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ETH Zürich
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Abstract—In the microservice paradigm, monolithic applica-
tions are decomposed into finer-grained modules invoked inde-
pendently in a data-flow fashion. The different modules commu-
nicate through remote procedure calls (RPCs), which constitute
a critical component of the infrastructure. To ensure portable
passage of RPC metadata, arguments, and return values between
different microservices, RPCs involve serialization/deserialization
activities, part of the RPC data center tax. We demonstrate
how RPC server logic, including serialization/deserialization, can
be offloaded to Data Processing Units (DPUs). This effectively
reduces the RPC data center tax on the host, where applications’
business logic runs. While we focus on offloading Protocol
Buffers deserialization used by the popular gRPC framework,
our findings can be applied to other RPC infrastructures. Our
experimental results demonstrate that RPC offloading performs
similarly to traditional methods while significantly reducing CPU
usage.

Index Terms—SmartNIC, DPU, deserialization, offload, mi-
croservices, RPC, RDMA

I. INTRODUCTION

The development of web services has shifted towards mi-
croservice architecture, which provides several key benefits,
such as improved scalability, flexibility, and fault isolation.
This approach involves running multiple specialized, inde-
pendent applications—known as microservices—rather than
relying on a single, monolithic application [1]. These applica-
tions are often deployed in containers within virtual machines,
running across multiple nodes in data center servers.

To communicate, these microservices use RPCs, a program-
ming paradigm that allows transparently calling a function
on an application running on a remote host (RPC server)
by wrapping the remote call in a single local function [1].
Networking complexities are hidden from the programmer,
speeding up application development. RPC arguments are
transmitted from the RPC client to the RPC server, and RPC
return value and potential error information are transmitted
from the RPC server back to the RPC client, closing the loop.
RPCs are always initiated by the client; the server’s work is
to answer the requests.

As the RPC client and the RPC server can run on dif-
ferent machines, we must serialize this data in a platform-
independent way. Local objects are serialized into platform-
independent binary objects, or messages, transmitted over
the network, and the receiver side deserializes the message
back to a local object. Multiple serialization formats exist.
Google’s Protocol Buffer (protobuf) is a popular format used
by gRPC [2], a popular RPC framework.

Serialization/deserialization imposes a significant computa-
tional burden on the RPC client and the RPC server. Like
compression or memory allocation, serialization/deserializa-
tion is a frequent operation on the network stack. Together,
these operations form the data center tax [3]. Studies have
shown that deserialization can account for as much as 5% of
the total data center tax in the case of Google warehouses scale
computers [3]. In another case, serialization/deserialization
operations account for up to 50% of the RPC stack [4].

Therefore, optimizing serialization/deserialization is critical
to lower the data center tax. Novel methods are used to
improve the efficiency of the systems, while traditional CPUs’
frequency and efficiency increase slows down [5]. Offloading
the computations to specialized hardware is a popular solution
for freeing the CPU cycles to run application logic. The main
issue with specialized hardware is its lack of flexibility. It
cannot be updated to follow the evolution of serialization
protocols, which are not standardized or stable over time and
can evolve quickly.

In this work, we use Data Processing Units (DPUs) to
offload serialization/deserialization, allowing us to retain this
flexibility without deploying new hardware with a protocol
update. DPUs are network cards that include programmable
accelerators. DPUs are designed for networking tasks, and
their lightweight, power-efficient, and limited-in-count cores
are suitable for data-movement tasks that require a low amount
of computing, like serialization/deserialization. In this paper,
we use the term CPU to refer to the host’s CPU specifically.
Even if the DPU technically has a CPU, we use the term DPU
to refer to the DPU’s central processing unit.
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Fig. 1: Architecture for offloading RPCs. We focus on the
host/DPU connection in this work. xRPC denotes any RPC
protocol to offload, which can be, for example, gRPC.

Solutions to accelerate serialization/deserialization can fo-
cus on either serialization [6], deserialization, or both [7],
[8]. Designing an efficient solution is challenging. The remote
function (also called business logic) execution should stay on
the host to integrate easily into existing applications while
offloading serialization/deserialization [7]. Critical points for
a qualitative solution, outside of performance, are: how much
effort is needed to integrate the solution; if any specific tech-
nology is required; and if the solution can apply to any, or a
particular serialization format [9] and programming language.

As shown in Figure 1, we focus on offloading the RPC
server deserialization from the CPU to the DPU. The entire
RPC server, including deserialization, is offloaded to the DPU,
while the business logic execution stays on the host. We
focus on deserialization only, but serialization can be offloaded
with similar techniques. To offload deserialization, we first
implement an RPC protocol between the DPU and the host
that allows objects to be transmitted in the same address space,
removing the need for deserialization on the receiver side,
specifically on the RPC server, which we are interested for
offloading.

As seen in Figure 1, two different RPC protocols co-
exist with this design: the original RPC protocol we want to
offload and the host-DPU protocol. The DPU receives the RPC
calls and converts the original RPC requests to our custom
protocol’s requests. A compatibility layer can be written to
allow the host application to continue using the offloaded
RPC library’s standard programming interface (API), which
we demonstrate by writing one for gRPC.

Then, we demonstrate the functionality of the system by
offloading protobuf deserialization. We also implement a sim-
ple gRPC server with minimal code modifications thanks to
the automatic code generators we write. We then measure
the performance of offloading deserialization on NVIDIA’s
BlueField-3 DPU, which achieves the same requests per
second (RPS) rate as without offloading, while freeing up to
7 host cores.

To summarize, the original contributions of the works
presented in this paper are: 1⃝ Design and implementation
of a format-agnostic RDMA-based protocol to offload dese-
rialization; 2⃝ Implementation of a layer to offload protobuf
deserialization; 3⃝ Benchmarking of the proposed solution on
BlueField-3 DPUs. The code for the library and benchmarks is
open-sourced on GitLab1, which includes our custom RDMA-
based protocol implementation, and the protobuf deserializa-
tion layer.

II. BACKGROUND

A. Remote Direct Memory Access
Remote direct memory access enables data to be transferred

directly to remote memory without involving the processor and
bypassing the host’s operating system. These features make
this protocol ideal for offloading. Programmers can leverage
the libibverbs library to use RDMA. We leverage RDMA
for the host-DPU communication, as shown in Figure 1.

The different operations of RDMA are read, write, write
with immediate, send, and receive [10]. We mainly use the
write with immediate operation, which permits writing to a
specific address and carrying 4 bytes of immediate data. This
operation is called two-sided [10] because the remote host is
actively notified when the operation is completed.

Users post work requests to receive queues to specify where
to receive data or to send queues to send data to a remote
host. They are notified via completion queues and completion
channels. Data are stored in pinned memory regions. All
RDMA resources are grouped in protection domains to help
them to work together.

B. Zero-copy Deserialization
As the trade-off between network bandwidth cost and CPU

cycle cost over the last years have been reversed in favor
of the bandwidth, new high-performance serialization formats
(Cap’n Proto, FlatBuffers) are all focusing on a key feature
known as zero-copy deserialization. This means that the in-
memory object and the wire format are the same: there is
no deserialization. Sending a zero-copy object increases the
count of transmitted bytes but reduces CPU cycles used on
the receiver side.

A zero-copy object is contained in one (or multiple)
position-independent, contiguous memory slices. This format
is well-suited for read-only objects, like a server-side received
RPC argument. Modifying a zero-copy object has higher
memory move costs than standard objects because fields are
allocated from a stack (also known as arena buffer); thus,
freeing or resizing a previously allocated field is difficult or
impossible.

While newer formats that offer zero-copy deserialization
are increasingly popular, many microservices and applications
are still centered around older libraries, like protobuf, which
follow the traditional serialization-deserialization workflow.
This large legacy codebase makes optimizing deserialization
essential for data center performance.

1https://gitlab.tue.nl/20233461/sc24 ixpug paper

https://gitlab.tue.nl/20233461/sc24_ixpug_paper


C. Data Processing Units Deserialization Offloading

There is no way to bypass one copy if the serialization
format does not offer this feature natively. Offloading deseri-
alization to DPUs is still a one-copy deserialization because the
external hardware transforms data once, with a decoding step.
However, from the application’s point of view, the message
can be directly processed without any CPU intervention. The
DPU writes a deserialized message that exactly matches the
native hardware architecture of the host, which emulates zero-
copy deserialization for any serialization format that does not
natively support it. As a use case for DPUs, we test the of-
floading of deserialization to DPUs and design an architecture
suitable for it.

BlueField-3 is a DPU manufactured by NVIDIA. This
is a system-on-a-chip SmartNIC with 16× ARMv8.2 A78
Hercules cores and 32 GB onboard DDR5 memory [11]. This
DPU can run in one of multiple modes, for example, to mirror
the traffic from the host to the DPU cores. We are interested
in the “embedded CPU” mode, which allows the installation
of a complete operating system (OS) independent from the
host. BlueField-3 supports RDMA with the host in one of
two modes, Infiniband or RDMA over Converged Ethernet. In
practice, the driver will leverage the host’s DMA hardware.

III. OFFLOADING RPC WITH RDMA

In this section, we explain the critical differences between
traditional RPCs and offloaded RPCs. RDMA is ideal for of-
floading thanks to its CPU bypass feature and high throughput.
To avoid confusion, we use the term xRPC to refer to the
original RPC protocol we aim to offload. Then, we use the
term RPC over RDMA for the new, custom protocol proposed
in this paper. Even though we focus on the DPU as the RPC
over RDMA client and the host as the RPC over RDMA server
and use these terms interchangeably, our work can be run on
commodity hardware and other types of DPUs, which permits
high compatibility.

The only hardware requirement for using our RPC over
RDMA library is an RDMA connection between the RPC
over RDMA client and the RPC over RDMA server. Even
though our RPC over RDMA implementation can be seen as
another RPC protocol and used as such, the central point is
to offload as many computations as possible from the RPC
over RDMA server to the RPC over RDMA client, which is
primarily serialization/deserialization.

A. Requests Lifecycle Overview

With traditional RPCs, the xRPC clients send requests to the
xRPC server, which runs on the host. In the case of offloaded
RPCs, the DPU acts now as the xRPC server. From the xRPC
client’s point of view, there is no difference, and no code needs
to be changed. The only configuration change is to modify
the xRPC server address to reflect the DPU’s address instead
of the host’s. The DPU is a SmartNIC but has a distinct IP
address to the host.

Then, the DPU forwards the xRPC request to the host.
The xRPC request is transformed to an RPC over RDMA

request, which consists of the deserialized binary object. This
costly transformation, which essentially consists of allocating
the memory for the RPC over the RDMA request and running
the deserialization, is entirely run on the DPU.

The host receives the RPC over RDMA request, which
can be processed directly, as all the arguments are already
deserialized. A compatibility layer mocks the xRPC server on
the host and interprets the RPC over RDMA requests as xRPC
requests. This layer enables RPC offloading without rewriting
the host application. For the response, the host sends the RPC
over RDMA response to the DPU. The DPU transforms the
RPC over RDMA response to an xRPC response and forwards
it to the xRPC client transparently.

As we mainly focus on offloading deserialization, our
implementation for protobuf only offloads the request’s de-
serialization and not the response’s serialization, but this can
be implemented similarly in our design. As shown in Figure 1,
the DPU sits in between the host and the xRPC client as a
middle-man. Since the DPU now handles all the xRPC client
connections and multiplexes them to the host, it can alleviate
the burden of managing multiple xRPC sessions and network
connections, often TCP/IP.

B. Shared Address Space Advantages

Traditional RPC libraries do not allow sender to learn
the address of receive buffer for the message [2], [12]. If
the protocol is extended with a shared address space, the
serialization could be eliminated. Memory management is seen
as an implementation detail, and the location of the messages
that arrive in memory is often unpredictable. Knowing the
destination address permits deserializing objects without mod-
ifying the serialization library. The sender can reconstruct the
objects and manually adjust the pointers to reflect the receiver
address space.

In addition, sharing this same address space between the
client and the server permits us first to remove the need to
adjust the memory pointers, accelerating deserialization. That
means a request’s pointer on the client side x will have the
value x on the server side, and as well a response’s pointer
on the server side y will have the same value y on the client
side.

If the serialization library allows to deserialize messages
into contiguous slices, the standard deserializer can also be
used without writing a custom one for offloading. In the case
of protobuf, certain limitations of the official implementation
force us to write a custom deserializer, which is still greatly
simplified due to the shared address space.

Our implementation offers the shared address space as
shown in Figure 2. The RPC over RDMA client and the
RPC over RDMA server possess receiving buffers (RBufs) and
sending buffers (SBufs). Receiving buffers are written from
the remote side without using the local CPU by leveraging
the RDMA write with immediate operation. Receiving buffers
mirror the remote sending buffer. All the buffers are stored in
contiguous slices for better cache efficiency. Multiple RDMA
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connections are run concurrently, each independent, to allow
the best performance by preventing data race conditions.

C. Network Architecture and Design

Figure 3 shows the ownership semantics of the RDMA
objects and the threading model. Since our goal is to run
the RPC over RDMA server on a powerful host and the
RPC over RDMA client on a multi-core DPU, there is an
imbalance between both sides: the RPC over RDMA client
should dedicate more resources per connection. Therefore,
a poller is dedicated to a single connection on the client
side. Still, a single poller can share multiple connections on
the server side using a single received queue and a single
completion queue shared between connections.

Busy polling improves the performance up to 10%, at the
cost of an unacceptable 100% CPU utilization. Therefore, we
use the poll() system call to allow the process to sleep
under a low-workload scenario. Since the file descriptors count
is low, we don’t use epoll(), adapted in such a scenario.

We use the many to one to one model: the DPU multiplexes
the xRPC client connections. Even though multiple queue pair
connections coexist between the client and the server, they all
share the same RDMA device, and the number of connections
stays low. These two elements permit the sharing of RDMA

resources between the queue pairs, which saves memory and
processing cycles on both sides [12].

The RPC over RDMA library does not handle directly
xRPC requests dispatching. Existing RPC libraries already
distribute requests by providing an interface that can be
directly polled in each RPC over RDMA poller thread.

D. Application Programming Interface

We base our API similarly to previous work [12]. Our API
lets the threading model to the user’s discretion by providing
an event loop function that should be called continuously to
update the network events. On the RPC over RDMA server
side, the user can register RPCs by providing a callback
function. On the RPC over RDMA client side, the user
enqueues requests that trigger a continuation function when
the response is received.

On the RPC over RDMA server side, RPCs can be executed
in one of two ways: foreground or background. Foreground
RPCs are directly executed in the polling thread, while back-
ground RPCs are executed in background threads. Background
RPCs are well-used for long-running RPCs, while foreground
RPCs are best used for lightweight procedures or ones that
require low latency.

Memory management and tracking information about back-
ground RPCs is challenging. Our implementation only sup-
ports foreground RPCs, but the protocol complexities are
designed to allow background RPCs with little modifications
in our code by adding a thread pool. Background RPCs are
heavier as they need more information on bookkeeping to be
transmitted.

IV. RPC OVER RDMA PROTOCOL

This section explains in detail the RPC over RDMA wire
protocol. We optimize for the most common case: small RPCs.
In a previous study, nearly 90% of analyzed messages are 512
bytes or less [8], [13]. Batching is necessary, as a small size
is not optimal for an RDMA two-sided operation, as each side
generates a packet on the physical layer.

We implement a simple buffering method similar to the
Nagle algorithm to aggregate messages. Messages are buffered
into blocks, acting as an arena buffer, and the RDMA write
with immediate is issued on a complete block.

The user is responsible for queueing enough requests to fill
a block before calling the event loop update function. Blocks
that contain fewer requests than the limit are still sent when
calling the event loop. This prevents high latency when only a
few outstanding requests are sent at a time and a deadlock if
the block is partially filled. This non-critical case can happen
under a low workload scenario. Messages can be larger than
the minimum block size; in this case, the block is composed
of a single message.

A. Write with Immediate Wire Protocol

Each block starts with a fixed-size preamble and contains
multiple requests. Each request is formed by a header and a
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payload. The byte cost of the preamble is greatly amortized
with the large block size.

The RPC over RDMA client/server communication follows
this block format in both directions. Only the content of the
preamble and the header differ, with different purposes on
each side. Unlike the preamble, the header is small because a
header will precede each message. The payload contains the
data sent by the application.

Blocks are allocated from the sending buffer. Dynamic
allocation is needed since RPCs can be completed out-of-order
on the server side: a future request can outlive a past one,
making dynamic allocation a better solution than standard ring
buffers.

Our implementation uses Vulkan® Memory Allocator [14],
which permits the allocation of memory by working on a
virtual address space and working purely on offsets instead
of pointers. Unlike standard allocators that store bookkeeping
information before the allocated data, the allocator state is
entirely stored externally. This is adapted to manage remote
memory.

To allow zero-copy processing, data is properly aligned. For
payloads, we set the alignment to 8 bytes, which should be
enough for any reasonable class (no 16-byte data type like
long double, no SSE data type, which are unlikely to be
fields of a message class). The preamble and headers are also
aligned to allow zero-copy processing of the blocks on the
receiving side. The data is stored in little-endian; we assume
such architecture is the most common nowadays.

B. Recycling Messages’ Memory

The client and the server acknowledge the blocks they
receive from the remote side. This permits the recycling of
block memory and the release of bookkeeping information.
The process is different for the client and the server.

The server implicitly acknowledges the received blocks by
simply sending responses. On the client side, when the first
response associated with a block is received, this block is
implicitly acknowledged.

Since the client’s block count does not necessarily equal
the server’s, the client must also acknowledge the response
blocks. We use the RDMA reliable connection to send implicit
acknowledgments in a single counter, incremented on each
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received block. A reliable connection sends and receives data
in order. Therefore, the client sends this counter indicating the
count of response blocks processed and resets it to zero. This
acknowledgment is implicit in the preamble of the next block
sent.

C. Managing Congestion

We implement a credit-based system that permits managing
congestion. This limits the number of concurrent blocks in
processing. Managing congestion is essential, as overflowing
the RDMA completion queue or the RDMA receive queue on
the receiving side causes data retransmission and massively
reduces performance.

Since the count of blocks sent by the client does not
necessarily equal the count of blocks sent by the server,
the client and the server have separate credits. We use the
already-built acknowledgment system for this purpose. Each
block sent consumes one credit, and each block acknowledged
replenishes one credit. When the credit count reaches zero, no
more data is sent until it increases again.

D. Tracking Remote Procedure Calls

A unique ID is associated with each request to retrieve
associated metadata for background RPCs. When the client
receives the response, the request ID can be recycled. To limit
the header size, these IDs are stored on 2 bytes, which allows
up to 216 concurrent requests. In addition, the request ID is
not sent explicitly to the server. We again take advantage of
the reliable connection to keep the IDs synchronized:

1) The client sends a block and flushes all the pending
acknowledgments: it first frees the associated request
IDs and then allocates the new request IDs.

2) The server receives a block: it does the same process as
the client, in the same order.

As a result, a request header does not need to transmit the
associated request ID explicitly. The IDs are deterministically
allocated from a pool.

E. Messages’ Metadata Overview

A bucket contained in the immediate data permits to locate
the block in the receiving buffer by knowing its offset,
with the simple formula offset = (rbuf + bucket ∗
block alignment). Blocks are aligned on 1024 bytes to keep



a high range of addressable memory while saving bits in the
immediate data. In addition, the optimal block size for high
throughput is higher than this alignment, and therefore, the
cache performance due to the data locality is not reduced.

Preambles contain the count of messages (maximum 216)
in the block. Headers contain the user-defined payload’s size
(maximum 216). This limit can be removed with minor mod-
ifications using variable-length encoding to store the payload
size. Larger messages are more likely to be computationally
expensive, making this cost negligible.

V. OFFLOADING DESERIALIZATION

We demonstrate the design by implementing a layer to
offload protobuf deserialization. The RPC over RDMA client
deserializes the C++ object in place, and the RPC over
RDMA server receives an already-built protobuf object. We
implement a version compatible with libstc++, like in
previous work [8], and we support proto3 domain-specific
language. We test specifically on protobuf v5.26, but other
versions are supported if the ABI of message classes does not
change.

We write a custom deserialization routine. The costly opera-
tion in CPU cycles is the varint decoding, the UTF-8 validation
for strings, and the recursion for deeply nested messages.
The string deserialization is much faster without offloading
since x86 SIMD instructions permit processing the Unicode
validation very quickly.

A. Binary Compatibility Guarantees

Offloading deserialization on the client from the server
poses the problem of binary compatibility, which is a well-
known problem for RPCs [15]. Let T be a C++ type, and
if T is a class, let f be any field of T. T is said to be
binary-compatible between two programs if, for two instances
representing the same logical state, the raw byte values of the
instances are the same. This statement is true if the ABIs are
the same for layouts, sizes, and alignments, which is equivalent
to saying that, for any field f (recursively if f is a class),
these expressions should evaluate to the same value on both
programs: sizeof(T), alignof(T), and offsetof(T,
f).

We base the design of the offloading architecture on the
assumption that all fields of the deserialized message are
binary-compatible between the client and the server. This
assumption holds in practice for our scenario, which is the
client on an ARM64 [16] (DPU) and the server on an x86-64
(host), and both ABIs are based on Itanium [17].

We assume a message type to be a simple class containing
mostly primitive types, strings, nested messages, and limited
bookkeeping information. This makes the client and server
instances very likely to be binary-compatible. We also assume
the floating point values are represented in the widely used
IEEE 754 format. We assume one of the two most widely used
compilers, clang or gcc. In general, they have compatible
ABIs [18]. Compiler flags that affect the ABI should, however,
be the same.

B. Building an Accelerator Description Table

Similarly to previous work [8], we build an Accelerator
Description Table (ADT) on the host. The ADT contains all
the necessary information to deserialize any protobuf message
directly into a C++ object. The ADT consists of a list of
metadata for each message type. The metadata of each class
includes the default instance, each field offset, and field type,
including a pointer to the child table if the field is also an
object.

This information is per class rather than per instance, allevi-
ating any per-instance bookkeeping metadata to be transmitted
to zero bytes. Therefore, the ADT needs to be transmitted only
once. The DPU application does not need to be recompiled and
can work with any protobuf object. The ADT is transmitted
from the host to the DPU at the start of the application.

When using C++ inheritance like protobuf does, the first
bytes of an instance store a pointer to a vptr, necessary for
proper polymorphism. Setting only the fields is not sufficient
since the vptr should also be filled for the application not to
crash. Storing directly the bytes of the default instances also
stores the vptr, which can therefore have the correct value.

The ADT is automatically generated by a custom protobuf
plugin in .adt.pb.{h,cc} files, which contains the ADT
to the corresponding .pb.{h,cc} files, without any further
user intervention. The ADT files are generated when protobuf
message definitions are transpiled to C++ files with the
protoc compiler. Each ADT contains a set of all message
classes in a given protobuf definition file, recursively including
all nested field message types.

C. Arena-Based Deserialization

The object must be constructed as a contiguous memory
slice to achieve high deserializing performance. Studies have
been conducted to explore copying fields scattered in mem-
ory [9], [19], but this approach has limitations. If the object
does not reside in pinned memory—which is most likely the
case if the application is not designed from the ground up for
offloading—the NIC cannot offload the gathering of the fields,
and an additional copy operation is required.

To achieve optimal performance, serialization APIs provide
ways to store objects in contiguous slices, also known as
arenas. Protobuf offers this functionality, albeit with some
limitations. First, strings are stored outside of the arena. This
limitation exists because constructing an std::string by
taking ownership of an existing character array is impossible
in portable, safe code. Secondly, the arena stores metadata
related to the allocation, increasing the arena’s size.

Therefore, we write a custom protobuf deserializer to ad-
dress these two issues. The first issue can be resolved if we
forgo portability and focus on a specific standard library im-
plementation. Fortunately, most Linux programs are based on
libstdc++, allowing us to maintain high portability within this
operating system. Still, the same method can support libc++,
which has a comparable implementation for std::string.
The source code can be portable, but knowing which standard
library is used at runtime by the host from the DPU cannot be



1 class std::string {
2 char* data;
3 size_t size;
4 union {
5 char sso[16];
6 size_t capacity;
7 };
8 };

Fig. 6: std::string layout of libstdc++.

done unless this information is explicitly transferred from the
host to the DPU, which can then choose the std::string
layout to use for deserialization.

Strings are byte containers composed of a pointer to the
data, a capacity, and a size. If strings are small enough, they
are stored directly in the instance without memory allocation,
a technique known as small-string optimization (SSO). Both
standard libraries feature this optimization but have differences
in the implementation. We show the layout for libstdc++ in
Figure 6. If the pointer to the data is equal to the SSO
buffer, no dynamic allocation is performed, storing at most 15
characters. The implementations is slightly more complicated
for libc++, storing an SSO flag in the first bit of the capacity
field. Once the SSO subtlety is addressed, crafting zero-copy
std::string instances becomes straightforward.

D. Compatibility Layer for gRPC

We write a compatibility layer for gRPC C++ on top of the
RDMA over RPC protocol for unary calls, using our arena-
based protobuf deserialization algorithm. The DPU executes
the gRPC server, and the business logic is kept inside the gRPC
services on the host side. Existing compiled services, such as
those in dynamic libraries, do not need recompilation, and
application code needs minimal modifications to be adapted
for offloading.

On the DPU side, each thread listens asynchronously to the
gRPC API calls. When intercepted, the request is deserialized
and triggers the corresponding RPC over RDMA procedure.
On the host side, received requests are forwarded to the
user-defined service callback handlers. Our custom protobuf
plugin automatically generates introspection code to allow the
inspection of gRPC service classes, such as mapping procedure
IDs to the service’s callback function. For the gRPC context,
we use a null pointer for simplicity, but metadata can also be
passed along with the message in the payload.

VI. EXPERIMENTAL RESULTS

In this section, we focus on the protobuf deserialization
implementation. We compare how the CPU and DPU perform
in deserialization and in the RPC over RDMA datapath. We
compare different metrics in the RPC over RDMA dapath: the
average requests per second, the PCIe bandwidth usage and
host CPU utilization. We show that when offloading deseri-
alization to the DPU, the host’s CPU usage is substantially
reduced at the cost of higher bandwidth usage while keeping
similar performance regarding request throughput.
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Fig. 7: Time to deserialize a single message composed of an
array of elements, relative to the element count. We measure
for an int array and a char array, run on the CPU and the DPU.

Client Server

Hardware BlueField®-3 PowerEdge R760
CPU Cortex-A78AE x2 Intel® Xeon® Gold 6430

Cores x16 x64
RAM 30 GiB 251 GiB

Cache sizes
L1d 1 MiB 4 MiB
L1i 1 MiB 2 MiB
L2 8 MiB 128 MiB
L3 16 MiB 120 MiB

Compiler gcc -O3 -flto -march=native
OS Ubuntu 22.04

System Allocator TCMalloc 4.2

Configuration Parameters
Threads 16 8
Credits 256 256

Block Size 8 KiB 8 KiB
Concurrency 1024 n/a
Buffer Sizes 3 MiB 16 MiB

TABLE I: Environment and configuration parameters of the
client and the server applications.

A. Environment

Table I shows the hardware and software environment. Our
server is a PowerEdge R760 equipped with a BlueField-3
DPU. For the software environment, we run Ubuntu. Because
of the parallelism, we use TCMalloc to minimize the thread
contention when allocating memory. This has been shown to
achieve a 15% increase in throughput in the tests. Addition-
ally, using link-time optimization with -flto has provided
a further 10% boost in performance, probably due to the
aggressive inlining in the deserialization algorithm, consisting
of numerous small specialized functions.

We fix the different configuration parameters as shown in
Table I (unless expressly stated otherwise). Most configuration
parameters are set equally on the DPU and CPU sides. We
use the configuration parameters that give better performance
after the first preliminary tests with small 15-byte messages
to benchmark the RPC over RDMA architecture itself. We set
the count of CPU threads to eight, assuming that two DPU
cores can match one CPU core, with the DPU having sixteen
cores.

The optimal minimal block size for the highest throughput
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Fig. 8: RPC datapath metrics results, comparing the DPU and the CPU deserialization.

is around 8 KiB. The buffer size parameter corresponds to the
size of each receiving and sending buffer for each connection.
For the count of concurrent requests (concurrency), the initial
credits should be high enough to have true concurrency,
which means credits > concurrency×blocksize

msgsize (ignoring the small
overhead of the preamble and message headers), but not too
high to preserve data locality and caching efficiency. The
credits should also never reach zero. This is always true
for the experimentation presented here. The credits are per
connection, and the concurrency is also per connection.

To ensure a consistent comparison, both the offloaded
and the non-offloaded deserialization scenarios use our cus-
tom stack-based protobuf deserialization algorithm. Google’s
deserialization algorithm is highly optimized and generally
performs slightly better, but it depends on the message type.

B. CPU vs. DPU Deserialization Time

In Figure 7, we show the time to deserialize a single
message on a single core, with nanobench [20], a benchmark-
ing framework, without considering the RPC datapath. In all
cases, median absolute percentage errors are less than 0.01%,
showing that the benchmarks are very stable.

We benchmark two types of messages, an int array and a
char array (or string), comparing the deserialization time to
the number of elements in the array. The int array elements
are random-generated, unsigned 32-bit integers stored between
1 and 5 bytes. The pseudorandom number generator is a
Mersenne twister with a constant seed for reproducibility. The
integer distribution we choose is not uniform: integers are
more likely to be smaller, thus being stored on fewer bytes.
Data access is then unaligned, and different instruction paths
are run. The char array is not compressed; each element always
takes one byte. Given that both element counts are equal, the

deserialization time is significantly faster for the char array
than the int array.

When the element count is high, the time to deserialize
is linear to the time for both messages, with approximately
2.75 ns per element for the int array and 42.5 ns per 1024
elements for the char array on the CPU. The results presented
in Figure 7 fluctuate more, especially in the case of the DPU
string deserialization, because we show a more realistic low
count of elements. The CPU is faster to deserialize, with
the DPU taking, on average, 1.89× more time to deserialize
for the int array and 2.51× more time to deserialize for the
char array. This is expected, and these preliminary results
show that around two DPU cores can replace one CPU core
in deserialization to keep similar performance, specifically
showing a better affinity in the varint decoding scenario.

C. RPC Datapath
We compare the performance of the offloaded DPU de-

serialization scenario to the traditional CPU deserialization
scenario, as shown in Figure 1. The business logic is left empty
to measure the impact of deserialization offloading. For the
DPU deserialization scenario, the CPU workload is minimal. It
only manages the RDMA connection, and the server responds
with an empty message. We measure the performance of four
metrics in the RPC datapath, aggregated over all cores. Per-
core results show an even workload distribution between the
cores, and maximum performance is reached on sixteen DPU
threads. The different metrics are:

• Average requests per second;
• Average bandwidth consumed by RDMA via the PCIe

bus;
• Average CPU usage, regarding cores used by the RPC

over RDMA server application.



The RPC over RDMA library is directly instrumentalized
at the library level with a Prometheus [21] client that gathers
the various metrics for a small fraction of the performance
cost (around 5%). This permits the gathering of statistics
independently of the scenario or application. The metrics are
sent to a monitoring server. A monitoring process gathers the
result after a fixed amount of time (around 10s) and will wait
until the RPS rate is stable (within 1%), which takes around
20 seconds, before collecting the final results. We look at the
last two data points of each metric to obtain the per-second
increase rate, also known as the instant rate of increase.

1) Message: Crafting messages that represent an actual
workload is challenging because of the heterogeneity of ap-
plications. Google has built a suite to benchmark protobuf
serialization and deserialization by providing synthetic mes-
sages that reflect their specific workloads [8], which are huge
messages with deeply nested structures.

The bottleneck of deserialization can be either memory I/O
or CPU core speed. In the context of RPCs, network I/O can
also be a limiting factor. Some messages, like hierarchical
and compressed data, have a high computational cost, whereas
other message types, like non-compressed byte arrays, have a
high copy cost. In the latter case, most of the deserialization
work consists of a single memory copy from the serialized
message, like a network packet, to the deserialized object
residing in the heap.

Therefore, we decide to build and benchmark three synthetic
messages, each reflecting a different aspect of RPCs:

• Small: A small 15-byte message of various fields rep-
resenting the most common message type. Here, the
bottleneck is the capacity of the NIC and the network
infrastructure to handle a large amount of messages. This
type of message is best for measuring the efficiency of
the RPC over RDMA implementation.

• x512 Ints: A 32-bit unsigned integer array of 512 ele-
ments representing a high computational cost since varint
elements should be decompressed.

• x8000 Chars: A string of 8000 random characters rep-
resenting a high copy cost. This message represents data
such as requested text files for web services.

The x512 Ints and x8000 Chars messages are the same as
shown in Figure 7 for the given count of elements.

2) Requests per Second Rate: Figure 8a shows average re-
quests per second rates. The performance ratio of 1:2 between
a DPU core and a CPU core measured in the deserialization
benchmarks stays in the RPC datapath. The DPU can match
the host’s performance when allocating twice as many cores
for deserialization as the host. The small message scenario
reaches 9× 107 processed requests per second.

3) Bandwidth: Figure 8b shows average bandwidth utiliza-
tion. The cost of offloading deserialization is the increased
quantity of data sent via PCIe, because deserialized objects
take up more space. The serialized x512 Ints message is
compressed by the varint encoding by a 2.06× factor by the
protobuf format, with a serialized size of only 276 bytes. Small
messages are also highly compressed due to the fixed-size

C++ instance storing all fields (including unset fields) plus
a minimal internal state, which is, in the case of protobuf, a
bitfield storing field presence. As a high-compression example,
the serialized small message takes 15 bytes on the wire, while
the deserialized object size is 40 bytes. It is worth noting
that the bandwidth usage in the RPC over RDMA datapath
does not precisely reflect this ratio due to the payload’s header
and protocol alignments, which are non-negligible for small
messages. Contrarily, the serialized x8000 Chars message is
only compressed by a 1.01× factor, with a serialized size of
8003 bytes. In this case, the bandwidth usage is very similar
between deserialization offloading and no offloading and goes
up to 180 Gbps.

4) CPU Usage: Host CPU usages are shown are Figure 8c.
The CPU usage is significantly reduced with DPU deserializa-
tion offloading by a factor of 1.8× for small messages, by a
factor of 8.0× for x128 int messages, where the DPU shows
the best affinity. Seven host cores are freed. The Unicode
validation and data movement offloading permits to reduce
the CPU usage by a factor of 1.53× in the case of the x8000
Chars message.

5) Last-level Cache Misses: There are almost zero last-
level cache (L3) misses in all cases. This can be explained
by the fact that practically all memory writes happen in the
pinned memory buffers, with no use of the system allocator
in the RPC datapath. We still use dynamic allocation in the
user space by working exclusively in our preallocated address
space. Additionally, the message types are always the same.
This would also be the case in a real-world scenario: like in an
object-oriented program, the count of classes is bounded and
low, in contrast to the count of instances, which is unbounded.

VII. RELATED WORK

eRPC [12] is a high-performance RPC library that supports
Infiniband and UDP by leveraging DPDK. The remote receiv-
ing address is not exposed to the user. CPU cycle counter
RDTSC instruction is used to have low overhead and precise
timings to manage traffic congestion. While it is possible
to replace it with PMCCNTR_EL0 register read on ARM, a
minimum frequency of 500 Mhz is required by eRPC, which
the ARM performance counter does not reach.

Not all hardware is suitable for offloading deserialization.
Graphics Processing Units (GPUs) are accelerators with low
frequency but high parallelism that now drive the industry
for machine learning but are challenging to use for serial-
ization/deserialization [7]. GPUs work on Same Instruction
Multiple Data (SIMD) parallel model. Still, messages are of
various types, sizes, and field orders, which makes it hard to
execute the same instructions for different messages unless the
messages are the same, resulting in not utilizing the parallel
cores to the fullest extent. Field-Programmable Gate Arrays
(FPGAs) can be used to run specialized algorithms. Some
effort has been made to provide hardware acceleration for
deserialization on FPGAs [8] or specialized accelerators [22]
at the expense of flexibility by not making the solution
available to commodity hardware.



VIII. CONCLUSION

Hardware accelerators are challenging to use in deserializa-
tion due to the heterogeneity of systems, serialization formats,
and their rapid evolution. Thanks to their programmability,
DPUs are more flexible than accelerators and thus we can
adapt them for offloading CPU-intensive parts of RPC stack.
We design a format-agnostic RPC protocol that allows dese-
rialization to be offloaded to the DPU, and we implement a
thin layer for protobuf. We demonstrate that BlueField-3 DPUs
are powerful enough to support protobuf deserialization in the
RPC datapath and match the host’s performance. By replacing
one x86 CPU core with two ARM DPU cores, we match the
performance of protobuf deserialization. In the case of the
varint decoding scenario, we free up to seven x86 CPU cores
to run application logic. Thus, we show that deserialization
can be offloaded while keeping software flexibility and without
sacrificing performance.
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