Middleware ’20). Association for Computing
Machinery, New York, NY, USA, 356–370. https://doi.org/10.1145/
3423211.3425690

[22] Nilanjan Daw, Umesh Bellur, and Purushottam Kulkarni. 2021. Speedo:
Fast dispatch and orchestration of serverless workflows. In Proceed-
ings of the ACM Symposium on Cloud Computing (Seattle, WA, USA)
(SoCC ’21). Association for Computing Machinery, New York, NY, USA,
585–599. https://doi.org/10.1145/3472883.3486982

[23] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang
Qin, Qixuan Wu, and Haibo Chen. 2020. Catalyzer: Sub-Millisecond
Startup for Serverless Computing with Initialization-Less Booting.
In Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(Lausanne, Switzerland) (ASPLOS ’20). Association for Computing
Machinery, New York, NY, USA, 467–481. https://doi.org/10.1145/
3373376.3378512

[24] Vojislav Dukic, Rodrigo Bruno, Ankit Singla, and Gustavo Alonso. 2020.
Photons: Lambdas on a Diet. In Proceedings of the 11th ACM Symposium
on Cloud Computing (Virtual Event, USA) (SoCC ’20). Association for
Computing Machinery, New York, NY, USA, 45–59. https://doi.org/
10.1145/3419111.3421297

https://openwhisk.apache.org/
https://knative.dev/
https://kubernetes.io/
https://github.com/overleaf/overleaf
https://github.com/borisveytsman/acmart
https://github.com/borisveytsman/acmart
https://doi.org/10.1145/3552326.3567496
https://www.usenix.org/conference/nsdi20/presentation/agache
https://doi.org/10.1145/3267809.3267815
https://doi.org/10.1145/3361525.3361535
https://www.usenix.org/conference/atc18/presentation/boucher
https://www.usenix.org/conference/atc18/presentation/boucher
https://doi.org/10.14778/3529337.3529344
https://doi.org/10.1145/3485510
https://doi.org/10.1145/3485510
https://doi.org/10.1145/3342195.3392698
https://doi.org/10.1145/3419111.3421286
https://doi.org/10.1145/3369583.3392683
https://doi.org/10.1145/3369583.3392683
https://doi.org/10.1145/3577193.3593718
https://doi.org/10.1145/3577193.3593718
https://doi.org/10.1145/3625549.3658661
https://doi.org/10.1145/3625549.3658661
https://doi.org/10.1145/3464298.3476133
https://doi.org/10.1109/IPDPS54959.2023.00094
https://doi.org/10.1109/IPDPS54959.2023.00094
https://doi.org/10.1145/3423211.3425690
https://doi.org/10.1145/3423211.3425690
https://doi.org/10.1145/3472883.3486982
https://doi.org/10.1145/3373376.3378512
https://doi.org/10.1145/3373376.3378512
https://doi.org/10.1145/3419111.3421297
https://doi.org/10.1145/3419111.3421297

SoCC ’24, November 20–22, 2024, Redmond, WA, USA M. Copik, A. Calotoiu, G. Rethy, R. Böhringer, R. Bruno, T. Hoefler

[25] Adam Eivy and Joe Weinman. 2017. Be Wary of the Economics of
"Serverless" Cloud Computing. IEEE Cloud Computing 4, 2 (2017), 6–12.
https://doi.org/10.1109/MCC.2017.32

[26] J. L. Eppinger. 2005. TCP Connections for P2P Apps: A Software
Approach to Solving the NAT Problem. Carnegie Mellon University,
Technical Report ISRI-05-104 (Jan. 2005).

[27] Bryan Ford, Pyda Srisuresh, and Dan Kegel. 2005. Peer-to-Peer Com-
munication across Network Address Translators. In Proceedings of the
Annual Conference on USENIX Annual Technical Conference (ATEC ’05).
USENIX Association, USA, 13.

[28] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki
Balasubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivara-
man, George Porter, and Keith Winstein. 2017. Encoding, Fast
and Slow: Low-Latency Video Processing Using Thousands of Tiny
Threads. In 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17). USENIX Association, Boston, MA, 363–
376. https://www.usenix.org/conference/nsdi17/technical-sessions/
presentation/fouladi

[29] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, and et al. 2019. An Open-Source Benchmark Suite for Mi-
croservices and Their Hardware-Software Implications for Cloud &
Edge Systems. In Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming Languages and Op-
erating Systems (Providence, RI, USA) (ASPLOS ’19). Association for
Computing Machinery, New York, NY, USA, 3–18. https://doi.org/10.
1145/3297858.3304013

[30] Zhiyuan Guo, Zachary Blanco, Mohammad Shahrad, Zerui Wei, Bili
Dong, Jinmou Li, Ishaan Pota, Harry Xu, and Yiying Zhang. 2022.
Resource-Centric Serverless Computing. CoRR abs/2206.13444 (2022).
https://doi.org/10.48550/ARXIV.2206.13444 arXiv:2206.13444

[31] Joseph M. Hellerstein, Jose M. Faleiro, Joseph E. Gonzalez, Johann
Schleier-Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang
Wu. 2018. Serverless Computing: One Step Forward, Two Steps Back.
CoRR abs/1812.03651 (2018). arXiv:1812.03651 http://arxiv.org/abs/
1812.03651

[32] Zhipeng Jia and Emmett Witchel. 2021. Boki: Stateful Serverless
Computing with Shared Logs. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles (Virtual Event, Germany)
(SOSP ’21). Association for Computing Machinery, New York, NY, USA,
691–707. https://doi.org/10.1145/3477132.3483541

[33] Zhipeng Jia and Emmett Witchel. 2021. Nightcore: Efficient and Scal-
able Serverless Computing for Latency-Sensitive, Interactive Microser-
vices. In Proceedings ofthe 26th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS ’21). Association for Computing Machinery, New York, NY,
USA. https://doi.org/10.1145/3445814.3446701

[34] Jiawei Jiang, Shaoduo Gan, Yue Liu, Fanlin Wang, Gustavo Alonso,
Ana Klimovic, Ankit Singla, WentaoWu, and Ce Zhang. 2021. Towards
Demystifying Serverless Machine Learning Training. In Proceedings
of the 2021 International Conference on Management of Data (Virtual
Event, China) (SIGMOD ’21). Association for Computing Machinery,
New York, NY, USA, 857–871. https://doi.org/10.1145/3448016.3459240

[35] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl
Krauth, Neeraja Jayant Yadwadkar, Joseph E. Gonzalez, Raluca Ada
Popa, Ion Stoica, and David A. Patterson. 2019. Cloud Program-
ming Simplified: A Berkeley View on Serverless Computing. CoRR
abs/1902.03383 (2019). arXiv:1902.03383 http://arxiv.org/abs/1902.
03383

[36] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas
Pfefferle, and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral

Storage for Serverless Analytics. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation (Carlsbad,
CA, USA) (OSDI’18). USENIX Association, USA, 427–444.

[37] Ricardo Koller and Dan Williams. 2017. Will Serverless End the Domi-
nance of Linux in the Cloud?. In Proceedings of the 16th Workshop on
Hot Topics in Operating Systems (Whistler, BC, Canada) (HotOS ’17).
Association for Computing Machinery, New York, NY, USA, 169–173.
https://doi.org/10.1145/3102980.3103008

[38] Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, and Arkaprava Basu.
2021. Faastlane: Accelerating Function-as-a-Service Workflows. In
2021 USENIX Annual Technical Conference (USENIX ATC 21). USENIX
Association, 805–820. https://www.usenix.org/conference/atc21/
presentation/kotni

[39] Tom Kuchler, Michael Giardino, Timothy Roscoe, and Ana Klimovic.
2023. Function as a Function. In Proceedings of the 2023 ACM Sym-
posium on Cloud Computing (Santa Cruz, CA, USA) (SoCC ’23). As-
sociation for Computing Machinery, New York, NY, USA, 81–92.
https://doi.org/10.1145/3620678.3624648

[40] Collin Lee and John Ousterhout. 2019. Granular Computing. In Pro-
ceedings of the Workshop on Hot Topics in Operating Systems (Bertinoro,
Italy) (HotOS ’19). Association for Computing Machinery, New York,
NY, USA, 149–154. https://doi.org/10.1145/3317550.3321447

[41] David H. Liu, Amit Levy, Shadi Noghabi, and Sebastian Burckhardt.
2023. Doing More with Less: Orchestrating Serverless Applications
without an Orchestrator. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23). USENIX Association,
Boston, MA, 1505–1519. https://www.usenix.org/conference/nsdi23/
presentation/liu-david

[42] Pedro García López, Aleksander Slominski, Michael Behrendt, and
Bernard Metzler. 2021. Serverless Predictions: 2021-2030. CoRR
abs/2104.03075 (2021). arXiv:2104.03075 https://arxiv.org/abs/2104.
03075

[43] Ashraf Mahgoub, Karthick Shankar, Subrata Mitra, Ana Klimovic, So-
mali Chaterji, and Saurabh Bagchi. 2021. SONIC: Application-aware
Data Passing for Chained Serverless Applications. In 2021 USENIX
Annual Technical Conference (USENIX ATC 21). USENIX Association,
285–301. https://www.usenix.org/conference/atc21/presentation/
mahgoub

[44] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuen-
zer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. 2017.
My VM is Lighter (and Safer) than Your Container. In Proceedings of
the 26th Symposium on Operating Systems Principles (Shanghai, China)
(SOSP ’17). Association for Computing Machinery, New York, NY, USA,
218–233. https://doi.org/10.1145/3132747.3132763

[45] Johannes Manner, Martin EndreB, Tobias Heckel, and Guido Wirtz.
2018. Cold Start Influencing Factors in Function as a Service. 2018
IEEE/ACM International Conference on Utility and Cloud Computing
Companion (UCC Companion) (2018), 181–188.

[46] Alex Merenstein, Vasily Tarasov, Ali Anwar, Scott Guthridge, and Erez
Zadok. 2023. F3: Serving Files Efficiently in Serverless Computing.
In Proceedings of the 16th ACM International Conference on Systems
and Storage (Haifa, Israel) (SYSTOR ’23). Association for Computing
Machinery, New York, NY, USA, 8–21. https://doi.org/10.1145/3579370.
3594771

[47] Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna Edupuganti,
Naren Nayak, and Vadim Sukhomlinov. 2019. Agile Cold Starts for
Scalable Serverless. In 11th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 19). USENIX Association, Renton, WA. https:
//www.usenix.org/conference/hotcloud19/presentation/mohan

[48] Ingo Müller, Renato Marroquín, and Gustavo Alonso. 2020. Lambada:
Interactive Data Analytics on Cold Data Using Serverless Cloud In-
frastructure. In Proceedings of the 2020 ACM SIGMOD International

https://doi.org/10.1109/MCC.2017.32
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.48550/ARXIV.2206.13444
https://arxiv.org/abs/2206.13444
https://arxiv.org/abs/1812.03651
http://arxiv.org/abs/1812.03651
http://arxiv.org/abs/1812.03651
https://doi.org/10.1145/3477132.3483541
https://doi.org/10.1145/3445814.3446701
https://doi.org/10.1145/3448016.3459240
https://arxiv.org/abs/1902.03383
http://arxiv.org/abs/1902.03383
http://arxiv.org/abs/1902.03383
https://doi.org/10.1145/3102980.3103008
https://www.usenix.org/conference/atc21/presentation/kotni
https://www.usenix.org/conference/atc21/presentation/kotni
https://doi.org/10.1145/3620678.3624648
https://doi.org/10.1145/3317550.3321447
https://www.usenix.org/conference/nsdi23/presentation/liu-david
https://www.usenix.org/conference/nsdi23/presentation/liu-david
https://arxiv.org/abs/2104.03075
https://arxiv.org/abs/2104.03075
https://arxiv.org/abs/2104.03075
https://www.usenix.org/conference/atc21/presentation/mahgoub
https://www.usenix.org/conference/atc21/presentation/mahgoub
https://doi.org/10.1145/3132747.3132763
https://doi.org/10.1145/3579370.3594771
https://doi.org/10.1145/3579370.3594771
https://www.usenix.org/conference/hotcloud19/presentation/mohan
https://www.usenix.org/conference/hotcloud19/presentation/mohan

Process-as-a-Service: Unifying Elastic and Stateful Clouds with Serverless Processes SoCC ’24, November 20–22, 2024, Redmond, WA, USA

Conference on Management of Data (Portland, OR, USA) (SIGMOD ’20).
Association for Computing Machinery, New York, NY, USA, 115–130.
https://doi.org/10.1145/3318464.3389758

[49] Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang, Lucien Ngale,
Stéphane Pouget, Josiane Kouam, Renaud Lachaize, Jinho Hwang,
Tim Wood, Daniel Hagimont, Noël De Palma, Bernabé Batchakui,
and Alain Tchana. 2021. OFC: an opportunistic caching system for
FaaS platforms. In Proceedings of the Sixteenth European Conference
on Computer Systems (Online Event, United Kingdom) (EuroSys ’21).
Association for Computing Machinery, New York, NY, USA, 228–244.
https://doi.org/10.1145/3447786.3456239

[50] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter,
Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2018. SOCK:
Rapid Task Provisioning with Serverless-Optimized Containers. In
2018 USENIX Annual Technical Conference (USENIX ATC 18). USENIX
Association, Boston, MA, 57–70. https://www.usenix.org/conference/
atc18/presentation/oakes

[51] Matthew Perron, Raul Castro Fernandez, David DeWitt, and Samuel
Madden. 2020. Starling: A Scalable Query Engine on Cloud Functions.
In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data (Portland, OR, USA) (SIGMOD ’20). Association
for Computing Machinery, New York, NY, USA, 131–141. https://doi.
org/10.1145/3318464.3380609

[52] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, DougWoos, Arvind
Krishnamurthy, Thomas Anderson, and Timothy Roscoe. 2014. Ar-
rakis: The Operating System is the Control Plane. In 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
14). USENIX Association, Broomfield, CO, 1–16. https://www.usenix.
org/conference/osdi14/technical-sessions/presentation/peter

[53] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling,
Fast and Slow: Scalable Analytics on Serverless Infrastructure. In 16th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 19). USENIX Association, Boston, MA, 193–206. https://www.
usenix.org/conference/nsdi19/presentation/pu

[54] Gyorgy Rethy. 2022. Process-as-a-Service Computing on Modern
Serverless Platforms. https://www.research-collection.ethz.ch/handle/
20.500.11850/599515. Master’s Thesis.

[55] Francisco Romero, Gohar Irfan Chaudhry, Íñigo Goiri, Pragna
Gopa, Paul Batum, Neeraja J. Yadwadkar, Rodrigo Fonseca, Chris-
tos Kozyrakis, and Ricardo Bianchini. 2021. Faa$T: A Transparent
Auto-Scaling Cache for Serverless Applications. In Proceedings of the
ACM Symposium on Cloud Computing (Seattle, WA, USA) (SoCC ’21).
Association for Computing Machinery, New York, NY, USA, 122–137.
https://doi.org/10.1145/3472883.3486974

[56] Zhenyuan Ruan, Seo Jin Park, Marcos K. Aguilera, Adam Belay, and
Malte Schwarzkopf. 2023. Nu: Achieving Microsecond-Scale Resource
Fungibility with Logical Processes. In 20th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 23). USENIX Associ-
ation, Boston, MA, 1409–1427. https://www.usenix.org/conference/
nsdi23/presentation/ruan

[57] Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandelwal, Joao
Carreira, Neeraja J. Yadwadkar, Raluca Ada Popa, Joseph E. Gonzalez,
Ion Stoica, and David A. Patterson. 2021. What Serverless Computing
is and Should Become: The next Phase of Cloud Computing. Commun.
ACM 64, 5 (April 2021), 76–84. https://doi.org/10.1145/3406011

[58] M. Sciabarrà. 2019. Learning Apache OpenWhisk: Developing Open
Serverless Solutions. O’Reilly Media, Incorporated.

[59] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. 2020. Serverless in the Wild:
Characterizing and Optimizing the Serverless Workload at a Large
Cloud Provider. In 2020 USENIX Annual Technical Conference (USENIX

ATC 20). USENIX Association, 205–218. https://www.usenix.org/
conference/atc20/presentation/shahrad

[60] Simon Shillaker and Peter Pietzuch. 2020. Faasm: Lightweight isolation
for efficient stateful serverless computing. In 2020 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 20). 419–433.

[61] Abraham Silberschatz, Peter BGalvin, andGregGagne. 2018. Operating
System Concepts, 10e Abridged Print Companion. John Wiley & Sons.

[62] Paulo Silva, Daniel Fireman, and Thiago Emmanuel Pereira. 2020.
Prebaking Functions to Warm the Serverless Cold Start. In Proceedings
of the 21st International Middleware Conference (Delft, Netherlands)
(Middleware ’20). Association for Computing Machinery, New York,
NY, USA, 1–13. https://doi.org/10.1145/3423211.3425682

[63] Arjun Singhvi, Kevin Houck, Arjun Balasubramanian, Mo-
hammed Danish Shaikh, Shivaram Venkataraman, and Aditya
Akella. 2019. Archipelago: A Scalable Low-Latency Serverless
Platform. arXiv:1911.09849 [cs.DC]

[64] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann
Schleier-Smith, Joseph E. Gonzalez, Joseph M. Hellerstein, and Alexey
Tumanov. 2020. Cloudburst: Stateful Functions-as-a-Service. Proc.
VLDB Endow. 13, 12 (July 2020), 2438–2452. https://doi.org/10.14778/
3407790.3407836

[65] Kun Suo, Junggab Son, Dazhao Cheng, Wei Chen, and Sabur Baidya.
2021. Tackling Cold Start of Serverless Applications by Efficient and
Adaptive Container Runtime Reusing. In 2021 IEEE International Con-
ference on Cluster Computing (CLUSTER). 433–443. https://doi.org/10.
1109/Cluster48925.2021.00018

[66] Amoghavarsha Suresh and Anshul Gandhi. 2021. ServerMore: Op-
portunistic Execution of Serverless Functions in the Cloud (SoCC ’21).
Association for Computing Machinery, New York, NY, USA, 570–584.
https://doi.org/10.1145/3472883.3486979

[67] Werner Vogels. 2009. Eventually Consistent. Commun. ACM 52, 1 (Jan.
2009), 40–44. https://doi.org/10.1145/1435417.1435432

[68] Ao Wang, Jingyuan Zhang, Xiaolong Ma, Ali Anwar, Lukas Rupprecht,
Dimitrios Skourtis, Vasily Tarasov, Feng Yan, and Yue Cheng. 2020.
InfiniCache: Exploiting Ephemeral Serverless Functions to Build a Cost-
Effective Memory Cache. In 18th USENIX Conference on File and Storage
Technologies (FAST 20). USENIX Association, Santa Clara, CA, 267–281.
https://www.usenix.org/conference/fast20/presentation/wang-ao

[69] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. 2018. Peeking behind the Curtains of Serverless Plat-
forms. In Proceedings of the 2018 USENIX Conference on Usenix Annual
Technical Conference (Boston, MA, USA) (USENIX ATC ’18). USENIX
Association, USA, 133–145.

[70] Mike Wawrzoniak, Ingo Müller, Rodrigo Fraga Barcelos Paulus Bruno,
and Gustavo Alonso. 2021. Boxer: Data Analytics on Network-enabled
Serverless Platforms. In 11th Annual Conference on Innovative Data
Systems Research (CIDR’21).

[71] David Wentzlaff, Charles Gruenwald, Nathan Beckmann, Kevin
Modzelewski, Adam Belay, Lamia Youseff, Jason Miller, and Anant
Agarwal. 2010. An Operating System for Multicore and Clouds: Mech-
anisms and Implementation. In Proceedings of the 1st ACM Sympo-
sium on Cloud Computing (Indianapolis, Indiana, USA) (SoCC ’10).
Association for Computing Machinery, New York, NY, USA, 3–14.
https://doi.org/10.1145/1807128.1807132

[72] Minchen Yu, Tingjia Cao, Wei Wang, and Ruichuan Chen. 2023. Fol-
lowing the Data, Not the Function: Rethinking Function Orchestration
in Serverless Computing. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23). USENIX Association,
Boston, MA, 1489–1504. https://www.usenix.org/conference/nsdi23/
presentation/yu

[73] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian Angel, and
Vincent Liu. 2020. Fault-tolerant and transactional stateful serverless

https://doi.org/10.1145/3318464.3389758
https://doi.org/10.1145/3447786.3456239
https://www.usenix.org/conference/atc18/presentation/oakes
https://www.usenix.org/conference/atc18/presentation/oakes
https://doi.org/10.1145/3318464.3380609
https://doi.org/10.1145/3318464.3380609
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/peter
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/peter
https://www.usenix.org/conference/nsdi19/presentation/pu
https://www.usenix.org/conference/nsdi19/presentation/pu
https://www.research-collection.ethz.ch/handle/20.500.11850/599515
https://www.research-collection.ethz.ch/handle/20.500.11850/599515
https://doi.org/10.1145/3472883.3486974
https://www.usenix.org/conference/nsdi23/presentation/ruan
https://www.usenix.org/conference/nsdi23/presentation/ruan
https://doi.org/10.1145/3406011
https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/atc20/presentation/shahrad
https://doi.org/10.1145/3423211.3425682
https://arxiv.org/abs/1911.09849
https://doi.org/10.14778/3407790.3407836
https://doi.org/10.14778/3407790.3407836
https://doi.org/10.1109/Cluster48925.2021.00018
https://doi.org/10.1109/Cluster48925.2021.00018
https://doi.org/10.1145/3472883.3486979
https://doi.org/10.1145/1435417.1435432
https://www.usenix.org/conference/fast20/presentation/wang-ao
https://doi.org/10.1145/1807128.1807132
https://www.usenix.org/conference/nsdi23/presentation/yu
https://www.usenix.org/conference/nsdi23/presentation/yu

SoCC ’24, November 20–22, 2024, Redmond, WA, USA M. Copik, A. Calotoiu, G. Rethy, R. Böhringer, R. Bruno, T. Hoefler

workflows. In 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20). USENIX Association, 1187–1204. https:
//www.usenix.org/conference/osdi20/presentation/zhang-haoran

[74] Yiming Zhang, Jon Crowcroft, Dongsheng Li, Chengfei Zhang, Huiba
Li, Yaozheng Wang, Kai Yu, Yongqiang Xiong, and Guihai Chen. 2018.
KylinX: A Dynamic Library Operating System for Simplified and Ef-
ficient Cloud Virtualization (USENIX ATC ’18). USENIX Association,
USA, 173–185.

[75] Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry, Rodrigo Fonseca,
Sameh Elnikety, Christina Delimitrou, and Ricardo Bianchini. 2021.
Faster and Cheaper Serverless Computing on Harvested Resources.
In Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles (Virtual Event, Germany) (SOSP ’21). Association
for Computing Machinery, New York, NY, USA, 724–739. https:
//doi.org/10.1145/3477132.3483580

https://www.usenix.org/conference/osdi20/presentation/zhang-haoran
https://www.usenix.org/conference/osdi20/presentation/zhang-haoran
https://doi.org/10.1145/3477132.3483580
https://doi.org/10.1145/3477132.3483580

	Abstract
	1 Introduction
	2 Motivation
	2.1 Serverless State
	2.2 Serverless Communication
	2.3 Serverless Control and Data Planes

	3 Cloud Processes
	3.1 Locality with State
	3.2 Invocations with Control and Data Planes
	3.3 Process Model with Communication

	4 PraaS: Process–as–a–Service
	4.1 Process Management
	4.2 Inter-Process Communication
	4.3 Function Invocations over Data Plane

	5 PraaS in Practice
	5.1 Main Prototype
	5.2 Kubernetes

	6 Evaluation
	6.1 Lower Latency via the Data Plane
	6.2 Inter-Function Communication
	6.3 The benefits of Cloud Process State
	6.4 Case Study - LaTeX Service
	6.5 Case Study - Machine Learning
	6.6 Trade-Offs
	6.7 Cost Analysis

	7 Related Work
	8 Discussion
	9 Conclusions
	References

