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1 POSTER DESCRIPTION
HPC systems are facing the problem of resource underutilization,
regardless of their size, power, and node heterogeneity [8]. However,
rigid batch systems on homogeneous nodes with coupled hardware
prevent fine-grained resource allocations. Potential solutions to
this problem include resource disaggregation and job co-location.
Hardware disaggregation requires redesigning data centers and
forces applications to always pay the latency price when accessing
remote resources, which is not the case for traditional HPC systems.
While co-locating jobs improves the system’s efficiency [9], node
sharing raises security issues and can lead to performance degrada-
tion due to resource contention. Users and system operators need
to understand the symbiosis of applications [2].

We propose a new approach that meets all the above criteria:
fine-grained allocations, improved utilization, and deployment to
existing HPC systems. First, we use Function–as–a–Service (FaaS), a
new cloud programming paradigm, to allocate short-running func-
tions on dynamically allocated HPC resources. Functions provide
software disaggregation by allowing users to access remote re-
sources with the help of an elastic programming model (Fig. 1).
Then, we integrate a high-performance FaaS platform [6] in
the HPC software stack. We use HPC benchmarks to show the im-
proved system utilization and demonstrate how HPC applications
benefit from elastic computing with functions.

1.1 Software Disaggregation
We allocate functions on idle resources in partially allocated and
unoccupied nodes to target three resources: CPU cores, memory,
and GPUs (Fig. 1). Instead of using nodes exclusively for one batch
job, jobs are co-located with short-running serverless functions.
Users are encouraged to share nodes and spread jobs since leaving
one core free per node allows hosting remote memory and GPU
functions. Users can be compensated for sharing-related perfor-
mance losses, e.g., by using existing systems for fair pricing on
shared nodes [3].

CPU Node Sharing We implement job stripping [2, 9] by co-
locating functions with applications (Fig. 1a). Short-running MPI
processes can be allocated as functions, aiding adaptive MPI imple-
mentations [4, 10]. Functions are easy to profile and characterize,
helping to match batch jobs with complementary resource con-
sumption.

Memory Sharing In HPC, memory is over-provisioned due to
variable memory usage across applications, processes in the same
program, and within the job lifetime [11]. To benefit from mod-
ern networks that offer latencies low enough for remote memory
access [7], we run functions exposing idle node memory (Fig. 1b).
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Figure 1: The three models of software resource disaggrega-
tion with FaaS: increasing resource utilization on existing
HPC hardware.

Functions offer fine-grained scalability, multitenant isolation, and
fast resource reclamation to support high-memory jobs.

GPU Sharing While many HPC applications use GPU accelera-
tion, not all require such a device. Thus, we offer the opportunity
to run GPU functions alongside CPU batch jobs because the former
requires CPU only to schedule GPU kernels (Fig. 1c). Functions can
reside in device memory until they are evicted, providing warmed-
up data for faster processing.

1.2 High-Performance FaaS
Cloud functions are designed for cloud applications and are not
performance-oriented [5]. On the other hand, HPC functions must
be specialized for the hardware and software of supercomputers.
We use rFaaS [6], a high-performance serverless platform that uses



Marcin Copik, Alexandru Calotoiu (advisor), and Torsten Hoefler (advisor)

high-speed interconnects common in HPC systems. We extend
rFaaS to support HPC-oriented containers like Sarus and Singular-
ity, high-performance filesystems, direct networking, and GPU re-
sources. We enable cheap computations on underutilized resources
by offering an API for batch systems to release idle nodes and re-
sources into rFaaS. Furthermore, we use the pools of idle memory
to host warmed function containers and reduce the frequency of
cold startups, a major problem for serverless performance.

1.3 Results
We evaluate our approach by co-locating function-like workloads
with LULESH and the su3_rmd from MILC. First, we simulate func-
tion executions by co-locating short-running NAS benchmarks
with batch jobs, showing an improvement in node utilization of
up to 52%. We co-locate batch jobs with functions serving remote
memory write and read operations, observing a slowdown < 5%
and 15% for LULESH and MILC, respectively, even when handling
10 GB/s of traffic. Then, we co-locate batch jobs with Rodinia bench-
marks simulating GPU functions running for just a few hundred
milliseconds, demonstrating low overhead.

Finally, we show how functions can help parallel applications
to offload computing tasks to remote resources. First, we evaluate
an MPI benchmark where each rank offloads half of Jacobi solver
iteration to a function, obtaining a speedup between between 1.7x
and 2.2x. Then, we use the Black-Scholes application from PARSEC
suite [1] to compare the OpenMP version against remote execution
with rFaaS. We demonstrate high efficiency on millisecond-scale
computations and efficient scalability until network saturation is
reached.

1.4 Summary
We propose a novel software disaggregation approach to co-locate
long-running batch jobs with serverless functions to open newways
of using remote and underutilized resources in HPC applications.
We port a high-performance FaaS platform to a supercomputing
system and demonstrate the efficiency of software disaggregation
on three major domains: processors, memory, and GPUs. Finally,
we show that FaaS can accelerate MPI and OpenMP programs by
using idle resources.
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