
High-Performance Serverless
for HPC and Clouds

Marcin Copik
Torsten Hoefler (advisor)

Serverless Functions & High Performance: Challenges, Restrictions, Opportunities

How does serverless performance
look like? Can we measure it?

RAM

RAM

RAM

GPU

GPU

GPU

HPC Node – Tightly Coupled Hardware

RAM

RAM

RAM

GPU

GPU

GPU

Software Resource Disaggregation with Serverless Functions

Hardware Disaggregated Data Center
High-speed

network
between
nodes.

Homogeneous
nodes

with aggregated
resources.

RAM

RAM

RAM

GPU

GPU

GPU

Dedicated interconnect
for remote resource

access.

Disaggregated resources
with on-demand

allocation.

Software Disaggregation

Deploy on
existing HPC

systems.

Disaggregated
computing with

serverless functions
on remote resources.

Can we make serverless
invocations fast?

How can functions improve
the efficiency of HPC systems?

How to build serverless
services?

How to make the programming
model more efficient?

Can functions communicate
efficiently in FaaS?

SeBS, the Serverless Benchmark Suite

spcl/serverless-benchmarksMiddleware’21 paper.

$

Platforms Languages

Insights Into Serverless Performance

rFaaS: Serverless + RDMA

spcl/rFaaSIPDPS ‘23 paper.

FMI, Serverless Communication

FaaS Without FMI

spcl/fmiICS ‘23 paper.

Data moved through
storage and caches

FaaS With FMI
NAT Hole Punching

Data moved directly
over TCP.

Optimized Invocation Path in rFaaS

FMI Collectives on AWS Lambda

rFaaS Invocations on HPC Cluster Colocating Memory Sharing Functions with Batch Workloads Offloading HPC to Functions

Functions

Website and utility functions.
Multimedia processing.
Machine learning inference.
Scientific applications.
Serverless workflows.
Communication benchmarks.

Understanding FaaS performance with a representative and standardized benchmark suite.

Performance overheads of FaaS are not
uniformly distributed across application types.
Transition from a VM to serverless can be
accompanied by significant performance losses.
Static billing and allocation policies for I/O and CPU
lead to large resource waste.

Container eviction policies are agnostic
to function properties.
We derive analytical models of container
recycling.

Bringing direct and collective communication to serverless with MPI-compatible interface.

Co-locating HPC workloads and functions targets nodes with short availability and improves system utilization.

Building Serverless Services with FaaSKeeper. PraaS: Process-as-a-Service

Path from server-centric deployment to FaaS on the example of a complex service: ZooKeeper.

spcl/FaaSKeeper

Paper preprint.

“Serverful”
Compute and storage coupled in a server.
Persistent allocations.
Difficult scaling.

Serverless

Disaggregated compute and storage.
Flexible resource allocation.
Scale down to zero.

Serverless process: introducing new abstraction to improve data locality and integration.

spcl/PraaS

Paper preprint.

OS Process
Nano- and micro-second
latency of OS primitives.

Serverless Function
Millisecond latency of
cloud proxies.

IPC

State

Fork

Communicat ion State Invoke

IPC

State

Data Plane

Serverless Process
Microsecond latency of
PraaS backend.

PraaS Data Plane vs Lambda.

Reduction Benchmark: PraaS State vs S3.

Using RDMA and leases for FaaSt invocations in HPC.

FaaS: control plane involved
in every invocation.

rFaaS: serverless leases
decouple resource
allocation and invocation.

Software, documentation, datasets.

Storage too slow for HPC – FMI brings TCP to help.

Larger VM
allocations
increase data
durability.

Serverless shines in low op/s scenarios.

Accessing local
state in process
is faster than
using remote
cloud storage.

Invoking function
in the same (local)
and another (remote)
process is more
efficient than FaaS
Invocations.

Paper preprint.

How much cheaper is FaaSKeeper than ZooKeeper?

