
SeBS: A Serverless Benchmark Suite for Function-as-a-Service
Computing

Marcin Copik
marcin.copik@inf.ethz.ch

ETH Zürich
Switzerland

Grzegorz Kwaśniewski
ETH Zürich
Switzerland

Maciej Besta
ETH Zürich
Switzerland

Michał Podstawski
Future Processing SA

Poland

Torsten Hoefler
ETH Zürich
Switzerland

ABSTRACT
Function-as-a-Service (FaaS) is one of the most promising direc-
tions for the future of cloud services, and serverless functions have
immediately become a new middleware for building scalable and
cost-efficient applications. However, the quicklymoving technology
hinders reproducibility, and the lack of a standardized benchmark-
ing suite leads to using ad-hoc solutions and microbenchmarks in
serverless research, further complicating meta-analysis and com-
parison of research solutions. To address this challenge, we propose
the Serverless Benchmark Suite: the benchmark for FaaS comput-
ing that systematically covers a wide spectrum of cloud resources
and applications. Our benchmark consists of the specification of
representative workloads, the accompanying implementation in-
frastructure, and the evaluation methodology that facilitates repro-
ducibility and enables interpretability. We demonstrate that the
abstract model of a FaaS execution environment ensures the appli-
cability of our benchmark to multiple commercial providers such
as AWS, Azure, and Google Cloud. Our work delivers a standard-
ized, reliable, and evolving evaluation methodology of performance,
efficiency, scalability, and reliability of middleware FaaS platforms.

CCS CONCEPTS
• Networks → Cloud computing; • Computer systems orga-
nization→Cloud computing; •General and reference→ Per-
formance; Metrics; Evaluation; Measurement.

KEYWORDS
benchmark, serverless, function-as-a-service, faas

ACM Reference Format:
Marcin Copik, Grzegorz Kwaśniewski, Maciej Besta, Michał Podstawski,
and Torsten Hoefler. 2021. SeBS: A Serverless Benchmark Suite for Function-
as-a-Service Computing. In 22nd International Middleware Conference (Mid-
dleware ’21), December 6–10, 2021, Québec city, QC, Canada. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3464298.3476133

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Middleware ’21, December 6–10, 2021, Québec city, QC, Canada
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8534-3/21/12. . . $15.00
https://doi.org/10.1145/3464298.3476133

User’s perspective

� Pay-as-you-go billing � High computing cost
� Massive parallelism � Variable performance
� Simplified deployment � Vendor lock-in
� Architecture agnostic � Black-box platform

Provider’s perspective

� Higher machine utilization � Handling heterogeneity
� Fine-grained scheduling �Micro-architecture effects

Table 1: Summary of the FaaS model. Quantitative measure-
ments are needed to assess advantages and disadvantages.
SeBS implementation: https://github.com/spcl/serverless-benchmarks
SeBS artifact: https://doi.org/10.5281/zenodo.5357597
Extended paper version: https://arxiv.org/abs/2012.14132

1 INTRODUCTION
Clouds changed the computing landscape with the promise of plen-
tiful resources, economy of scale for everyone, and on-demand avail-
ability without up-front or long-term commitment. Reported costs
are up to 7× lower than that of a traditional in-house server [22].
The deployment of middleware in cloud evolved from a more
hardware-oriented Infrastructure as a Service (IaaS) to amore software-
oriented Platform as a Service, where the cloud service provider
takes the responsibility of deploying and scaling resources [37].
Function-as-a-Service (FaaS) is a recent development towards fine-
grained computing and billing, where stateless functions are used
to build modular applications without managing infrastructure and
incurring costs for unused services.

The flexible FaaS model may be seen as a necessary connec-
tion between ever-increasing demands of diverse workloads on the
one hand, and huge data centers with specialized hardware on the
other. Serverless functions have already become the software glue
for building stateful applications [24, 89, 97]. It is already adopted
by most major commercial providers, such as AWS Lambda [1],
Azure Functions [3], Google Cloud Functions [5], and IBM Cloud
Functions [4], marking the future of cloud computing. From a user
perspective, it promises more savings and the pay-as-you-go model
where only active function invocations are billed, whereas a stan-
dard IaaS virtual machine rental incurs costs even when they are
idle [94]. From a provider’s perspective, the fine-grained execution
model enables high machine utilization through efficient schedul-
ing and oversubscription. Table 1 provides an overview of FaaS
advantages and issues.

While serverless computing gained significant traction both in
industry and academia, many authors raised several important

https://doi.org/10.1145/3464298.3476133
https://doi.org/10.1145/3464298.3476133
https://github.com/spcl/serverless-benchmarks
https://doi.org/10.5281/zenodo.5357597
https://arxiv.org/abs/2012.14132

Middleware ’21, December 6–10, 2021, Québec city, QC, Canada Copik, et al.

User

IoT

Func�on
schedulerH

T
TP

Fr
o

n
t-

-e
n

d

Execution environment

...
Cloud

Function 1 Function 2

Persistent
Storage

Cloud resources and services

...Ephemeral
Storage

(Internal) triggers

Timer ...
SeBS: The Serverless

Benchmark Suite
(External)
invoca�on

sources

...

Func�on ID

Payload

Invocation
Pattern

4

1

2

3

1

E

E E

E

Web apps

(1) Execu�on
starts at the

frontend

(2) Execu�on moves
to the scheduler

(3) Data
transfer

(4) Cold
start

(4) Warm
start

EEE

Figure 1: An abstract model of a FaaS platform. Labels: ❶ - triggers, ❷ - execution environment, ❸ - persistent storage,
❹ - ephemeral storage, E - invocation system. Details in Section 2.

issues, for example, vendor lock-in on commercial platforms, lack
of standardized tools for development and debugging, unpredictable
overheads due to high-latency cold starts [75], and surprisingly high
costs of computation-intensive codes [60]. Cost and performance
analyses of FaaS applications are further inhibited by the black-
box nature of serverless platforms, and existing analyses rarely
generalize beyond a given vendor or a tested system. Yet, efficient
and scalable software systems cannot be designed without insights
into the middleware they’re being built upon. Hence, there is an
urgent need for a benchmarking design that would (1) specify clear
comparison baselines for the evaluation ofmany FaaS workloads on
different platforms, (2) enable deriving general performance, cost,
and reliability insights about these evaluations, and (3) facilitate
the above with public and easy to use implementation.

To address these challenges, we introduce the Serverless Bench-
mark Suite (SeBS), a FaaS benchmark suite that combines a sys-
tematic cover of a wide spectrum of cloud resources with detailed
insights into black-box serverless platforms. SeBS comes with a (1)
benchmark specification based on extensive literature review, (2)
a general FaaS platform model for wide applicability, (3) a set of
metrics for effective analysis of cost and performance, (4) perfor-
mance models for generalizing evaluation insights across different
cloud infrastructures, and (5) an implementation kit that facilitates
evaluating existing and future FaaS platforms.

We evaluate SeBS on AWS, Microsoft Azure, and Google Cloud
Platform. Overall, with our benchmarks representing a wide variety
of real-world workloads, we provide the necessary milestone for
serverless functions to become an efficient and reliable software
platform for complex and scalable cloud applications.

To summarize, we make the following contributions:
• We propose SeBS, a standardized platform for continuous
evaluation, analysis, and comparison of FaaS performance,
reliability, and cost-effectiveness.

• We offer novel metrics and experiments that, among oth-
ers, enable quantifying the overheads and efficiency of FaaS
under various configurations and workloads.

• We provide a full benchmark implementation and an open-
source software toolkit that can automatically build, deploy,
and invoke functions on FaaS systems in AWS, Azure, and
GCP, three popular cloud providers. The toolkit is modular
and can be easily extended to support new FaaS platforms.

• We provide insights into FaaS performance and consistency
(Sec. 6, Table 9). We analyze performance and cost overheads
of serverless functions, and model cold start patterns and
invocation latencies of FaaS platforms.

2 PLATFORMMODEL
We first build a benchmarking model of a FaaS platform that pro-
vides an abstraction of key components, see Figure 1. This enables
generalizing design details that might vary between providers, or
that may simply be unknown due to the black-box nature of a
closed-source platform.

❶ Triggers. The function lifetime begins with a trigger. Cloud
providers offermany triggers to express variousways to incorporate
functions into a larger application. One example is an HTTP trigger,
where every request sent to a function-specific address invokes the
function using the passed payload. Such triggers are often used
for interactive services or background requests from Internet-of-
Things (IoT) and edge computing devices. Other triggers are invoked
periodically, similarly to cron jobs, or upon events such as a new
file upload or a new message in a queue. Finally, functions can be
triggered as a part of larger FaaS workflows in dedicated services
such as AWS Step and Azure Durable.

❷ Execution environment. Functions require a sandbox en-
vironment to ensure isolation between tenants. One option is con-
tainers, but they may incur overheads of up to 20× over native
execution [85]. Another solution is lightweight virtual machines
(microVMs). They can provide overheads and bootup times compet-
itive with containers, while improving isolation and security [6, 73].

❸ Persistent Storage. The cloud service offers scalable storage
and high bandwidth retrieval. Storage offers usually consist of
multiple containers known as buckets (AWS, Google) and containers
(Azure). Storage services offer high throughput but also high latency
for a low price, with fees in the range of a few cents for 1GB of
data storage, retrieval, or 10,000 write/read operations.

❹ Ephemeral Storage. The ephemeral storage service ad-
dresses the high latency of persistent storage [66, 67]. Example use
cases include storing payload passed between consecutive function
invocations [20] and communication in serverless distributed com-
puting [61]. The solutions include scalable, in-memory databases
offered by the cloud provider and a custom solution with a VM
instance holding an in-memory, key-value storage. While the latter
is arguably no longer FaaS and the usage of non-scaling storage
services might be considered to be a serverless anti-pattern [53], it
provides low latency data storage and exchange platform.

E Invocation System. The launch process has at least four
steps: (a) a cloud endpoint handling the trigger, (b) the FaaS re-
source manager and scheduler deciding where to place the function
instance, (c) communication with the selected cloud server, (d) the
server handling invocations with load-balancing and caching. A
cold start also adds the execution environment startup latency.
These overheads are hidden from the user but understanding them

SeBS: A Serverless Benchmark Suite for Function-as-a-Service Computing Middleware ’21, December 6–10, 2021, Québec city, QC, Canada

SeBS: The Serverless Benchmark Suite

Benchmark Specification

Details:
Sections

3.2, 4

Representative selection of important
aspects of serverless computing

A platform for facilitating development, analysis, and evaluation
of serverless workloads, as well as visualization of measurements

Benchmarking Platform

Benchmark Design Principles Details: Section 3.1

➜ Scientific evaluation methodology (interpretability, reproducibility)
➜ Extensibility (simplicity in extending our suite into different directions)

Evaluation
Metrics

Benchmark
payload

Kernel
code

Measurement
infrastructure

Benchmark
instance

Local Environment

Local
benchmark

instance

PAPI, other
local tools
and code

Docker

User

Builder

JSON, ... Deploy

Build cloud
package

C
on

fig
ur

e

Characterize

Determine

Manage

Specify,
extend

Driver

Cloud (AWS,
Azure, ...)

Function
scheduler

Cloud
frontend

Deploy
Execution

environmentProfile runs

Query metrics

Input datasets
& payload

Applications
and use cases

The Serverless Benchmark Suite scope
partially extends to user's local environment

➜ Web applications (dynamic-html, storage-uploader)
➜ Multimedia (thumbnailer, video-processing, ffmpeg)
➜ Utilities (compression, data-visualization)
➜ Inference (object-recognition, classification)
➜ Graph processing (BFS, PageRank, MST)

➜ Metrics (computation time, initialization time, storage
throughput, memory consumption, cost)
➜ Models (performance, container eviction, invocation
overhead)

Models
Construct

➜ Relevance (realistic workloads)
➜ Usability (benchmarks that are simple to use)

1

2 3
Cloud resources

Figure 2: An overview of the offered serverless benchmark suite.

helps to minimize startup latencies. Cloud providers benefit from
identifying performance bottlenecks in their systems as well.

3 SERVERLESS MODEL ANALYSIS
To design SeBS, we select candidate FaaS workloads and investigate
the fundamental limitations that can throttle the migration of some
workloads to the serverless environment.

3.1 Candidate applications
Workloads with a premise for immediate benefits have infrequent
invocations, unpredictable and sudden spikes in arriving requests,
and fine-grained parallelism. Yet, unprecedented parallelism offered
by FaaS is not simple to harness, and many workloads struggle
to achieve high performance and suffer from problems such as
stragglers [21, 48, 96]. Such FaaS workload classes that may be hard
to program for high performance are data analytics [70, 76, 81],
distributed compilation [47], video encoding, linear algebra and
high-performance computing problems [86], and machine learning
training and inference [41, 44, 59].

3.2 FaaS model aspects
Although the adaption of serverless computing is increasing in
various domains, the technical peculiarities that made it popular in
the first place are now becoming a roadblock for further growth [53,
60]. Both the key advantages and the limitations of FaaS are listed
in Table 1. We now describe each aspect to understand the scope
of SeBS better.

Computing Cost. FaaS handles infrequent workloads more
cost-effectively than persistent VMs. Problems such as machine
learning training can be much more expensive than a VM-based
solution [48, 60], primarily due to function communication over-
heads. FaaS burst parallelism outperforms virtual machines in data
analytics workloads but inflates costs [76]. Thus, we need to think
of computational performance not only in raw FLOP/s but, most

importantly, as a FLOP/s per dollar ratio. Here, SeBS includes cost
efficiency as a primary metric to determine the most efficient configu-
ration for a specific workload, analyze the pricing model’s flexibility,
and compare the costs with IaaS approaches.

I/O performance. Network I/O affects cold startup latencies,
and it is crucial in ephemeral computing as it relies on external stor-
age. As function instances share the bandwidth on a server machine,
the co-allocation of functions depending on network bandwidth
may degrade performance. Investigation of major cloud providers
revealed significant fluctuations of network and I/O performance,
with the co-location decreasing throughput up to 20× on AWS [94].
SeBS includes network and disk performance as a metric to understand
I/O requirements of serverless functions better.

Vendor Lock-In. Lack of standardization in function configu-
ration, deployment, and cloud services complicates development.
Each cloud provider requires a customization layer that can be non-
trivial. Tackling this, SeBS provides a transparent library for adapting
cloud service interfaces for deployment, invocation, and persistent
storage management.

Heterogeneous Environments. Major FaaS platforms limit
user configuration options to the amount of memory allocated and
an assigned time to access a virtual CPU. To the best of our knowl-
edge, specialized hardware is only offered by nuclio [17], a data
science-oriented and GPU-accelerated FaaS provider. While hard-
ware accelerators are becoming key for scalability [93], serverless
functions lack an API to allocate and manage such hardware, simi-
lar to solutions in batch systems on HPC clusters [9]. SeBS includes
dedicated tasks that can benefit from specialized hardware.

Microarchitectural Hardware Effects. The hardware and
software stack of server machines is optimized to handle long-
running applications, where major performance challenges include
high pressure on instruction caches or low counts of instructions
per cycle (IPC) [62]. The push to microservices lowers the CPU
frontend pressure thanks to a smaller code footprint [50]. Still, they

Middleware ’21, December 6–10, 2021, Québec city, QC, Canada Copik, et al.

Policy AWS Azure GCP

Languages (native) Python, Node.js, C#, Java, C++, and more. Python, JavaScript, C#, Java etc. Node.js, Python, Java, Go
Time Limit 15 minutes 10 min / 60 min / Unlimited 9 minutes
Memory Allocation Static, 128 - 3008 MB Dynamic, up to 1536 MB Static, 128, 256, 512, 1024 or 2048 MB
CPU Allocation Proportional to memory Unknown Proportional to memory

1 vCPU on 1792 MB 2.4 GHz CPU at 2048 MB
Billing Duration and declared memory Average memory use, duration Duration, declared CPU and memory
Deployment zip package up to 250 MB zip package, Docker image zip package, up to 100 MB
Concurrency Limit 1000 Functions 200 Function Apss 100 Functions

Table 2: Comparison of major commercial FaaS providers - AWS Lambda [11], Azure Functions [12] and Google Cloud Func-
tions [16]. While commercial services have comparable compute and storage prices, their memory management and billing
policies differ fundamentally.

are bounded by single-core performance and frontend inefficien-
cies due to high instruction cache miss and branch misprediction
rate [98]. Serverless functions pose new challenges due to a lack
of code and data locality. A microarchitectural analysis of FaaS
workloads discovered similar frontend bottlenecks as in microser-
vices: decreased branch predictor performance and increased cache
misses due to interfering workloads [85]. SeBS enables low-level
characterization of serverless applications to analyze short-running
functions and better understand requirements for an optimal FaaS
execution environment.

3.3 FaaS platforms’ limitations
To support the new execution model, cloud providers put restric-
tions on user’s code and resource consumption. Although some of
those restrictions can be overcome, developers must design appli-
cations with these limitations in mind. Table 2 presents a detailed
overview of three commercial Faas platforms: AWS Lambda [1],
Azure Functions [3], and Google Cloud Functions [5]. Azure Func-
tions change the semantics with an introduction of function apps
that consists of multiple functions. The functions are bundled and
deployed together, and a single function app instance can use pro-
cesses and threads to handle multiple function instances from the
same app. Thus, they benefit from less frequent cold starts and
increased locality while not interfering with isolation and security
requirements.

4 BENCHMARK SPECIFICATION
We first discuss principles of reliable benchmarking used in SeBS
(Section 4.1). Then, we propose SeBS’ specification by analyzing
the scope of common FaaS workloads and classifying them into six
major categories (Section 4.2).

4.1 Benchmark Design Principles
Designing benchmarks is a difficult “dark art” [45]. For SeBS, we
follow well-known guidelines [37, 54, 91].

Relevance. We carefully inspect serverless use cases in the
literature to select representative workloads that stress different
components of a FaaS platform. We focus on core FaaS components
that are widely used on all platforms, and are expected to stay
relevant for the foreseeable future.

Usability. Benchmarks that are easy to run benefit from a high
degree of self-validation [91]. In addition to a benchmark specifica-
tion, we provide a benchmarking platform and a reference implemen-
tation to enable automatic deployment and performance evaluation

Type Name Language Deps

Webapps
dynamic-html Python jinja2

Node.js mustache

uploader Python -
Node.js request

Multimedia thumbnailer Python Pillow
Node.js sharp

video-processing Python ffmpeg

Utilities compression Python -
data-vis Python squiggle

Inference image-recognition Python pytorch

Scientific
graph-pagerank

Python igraphgraph-mst
graph-bfs

Table 3: SeBS applications. One application - video.processing
- requires a non-pip package: ffmpeg (marked in bold).

of cloud systems, minimizing the configuration and preparation
effort from the user.

Reproducibility & Interpretability. For reproducibility and
interpretability of outcomes, we follow established guidelines for
scientific benchmarking of parallel codes [55]. We compute the 95%
and 99% non-parametric confidence intervals [39, 55] and choose
the number of samples such that intervals are within 5% of the
median. Still, in multi-tenant systems with shared infrastructure,
one cannot exactly reproduce the system state and achieve per-
formance. The FaaS paradigm introduces further challenges with
a lack of control on function placement. Thus, in SeBS, we also
focus on understanding and minimizing the deviations of measured
values. For example, we consider the geolocation of cloud resources
and the time of day when running experiments. This enables us to
minimize effects such as localized spikes of a cloud activity when
many users use it.

Extensibility. While the SeBS implementation uses existing
cloud services and relies on interfaces specific to providers, the
specification of SeBS depends only on the abstract FaaS model from
Section 2. Thus, we do not lock the benchmark in a dependency on
a specific commercial system.

4.2 Applications
Our collection of serverless applications is in Table 3. They repre-
sent different performance profiles, from simple website backends
with minimal CPU overhead to compute-intensive machine learn-
ing tasks. To accurately characterize each application’s require-
ments, we conduct a local, non-cloud evaluation of application
metrics describing requirements on computing, memory, and ex-
ternal resources (Section 5). The evaluation allows us to classify

SeBS: A Serverless Benchmark Suite for Function-as-a-Service Computing Middleware ’21, December 6–10, 2021, Québec city, QC, Canada

applications, verify that our benchmark set is representative, and
pick benchmarks according to the required resource consumption.

Web Applications. FaaS platforms allow building simplified
static websites where dynamic features can be offloaded to a server-
less backend. We include two examples of small but frequently in-
volved functions: dynamic-html (dynamic HTML generation from
a predefined template) and storage-uploader (upload of a file from a
given URL to cloud storage). They have low requirements on both
CPU and memory.

Multimedia. A common serverless workload is processing mul-
timedia data. Images uploaded require the creation of thumbnails,
as we do in our benchmark kernel thumbnailer. Videos are usually
processed to compress, extract audio, or convert to more suitable
formats. We include an application video-processing that uses a
static build of ffmpeg to apply a watermark to a video and convert
it to a gif file.

Utilities. Functions are used as backend processing tools for
too complex problems for a web server or application frontend.
We consider compression and data-vis. In the former, the function
compresses a set of files and returns an archive to the user, as seen
in online document office suites and text editors. We use acmart-
master template as evaluation input. In the latter, we include the
backend of DNAVisualization.org [7, 69], an open-source website
providing serverless visualization of DNA sequences, using the
squiggle Python library [68]. The website passes DNA data to a
function which generates specified visualization and caches results
in the storage.

Inference. Serverless functions implement machine learning in-
ference tasks for edge IoT devices and websites to handle scenarios
such as image processing with object recognition and classification.
We use as an example a standard image recognition with pretrained
ResNet-50 model served with the help of pytorch [80] and, for
evaluation, images from fake-resnet test from MLPerf inference
benchmark [82]. Deployment of PyTorch requires additional steps
to ensure that the final deployment package meets the limits on
the size of the code package. In our case, the most strict require-
ments are found on AWS Lambda with a limit of 250 megabytes of
uncompressed code size. We fix the PyTorch version to 1.0.1 with
torchvision in version 0.3. We disable all accelerator support (only
CPU), strip shared libraries, and remove tests and binaries from
the package. While deep learning frameworks can provide lower
inference latency with GPU processing, dedicated accelerators are
not currently widely available on FaaS platforms, as discussed in
Section 3.2.

Scientific. As an example of scientific workloads, we consider
irregular graph computations, a more recent yet established class
of workloads [31, 35, 71, 83]. We selected three important problems:
Breadth-First Search (BFS) [25, 33], PageRank (PR) [78], and Min-
imum Spanning Tree (MST). BFS is used in many more complex
schemes (e.g., in computing maximum flows [46]), it represents a
large family of graph traversal problems [33], and it is a basis of
the Graph500 benchmark [77]. PR is a leading scheme for ranking
websites and it stands for a class of centrality problems [40, 87].
MST is used in many analytics and engineering problems, and repre-
sents graph optimization problems [30, 51, 79]. All three have been
extensively research in a past decade [25, 28, 29, 32, 34, 36, 52, 84].

We select the corresponding algorithms such that they are all data-
intensive but differ in the details of the workload characteristics
(e.g., BFS, unlike PR, may come with severe work imbalance across
iterations).

5 BENCHMARK IMPLEMENTATION
We complement the benchmark specification introduced in the
previous section with our benchmarking toolkit. We discuss the
set of metrics used to characterize application requirements and
measure performance overheads (Section 5.1). SeBS enables auto-
matic deployment and invocation of benchmarks, specified in the
previous section (Section 5.2). This benchmarking platform is used
for parallel experiments that model and analyze the behavior of
FaaS systems (Section 6).

5.1 Application Metrics
We now discuss in detail metrics that are measured locally and in
the cloud execution.
Local metrics. These metrics provide an accurate profile of applica-
tion performance and resource usage to the user.

• Time. We measure execution time to find which applications
require significant computational effort, and we use hardware
performance counters to count instructions executed, a metric
less likely influenced by system noise.

• CPU utilization.We measure the ratio of time spent by the ap-
plication on the CPU, both in the user and the kernel space, to the
wall-clock time. This metric helps to detect applications stalled
on external resources.

• Memory. Peak memory usage is crucial for determining applica-
tion configuration and billing. It also enables providers to bound
the number of active or suspended containers. Instead of resident
set size (RSS) which overapproximates actual memory consump-
tion, wemeasure the unique set size (USS) and proportional set size
(PSS). Thus, we enable an analysis of benefits from page sharing.

• I/O. I/O intensive functions may be affected by contention. Aver-
age throughput of filesystem I/O and network operations decreases
with the number of co-located function invocations that have to
share the bandwidth, leading to significant network performance
variations [94].

• Code size. The size and complexity of dependencies impact the
warm and cold start latency. Larger code packages increase deploy-
ment time from cloud storage and the warm-up time of language
runtime.

Cloud metrics. The set of metrics available in the cloud is limited
because of the black-box nature of the FaaS system. Still, we can gain
additional information through microbenchmarks and modeling
experiments (Section 6).

• Benchmark, Provider andClient Time.Wemeasure execution
time on three levels: directly measure benchmark execution time
in cloud, including work performed by function, but not network
and system latencies; query cloud provider measurements, adding
overheads of language and serverless sandbox; measure end-to-
end execution latency on client side, estimating complete overhead
with the latency of function scheduling and deployment.

Middleware ’21, December 6–10, 2021, Québec city, QC, Canada Copik, et al.

• Memory. The actual memory consumption plays a crucial role
in determining cost on platforms with dynamic memory alloca-
tion. Elsewhere, the peak memory consumption determines the
execution settings and billing policies.

• Cost. The incurred costs are modeled from billed duration, mem-
ory consumption, and a number of requests made to persistent
storage. While AWS enables estimating the cost of each function
execution, Azure offers a monitoring service with query interval
not shorter than one second.

5.2 Implementation
We implement the platform from Figure 2 to fulfill three major re-
quirements: application characterization, deployment to the cloud,
and modeling of cloud performance and overheads. We describe
SeBS modularity and the support for the inclusion of new bench-
marks, metrics, and platforms.

Deployment. SeBS handles all necessary steps of invoking a
function in the cloud. We allocate all necessary resources and do
not use third-party dependencies, such as the Serverless frame-
work [18], since a flexible and fine-grained control over resources
and functions is necessary to efficiently handle large-scale and par-
allel experiments, e.g., the container eviction model (Sec. 6). For
each platform, we implement the simplified interface described
below. Furthermore, benchmarks and their dependencies are built
within Docker containers resembling function execution workers
to ensure binary compatibility with the cloud. Google Cloud Func-
tions use the cloud provider Docker-based build system as required
by the provider. SeBS can be extended with new FaaS platforms by
implementing the described interface and specifying Docker builder
images.
c l a s s FaaS :
def package_code (d i r e c t o r y , l anguage : [Py , J S])
def c r e a t e _ f u n c t i o n (fname , code , l ang : [Py , J S]) , c o n f i g)
def upda t e _ f un c t i on (fname , code , c o n f i g)
def c r e a t e _ t r i g g e r (fname , type : [SDK , HTTP])
def que ry_ l og s (fname , type : [TIME , MEM, COST])

Benchmarks. We use a single benchmark implementation in
a high-level language for all cloud providers. Each benchmark in-
cludes a Python function to generate inputs for invocations of
varying sizes. SeBS implements provider-specific wrappers for en-
try functions to support different input formats and interfaces. Each
benchmark can add custom build actions, including installation of
native dependencies and supporting benchmark languages with a
custom build process, such as the AWS Lambda C++ Runtime. New
applications integrate easily into SeBS: the user specifies input gener-
ation procedure, configures dependencies and optional build actions,
and adjusts storage access functionalities.
def f unc t i on_wrappe r (p r ov i d e r _ i npu t , p rov i d e r_env)
input = j s on (p r o v i d e r _ i n pu t)
s t a r t _ t i m e r ()
r e s = f un c t i o n ()
t ime = end_t imer ()
return j s on (t ime , s t a t i s t i c s (p rov i d e r_env) , r e s)

Storage. We use light-weight wrappers to handle different stor-
age APIs used by cloud providers. Benchmarks use the SeBS abstract
storage interface, and we implement one-to-one mappings between
our and provider’s interface. The overhead is limited to a single redi-
rect of a function call. New storage solutions require implementing a
single interface, and benchmarks will use it automatically.

Experiments SeBS implements a set of experiments using pro-
vided FaaS primitives. Experiments invoke functions through an
abstract trigger interface, and we implement cloud SDK and HTTP
triggers. The invocation result includes SeBS measurements and an
unchanged output of the benchmark application. SeBS metrics are
implemented in function wrappers and with the provider log query-
ing facilities. Each experiment includes a postprocessing step that
examines execution results and provider logs. New experiments and
triggers are integrated automatically into SeBS through a common
interface. SeBS can be extended with new types of metrics by plug-
ging measurement code in SeBS benchmark wrappers, by using the
provided log querying facilities, and by returning benchmark-specific
measurements directly from the function.

Technicalities.We use Docker containers with language work-
ers in Python and Node.js in local evaluation; minio [8] implements
persistent storage. We use PAPI [90] to gather low-level characteris-
tics (we found the results from Linux perf to be unreliable when the
application lifetime is short). For cloud metrics, we use provider’s
API to query execution time, billing, and memory consumption,
when available. We use cURL to exclude the HTTP connection
overheads for client time measurements. We enforce cold starts by
updating function configuration on AWS and by publishing a new
function version on Azure and GCP.

6 EVALUATION
We show how SeBS provides a consistent and accurate method-
ology of comparing serverless providers, and assessing the FaaS
performance, reliability, and applicability to various classes of work-
loads. We begin with a local benchmark evaluation to verify that
we cover different computing requirements (Section 6.1). Next, we
thoroughly evaluate serverless systems’ performance-cost tradeoffs
(Section 6.2, 6.3). We determine the platforms with the best and
most consistent performance and analyze serverless computing’s
suitability for different types of workloads. Finally, we use SeBS to
better understand serverless platforms through performance mod-
eling of invocation latencies (Section 6.4), and container eviction
policies (Section 6.5). two major black-box components affecting
FaaS applicability as middleware for reliable and scalable applica-
tions. We summarize new results and insights provided by SeBS in
Table 9.

Configuration We evaluate SeBS on the three most represen-
tative FaaS platforms: the default AWS Lambda plan without pro-
visioned concurrency, the standard Linux consumption plan on
Azure Functions, and Google Cloud Functions, in regions us-east-1,
WestEurope, and europe-west1, respectively. We use S3, Azure Blob
Storage, and Google Cloud Storage for persistent storage, HTTP
endpoints as function triggers, and deploy Python 3.7 and Node.js
10 benchmarks.

6.1 Benchmark Characteristics
We begin with a local evaluation summarized in Table 4. We se-
lected applications representing different performance profiles,
from website backends with minimal CPU overhead and up to
compute-intensive machine learning inference. The evaluation al-
lows us to classify applications, verify that our benchmark set is

SeBS: A Serverless Benchmark Suite for Function-as-a-Service Computing Middleware ’21, December 6–10, 2021, Québec city, QC, Canada

100

101

Ex
ec

ut
io

n
Ti

m
e

[s
]

12
8

25
6

51
2

10
24

15
36

20
48

30
08

uploader
Upload downloaded zip package to storage

Memory [MB]
12

8
25

6
51

2
10

24
20

48

Dyn
am

ic

AWS GCP Azure

10−1

100

101

12
8

25
6

51
2

10
24

20
48

30
08

thumbnailer Python
image thumbnailer

Memory [MB]
12

8
25

6
51

2
10

24
20

48

Dyn
am

ic

AWS GCP Azure

10−3

10−2

10−1

100

101

12
8

25
6

51
2

10
24

20
48

30
08

thumbnailer Node.js
image thumbnailer

Memory [MB]
12

8
25

6
51

2
10

24
20

48

Dyn
am

ic

AWS GCP Azure

101

Ex
ec

ut
io

n
Ti

m
e

[s
]

25
6

51
2

10
24

15
36

20
48

30
08

compression
zip-compression of LaTex project

Memory [MB]
25

6
51

2
10

24
20

48

Dyn
am

ic

AWS GCP Azure

100

101

51
2

10
24

15
36

20
48

30
08

image-recognition
pytorch ResNet-50 inference

Memory [MB]

Benchmark Time Provider Time Client Time

51
2

10
24

20
48

Dyn
am

ic

AWS GCP Azure

10−1

100

12
8

25
6

51
2

10
24

15
36

20
48

30
08

graph-bfs
Breadth-first search

Memory [MB]
12

8
25

6
51

2
10

24
20

48

Dyn
am

ic

AWS GCP Azure

Figure 3: Performance of SeBS applications on AWS Lambda, Azure Functions and Google Cloud Functions. Experiment in-
cludes 200 warm invocations. Whiskers include data from 2th to 98th percentile.

Name Lang. Cold Time [ms] Warm Time [ms] Instructions CPU%

dynamic-html P 130.4 ± 0.7 1.19 ± 0.01 7.02𝑀 ± 287𝐾 99.4%
N 84 ± 2.8 0.28 ± 0.5 - 97.4%

uploader P 236.9 ± 12.7 126.6 ± 8.9 94.7𝑀 ± 4.45𝑀 34%
N 382.8 ± 8.9 135.3 ± 9.6 - 41.7%

thumbnailer P 205 ± 1.4 65 ± 0.8 404𝑀 ± 293𝐾 97%
N 313 ± 4 124.5 ± 4.4 - 98.5%

video-processing P 1596 ± 4.6 1484 ± 5.2 - -
compression P 607 ± 5.3 470.5 ± 2.8 1735𝑀 ± 386𝐾 88.4%
image-recognition P 1268 ± 74 124.8 ± 2.7 621𝑀 ± 278𝐾 98.7%
graph-pagerank

P
194 ± 0.8 106 ± 0.3 794𝑀 ± 293𝐾 99%

graph-mst 125 ± 0.8 38 ± 0.4 234𝑀 ± 289𝐾 99%
graph-bfs 123 ± 1.1 36.5 ± 0.5 222𝑀 ± 300𝐾 99%

Table 4: Standard characterization of Python and Node.js
benchmarks over 50 executions in a local environment on
AWS z1d.metal machine.

representative and select to experiments benchmarks accordingly
to required resource consumption.

6.2 Performance analysis
Wedesign a benchmarking experiment Perf-Cost tomeasure the cost
and performance of FaaS executions. We run concurrent function
invocations, sampling to obtain N cold invocations by enforcing
container eviction between each invocations batch. Next, we sam-
ple the function executions to obtain N calls to a warm container.
We measure client, function, and provider time (Section 5.1). We
compute non-parametric confidence intervals [56] for client time
and select the number of samples N = 200 to ensure that inter-
vals are within 5% of the median for AWS while the experiment
cost stays negligible. We perform 50 invocations in each batch to
include invocations in different sandboxes, and use the same con-
figuration on Azure and GCP for a fair and unbiased comparison
of performance and variability. 1

We benchmark network bandwidth (uploader), storage access
times and compute performance (thumbnailer, compression), large
1We generate more samples due to unreliable cloud logging services. We always
consider first 200 correctly generated samples and don’t skip outliers.

cold start deployment and high-memory compute (image-recognition),
significant output returned (graph-bfs), and compare performance
across languages (Python and Node.js versions of thumbnailer).

Q1How serverless applications perform on FaaS platforms?
Figure 3 presents significant differences in warm invocations be-
tween providers, with AWS Lambda providing the best perfor-
mance on all benchmarks. Each function’s execution time decreases
until it reaches a plateau associated with sufficient resources to
achieve highest observable performance. Only benchmark graph-
bfs achieves comparable performance on the Google platform, with
the largest slowdown observed on benchmarks relying on storage
bandwidth (thumbnailer, compression). On Azure, we note a signifi-
cant difference between benchmark and provider times on Python
benchmarks. To double-check our measurements’ correctness and
verify if initialization overhead is the source of such discrepancy,
we sequentially repeat warm invocations instead of using concur-
rent benchmark executions. The second batch presents more stable
measurements, and we observe performance comparable to AWS
on computing benchmarks image-recognition and graph-bfs.

Our results verify previous findings that CPU and I/O allocation
increases with the memory allocation [94]. However, our I/O-bound
benchmarks (uploader, compression) reveal that the distribution of
latencies is much wider and includes many outliers, which pre-
vents such functions from achieving consistent and predictable
performance.

Conclusions: AWS functions consistently achieve the highest per-
formance. Serverless benefits from larger resource allocation, but se-
lecting the right configuration requires an accurate methodology for
measuring short-running functions. I/O-bound workloads are not a
great fit for serverless.

Q2 How cold starts affect the performance? We estimate
cold startup overheads by considering all 𝑁 2 combinations of 𝑁
cold and 𝑁 warm measurements. In Figure 4, we summarize the
ratios of cold and warm client times of each combination. This

Middleware ’21, December 6–10, 2021, Québec city, QC, Canada Copik, et al.

10−1

100

101

102

T c
ol
d

T w
ar
m

AWS, 128 MB AWS, 2048 MB GCP, 128 MB GCP, 2048 MB Azure

uploader thumbnailer Python thumbnailer Node.js compression image-recognition graph-bfs

Figure 4: Cold startup overheads of benchmarks on AWS Lambda and Google Cloud Functions, based on cold and warm exe-
cutions (Figure 3).

approach doesn’t provide a representative usage of Azure Functions,
where a single function app instance handles multiple invocations.
To estimate real-world cold startups there, instead of cold runs,
we use concurrent burst invocations that include cold and warm
executions.

We notice the largest cold startup overheads on benchmark
image-recognition (large deployment, download model from stor-
age), where a cold execution takes on average up to ten times longer
than a warm invocation, which correlates with previous findings
(c.f. [74]). Simultaneously, the compression benchmark shows that
cold start can have a negligible impact for longer running functions
(> 10 seconds). Azure provides lower overheads, with the highest
gains on benchmarks with a large deployment package and long
cold initialization, at the cost of higher variance.

However, we notice an unusual and previously not reported con-
trast between Amazon and Google platforms: while high memory
invocations help to mitigate cold startup overheads on Lambda,
providing more CPU allocation for initialization and compilation,
they have an adverse effect on Google Functions, except for bench-
mark image-recognition discussed above. A possible explanation of
this unexpected result might be a smaller pool of more powerful
containers, leading to higher competition between invocations and
longer allocation times. Conclusions: more powerful (and expensive)
serverless allocations are not a generic and portable solution to cold
startup overheads. Functions with expensive cold initialization benefit
from functions apps on Azure.

Q3 FaaS performance: consistent and portable? Vendor lock-
in is a major problem in serverless. We look beyond the usual
concern of provider-specific services, and examine changes in func-
tion’s performance and availability.

Performance deviations In Figure 3, we observe the highest
variance in benchmarks relying on I/O bandwidth (uploader and
compression). Compute-intensive applications show consistent exe-
cution times (image-recognition) while producing a notable number
of stragglers on long-running functions (compression). Function run-
time is not the primary source of variation since we don’t observe
significant performance differences between Python and Node.js.
Google’s functions produced fewer outliers on warm invocations.
Contrarily, Azure’s results present significant performance devi-
ations. Provider and client time measurements were significantly
higher and more variant than function time on all benchmarks, ex-
cept Node.js one, implying that the Python function app generates
observed variations. The Node.js benchmark shows a very variable
performance, indicating that invocations might be co-located in the

same language worker. Finally, we consider the network as a source
of variations. The ping latencies to virtual machines allocated in the
same resource region as benchmark functions were consistent and
equal to 109, 20, and 33 ms on AWS, Azure, and GCP, respectively.
Thus, the difference between client and provider times cannot be
explained by network latency only.

Consistency On AWS, consecutive warm invocations always
hit warm containers, even when the number of concurrent calls
is large. On the other hand, GCP functions revealed many unex-
pected cold startups, even if consecutive calls never overlap. The
number of active containers can increase up to 100 when process-
ing batches of 50 requests. Possible explanations include slower
resources deallocation and a delay in notifying the scheduler about
free containers.

Availability Concurrent invocations can fail due to service un-
availability, as observed occasionally on Azure and Google Cloud.
On the latter, image-recognition generated up to 80% error rate on
4096 MB memory when processing 50 invocations, indicating a
possible problem with not sufficient cloud resources to process our
requests. Similarly, our experiments revealed severe performance
degradation on Azure when handling concurrent invocations, as
noted in Section 6.2.Q1, with long-running benchmark compression
being particularly affected. While Azure can deliver an equivalent
performance for sequential invocations, it bottlenecks on concur-
rent invocations of Python functions.

Reliability GCP functions occasionally failed due to exceeding
thememory limit, as was the case for benchmarks image-recognition
and compression on 512 MB and 256 MB, respectively. Memory-
related failure frequency was 4% and 5.2%, and warm invocations
of compression had recorded 95th and 99th percentile of memory
consumption as 261 and 273 MB, respectively. We didn’t observe
any issues with the same benchmarks and workload on AWS, where
the cloud estimated memory consumption as a maximum of 179
MB and exactly 512 MB, respectively. While the memory alloca-
tion techniques could be more lenient on AWS, the GCP function
environment might not free resources efficiently.

Conclusions: the performance of serverless functions is not stable,
and an identical software configuration does not guarantee portability
between FaaS providers. GCP users suffer from much more frequent
reliability and availability issues.

Q4 FaaS vs IaaS: is serverless slower? The execution environ-
ment of serverless functions brings new sources of overheads [85].
To understand their impact, we compare serverless performance
with their natural alternative: virtual machines, where the durable

SeBS: A Serverless Benchmark Suite for Function-as-a-Service Computing Middleware ’21, December 6–10, 2021, Québec city, QC, Canada

101

102

103

Co
m

pu
te

 c
os

t f
or

 1
M

 in
vo

ca
tio

ns
 [$

]

12
8

25
6

51
2

10
24

15
36

20
48

30
08

Memory [MB]

uploader

Cold (AWS, GCP) Warm (AWS, GCP) Burst (Azure) Warm (Azure)

12
8

25
6

51
2

10
24

20
48

Dyn
am

ic

AWS GCP Azure

101

102

51
2

10
24

15
36

20
48

30
08

Memory [MB]

image-recognition

51
2

10
24

20
48

Dyn
am

ic

AWS GCP Azure

(a) Compute cost of 1M invocations (USD).

0

20

40

60

80

100

Re
so

ur
ce

 U
sa

ge
 [%

]

12
8

25
6

51
2

10
24

15
36

20
48

30
08

Memory [MB]
uploader
thumbnailer (JS)

thumbnailer (Py)
graph-bfs

compression
img-recognition

12
8

25
6

51
2

10
24

20
48

AWS GCP

(b) Median ratio of used and billed resources (%).

Figure 5: The cost analysis of performance results from Figure 3: execution cost of 1 million requests (a) and resource usage
of cold (▲) and warm (★) executions (b). Azure data is (a) limited to a single average and (b) not available due to limitations of
the Azure Monitor systems.

Upl Th, Py Th, JS Comp Img-Rec BFS

IaaS, Local [s] 0.216 0.045 0.166 0.808 0.203 0.03
IaaS, S3 [s] 0.316 0.13 0.191 2.803 0.235 0.03
FaaS [s] 0.389 0.188 0.253 2.949 0.321 0.075
Overhead 1.79x 4.14x 1.43x 3.65x 1.58x 2.49x
Overhead, S3 1.23x 1.43x 1.24x 1.05x 1.37x 2.4x
Mem [MB] 1024 1024 2048 1024 3008 1536

Table 5: Benchmarks performance on AWS Lambda and
AWS EC2 t2.micro instance. Median from 200 warm execu-
tions.

allocation and higher price provide a more stable environment and
data locality. We rent an AWS t2.micro instance with one virtual
CPU and 1 GB memory since such instance should have compa-
rable resources with Lambda functions. We deploy SeBS with the
local Docker-based execution environment and measure warm ex-
ecution times of 200 repetitions to estimate latency of constantly
warm service. Also, we perform the same experiment with AWS
S3 as persistent storage. This provides a more balanced compari-
son of performance overheads, as cloud provider storage is com-
monly used instead of a self-deployed storage solution, thanks to
its reliability and data durability. We compare the performance
against warm provider times (Section 6.2.Q1), selecting configu-
rations where benchmarks obtain high performance and further
memory increases don’t bring noticeable improvements.We present
the summary in Table 5. The overheads of FaaS-ifying the service
vary between slightly more than 50% and a slowdown by a factor
of four. Equalizing storage access latencies reduces the overheads
significantly (Python benchmark thumbnailer).

Conclusions: performance overheads of FaaS executions are not
uniformly distributed across application classes. The transition from a
VM-based deployment to serverless architecture will be accompanied
by significant performance losses.

6.3 Cost Analysis
While raw performance may provide valuable insights, the more
important question for systems designers is how much does such
performance costs. We analyze the cost-effectiveness of results from

the Perf-Cost experiment described earlier, answering four major
research questions.

Q1 How users can optimize the cost of serverless applica-
tions? Each provider includes two major fees in the pay-as-you-go
billing model: a flat fee for 1 million executions and the cost of
consumed compute time and memory, but the implementations
are different. AWS charges for reserved memory and computing
time rounded up to 100 milliseconds, and GCP has a similar pricing
model. On the other hand, Azure allocates memory dynamically
and charges for average memory size rounded up to 128 MB.

Since computing and I/O resources are correlatedwith the amount
of requested memory, increasing memory allocation might decrease
execution time and a more expensive memory allocation might
doesn’t necessarily lead to an increase in cost. We study the price of
1million executions for the I/O-bound uploader and compute-bound
image-recognition benchmarks (Figure 5a). Performance gains are
significant for image-recognition, where the cost increases negli-
gibly, but the decreased execution time of compression does not
compensate for growing memory costs. For other benchmarks, we
notice a clear cost increase with every expansion of allocated mem-
ory. The dynamic allocation on Azure Functions generates higher
costs, and they cannot be optimized. Conclusions: to increase the
serverless price-efficiency, the user has to not only characterize the re-
quirements of their application, but the exact performance boundaries
- compute, memory, I/O - must be learned as well. Azure Functions
generate higher costs because of the dynamic memory allocations.

Q2 Is the pricing model efficient and fair? FaaS platforms
round up execution times and memory consumption, usually to
nearest 100 milliseconds and 128 megabytes. Thus, users might be
charged for unused duration and resources. With SeBS, we estimate
the scale of this problem by comparing actual and billed resource
usage. We use the memory consumption of each invocation and
the median memory allocation across the experiment on AWS and
GCP, respectively. We do not estimate efficiency on Azure because
monitor logs contain incorrect information on the memory used2.

2The issues have been reported to Azure team.

Middleware ’21, December 6–10, 2021, Québec city, QC, Canada Copik, et al.

Upl Th, Py Th, JS Comp Img-Rec BFS

Ia
aS Local Request/h 16627 79282 21697 4452 17658 119272

Cloud Request/h 11371 27503 18819 1284 15312 117153

FaaS

Eco 1M [$] 3.54 2.29 3.75 32.1 15.8 2.08
Eco B-E 3275 5062 3093 362 733 5568
Perf 1M [$] 6.67 3.34 10 50 19.58 2.5
Perf B-E 1740 3480 1160 232 592 4640

Table 6: The break-even point (requests per hour) for the
most efficient (Eco) and best performing (Perf) AWS Lambda
configuration, compared to IaaS deployment (Table 5). IaaS
assumes 100% utilization of the micro.t2 machine costing
$0.0116 per hour.

The results in Figure 5b show that the required computing power
and I/O bandwidth are not always proportional to memory con-
sumption. Changing the current system would be beneficial to both
the user and the provider, who could increase the utilization of
servers if declared memory configuration would be closer to actual
allocations. Furthermore, rounding up of execution time affects
mostly short-running functions, which have gained significant trac-
tion as simple processing tools for database and messaging queue
events.

Conclusions: memory usage is not necessarily correlated with an
allocation of CPU and I/O resources. The current pricing model encour-
ages over-allocation of memory, leading in the end to underutilization
of cloud resources.

Q3 FaaS vs IaaS: when is serverless more cost efficient? The
most important advantage of serverless functions is the pay-as-you-
go model that enables efficient deployment of services handling
infrequent workloads. The question arises immediately: how in-
frequent must be the use of service to achieve lower cost than a
dedicated solution with virtual machines? The answer is not imme-
diate since the FaaS environment negatively affects the performance
(Section 6.2.Q4). Thus, we attempt the break-even analysis to deter-
mine the maximumworkload a serverless function can handle in an
hour without incurring charges higher than a rental. We summarize
in Table 6 the results for the most cost-efficient and the highest per-
forming deployments of our benchmarks on AWS Lambda. While
EC2-based solution seems to be a clear cost winner for frequent in-
vocations, its scalability is limited by currently allocated resources.
Adding more machines takes time, and multi-core machines intro-
duce additional cost overheads due to underutilization. Serverless
functions can scale rapidly and achieve much higher throughput.

Conclusions: the IaaS solution delivers better performance at a
lower price, but only if a high utilization is achieved.

Q4 Does the cost differ between providers? Cost estimations
of serverless deployments are usually focused on execution time
and allocated memory, where fees are quite similar (Section 2, Fig-
ure 5a). There are, however, other charges associated with using
serverless functions. While storage and logging systems are not
strictly required, functions must use the provider’s API endpoints
to communicate with the outside world. AWS charges a flat fee for
an HTTP API but meters each invocation in 512 kB increments [10].
GCP and Azure functions are charged $0.12 and from $0.04 to $0.12,
respectively, for each gigabyte of data transferred out [2, 15].

Our benchmark suite includes use cases where sending results
directly back to the user is the most efficient way, such as graph-bfs
returning graph-related data (ca. 78 kB) and thumbnailer sending

0

5

10

15

20

0 2 4 6

Payload Size [MB]

In
vo

c
a
tio

n
 T

im
e
 [
s]

AWS, cold start

AWS, warm start

Azure, cold start

Azure, warm start

GCP, cold start

GCP, warm start

Figure 6: Invocation overhead of functionswith varying pay-
load.

back a processed image (ca. 3 kB). The additional costs for one
million invocations can vary from $1 on AWS to almost $9 on
Google Cloud and Azure3.

Conclusions: billing models of cloud providers include additional
charges, and serverless applications communicating a non-negligible
amount of data are particularly affected there.

6.4 Invocation overhead analysis
While benchmarking FaaS by saturating bandwidth or compute
power tells a part of a story, these services are not designed with
such workloads in mind. On the contrary, they are intended to
handle large amounts of smaller requests, often arriving in unpre-
dictable behavior, where the latency of starting the system may
play a pivotal role. The function invocation latency depends on
factors that are hidden from the user (Section 2), and performance
results indicated that FaaS systems add non-trivial overheads there
(Section 6.2).

As there are no provider-specific APIs to query such metrics,
users must estimate these overheads by comparing client-side
round-trip latency and function execution time. However, such
comparison is meaningful only for symmetric connections. That
assumption doesn’t hold for serverless: invocation includes the
overheads of FaaS controllers, whereas returning results should
depend only on network transmission. Instead, we estimate laten-
cies of black-box invocation systems accurately with a different
approach in the experiment Invoc-Overhead. First, we use times-
tamps to measure the time that passes between invocation and the
execution start, considering all steps, including language worker
process overheads. To compare timestamps, we follow an existing
clock drift estimation protocol [57]. We measure the invocation
latency in regions us-east-1, eastus, and us-east1 on AWS, Azure,
and GCP, respectively. We analyze round-trip times and discover
that they follow an asymmetric distribution, as in [57]. Thus, for
clock synchronization, we exchange messages until seeing no lower
round-trip time in 𝑁 consecutive iterations. We pick 𝑁 = 10, since
the relative difference between the lowest observable connection
time and the minimum time after ten non-decreasing connection
times is ca. 5%. Using the benchmarking methodology outlined
above, we analyze how the invocation overhead depends on the
3HTTP APIs have been available for Lambda since December 2019. REST APIs have
higher fees of $3.5 for 1M requests and $0.09 per GB of traffic.

SeBS: A Serverless Benchmark Suite for Function-as-a-Service Computing Middleware ’21, December 6–10, 2021, Québec city, QC, Canada

Parameter Range Parameter Range

𝐷𝑖𝑛𝑖𝑡 1-20 Δ𝑇 1-1600 s
Memory 128-1536 MB Sleep time 1-10 s
Code size 8 kB, 250 MB Language Python, Node.js

Table 7: Container eviction experiment parameters.

function input size for 1kB–5.9MB (6MB is the limit for AWS end-
points). The results presented in Figure 6 show the latency cost of
cold and warm invocations.

Q1 Is the invocation overhead consistent? We found that in-
vocation latency behavior to be fairly consistent and predictable for
cold AWS runs and warm startups on both platforms. At the same
time, cold startups on Azure and GCP cannot be easily explained.
Similarly to findings in Section 6.2, we observe a cold start behavior
that can be caused by unpredictable delays when scheduling func-
tions in the cloud, or the overheads associated with an inefficient
implementation of local servers executing the function. Conclusions:
while warm latencies are consistent and predictable, cold startups add
unpredictable performance deviations into serverless applications on
Azure and GCP.

Q2 Does the latency change linearly with an increase in
payload size? With the exception of Azure’s and GCP’s cold starts,
the latency scales linearly. For warm invocations on AWS, Azure,
and GCP, and cold executions on AWS, the linear model fits almost
perfectly the measured data, with adjusted R^2 metric 0.99, 0.89, 0.9,
and 0.94, respectively. Conclusions: network transmission times is
the only major overhead associated with using large function inputs.

6.5 Container eviction model.
In the previous section, we observed a significant difference in
startup times depending on whether we hit a cold or warm start.
Now we analyze how we can increase the chance of hitting warm
containers by adjusting the invocation policy. Yet, service providers
do not publish their policies. Thus, to guide users, we created the
experiment Eviction-Model to empirically model function’s cold
start characteristics.

Q1 Are cold starts deterministic, repeatable, and applica-
tion agnostic? The container eviction policy can depend on func-
tion parameters like number of previous invocations, allocated
memory size, execution time, and on global factors: system occu-
pancy or hour. Hence, we use the following benchmarking setup:
at a particular time, we submit 𝐷𝑖𝑛𝑖𝑡 initial invocations, we wait
Δ𝑇 seconds, and then check how many 𝐷𝑤𝑎𝑟𝑚 containers are still
active. Next, we test various combinations of 𝐷𝑖𝑛𝑖𝑡 and Δ𝑇 for dif-
ferent function properties (Table 7). Our results reveal that the
AWS container eviction policy is surprisingly agnostic to many
function properties: allocated memory, execution time, language,
and code package size. Specifically, after every 380 seconds, half
of the existing containers are evicted. The container lifecycles are
shown in Figures 7a- 7c.

We also attempted to execute these benchmarks on Azure Func-
tions. Yet, massive concurrent invocations led to random and unpre-
dictable failures when invoking functions. Conclusions: the eviction
policy of containers is deterministic and application agnostic, and
cold startup frequency can be predicted when scaling serverless appli-
cations.

Reference,
Infrastructure

Workloads Lang. Platform Infrastructure

McWbUtMlScMLPy JSOTAWAZGCOTImAtDp Nw

FaaSTest [14] � � � � � � � � � � � � � � � � �
FaasDom [13, 72] � � � � � � � � � � � � � � � � �
Somu et al. [88] � � � � � � � � � � � � � � � � �
EdgeBench [42] � � � � � � � � � � � � � � � � �
Kim et al. [64, 65] � � � � � � � � � � � � � � � � �
Serverlessbench [95] � � � � � � � � � � � � � � � � �
Back et al. [23] � � � � � � � � � � � � � � � � �

SeBS [This work] � � � � � � � � � � � � � � � � �

Table 8: Related work analysis: a comparison of existing
serverless- and FaaS-related benchmarks, focusing on supported
workloads and functionalities (we exclude proposals not followed
by the actual benchmarks [63, 92]).Workloads:Mc (microbench-
marks),Wb (web applications), Ut (utilities),Ml (multimedia), Sc
(scientific),ML (Machine learning inference). Languages: available
implementations, Py (Python), JS (Node.js), OT (Other), Platform:
AW (AWS Lambda), AZ (Azure Functions), GC (Google Cloud
Functions), OT (Other commercial/open-source platforms), Infras-
tructure: Im (public implementation), At (automatic deployment
and invocation), Dp (building dependencies in compatible environ-
ment), Nw (delivered new insights or speedups). �: Supported. �:
Partial support. �: no support.

Q2 Can we provide simple analytical eviction models? In
Equation 1, we provide a simple analytical model of the number of
active containers. The model fits the data (Figures 7a-7c) extremely
well.

𝐷𝑤𝑎𝑟𝑚 = 𝐷𝑖𝑛𝑖𝑡 · 2−𝑝 , 𝑝 = ⌊Δ𝑇 /380𝑠⌋ (1)
We performed a well-established 𝑅2 statistical test to validate its
correctness, and the 𝑅2 metric is more than 0.99. The only excep-
tion are Python experiments with 10s sleep time, yet even there
𝑅2 is >0.94. Thus, we can use Model 1 to find the time-optimal
invocation batch size𝐷𝑖𝑛𝑖𝑡 , given that user needs to run 𝑛 instances
of a function with runtime 𝑡 :

𝐷𝑖𝑛𝑖𝑡,𝑜𝑝𝑡 = 𝑛 · 𝑡/𝑃 (2)

where 𝑃 = 380𝑠 is the AWS eviction period length.
Conclusions: we derive an analytical model for cold start frequency

that can be incorporated into an application to warm up containers
and avoid cold starts, without using provisioned concurrency solutions
that have a non-serverless billing model.

7 RELATEDWORK
We summarize contributions to serverless benchmarking in Ta-
ble 8. We omit the microservices benchmark suite by Gan et al. [49]
as it includes only one FaaS benchmark evaluation. Contrary to
many existing cloud benchmarks, SeBS offers a systematic approach
where a diverse set of real-world FaaS applications is used instead
of microbenchmarks expressing only basic CPU, memory, and I/O
requirements. While newer benchmark suites started to adopt auto-
matic deployment and invocation, the installation of dependencies
in a compatible way is often omitted when only microbenchmarks
are considered. With a vendor-independent benchmark definition
and focus on binary compatibility, we enable the straightforward
inclusion of new benchmarks representing emerging solutions and
usage patterns.

Middleware ’21, December 6–10, 2021, Québec city, QC, Canada Copik, et al.

Model: Dwarm = Dinit ⋅ 2
-p

5

10

15

20

0 1 2 3

Periods after start p =
ΔT

380s
 (380s per period)

N
u

m
b

e
r

o
f

w
a

rm
 c

o
n

ta
in

e
rs

 D
w

a
rm

Initial invocations Dinit

8
12
20

(a) Language: NodeJs, memory allocated: 128 MB,
function execution time: 1s.

Model: Dwarm = Dinit ⋅ 2
-p

5

10

15

20

0 1 2 3

Periods after start p =
ΔT

380s
 (380s per period)

N
u

m
b

e
r

o
f

w
a

rm
 c

o
n

ta
in

e
rs

 D
w

a
rm

Initial invocations Dinit

8
12
20

(b) Language: Python, memory allocated: 1536 MB,
function execution time: 1s.

Model: Dwarm = Dinit ⋅ 2
-p

0

5

10

15

20

0 1 2 3

Periods after start p =
ΔT

380s
 (380s per period)

N
u

m
b

e
r

o
f

w
a

rm
 c

o
n

ta
in

e
rs

 D
w

a
rm

Initial invocations Dinit

8
12
20

(c) Language: Python, memory allocated: 1536 MB,
function execution time: 10s.

Figure 7: Representative scenarios of eviction policies of FaaS containers on AWS.

Results, methods, and insights Novel
insights?

AWS Lambda achieves the best performance on all workloads. é[72, 88]
Irregular performance of concurrent Azure Function executions. é [72]
I/O-bound functions experience very high latency variations. é [94]
High-memory allocations increase cold startup overheads on GCP. �
GCP functions experience reliability and availability issues. �
AWS Lambda performance is not competitive against VMs
assuming comparable resources. �

High costs of Azure Functions due to unconfigurable deployment. �
Resource underutilization due to high granularity of pricing models.�
Break-even analysis for IaaS and FaaS deployment. é [76]
The function output size can be a dominating factor in pricing. �

Accurate methodology for estimation of invocation latency. �
Warm latencies are consistent and depend linearly on payload size. �
Highly variable and unpredictable cold latencies on Azure and GCP. é [72]

AWS Lambda container eviction is agnostic to function properties. é [94]
Analytical models of AWS Lambda container eviction policy. é [94]

Table 9: The impact of SeBS: insights and new methods
(bolded) provided in our work, with a comparison against
similar results in prior work.

SeBS brings new results and insights (Table 9). SeBS goes beyond
just an evaluation of the function latency and throughput [23, 64],
and we focus on FaaS consistency, efficiency, initialization over-
heads, and container eviction probabilities and include a set of
local metrics that are necessary to characterize resource consump-
tion accurately. Only a single work takes HTTPS overheads into
account when measuring invocation latencies [14]. Our work con-
firms findings that AWS Lambda provides overall the best per-
formance [72, 88], but we obtain this result with a diverse set of
practical workloads instead of microbenchmarks. We generalize
and extend past results on container eviction modeling [94] and
the break-even analysis for a specific application [76]. Maissen et
al. [72] report several similar findings to ours. However, their in-
vocation latency estimations depend on round-trip measurements,
and they don’t take payload size into account. Similarly to us, Yu
et al. [95] find other sources of cost inefficiency on AWS. How-
ever, their benchmark suite is focused on function composition and
white-box, open-source platforms OpenWhisk and Fn. We provide
insights into the black-box commercial cloud systems to understand
the reliability, and economics of the serverless middleware.

Finally, there are benchmarks in other domains: SPEC [19]
(clouds, HPC) LDBC benchmarks (graph analytics) [58], GAPBS [26]
and Graph500 [77] (graph related), DaCapo [38] (Java applications),
Deep500 [27] and MLPerf [82] (machine learning), and Top500 [43]
(dense linear algebra).

8 CONCLUSIONS
We propose SeBS: benchmark suite that facilitates developing, eval-
uating, and analyzing emerging Function-as-a-Service cloud appli-
cations. To design SeBS, we first develop a simple benchmarking
model that abstracts away details of cloud components, enabling
portability. Then, we deliver a specification and implementation
with a wide spectrum of metrics, applications, and performance
characteristics.

We evaluated SeBS on the three most popular FaaS providers:
AWS, Microsoft Azure, and Google Cloud Platform. Our broad set
of results show that (1) AWS is considerably faster in almost all sce-
narios, (2) Azure suffers from high variance, (3) performance and be-
havior are not consistent across providers, (4) certain workloads are
less suited for serverless deployments and require fine-tuning. We
provide new experimental insights, from performance overheads
and portability, through cost-efficiency, and developed models for
container eviction and invocation overhead. We showed that our
open-source benchmark suite gives users an understanding and
characterization of the serverless middleware necessary to build
and optimize applications using FaaS as its execution backend on
the cloud.

ACKNOWLEDGMENTS
This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 pro-
gramme (grant agreement DAPP, No. 678880, and grant agreement
EPIGRAM-HS, No. 801039), and from the Schweizerische National-
fonds zur Förderung der wissenschaftlichen Forschung (SNF, Swiss
National Science Foundation) through Project 170415.

SeBS: A Serverless Benchmark Suite for Function-as-a-Service Computing Middleware ’21, December 6–10, 2021, Québec city, QC, Canada

REFERENCES
[1] 2014. AWS Lambda. https://aws.amazon.com/lambda/. Accessed: 2020-01-20.
[2] 2016. Azure: Bandwidth Pricing. https://azure.microsoft.com/en-us/pricing/

details/bandwidth/. Accessed: 2020-08-20.
[3] 2016. Azure Functions. https://azure.microsoft.com/en-us/services/functions/.

Accessed: 2020-01-20.
[4] 2016. IBM Cloud Functions. https://cloud.ibm.com/functions/. Accessed: 2020-

01-20.
[5] 2017. Google Cloud Functions. https://cloud.google.com/functions/. Accessed:

2020-01-20.
[6] 2018. Firecracker. https://github.com/firecracker-microvm/firecracker. Accessed:

2020-01-20.
[7] 2019. DNAvisualization.org. https://github.com/Benjamin-Lee/DNAvisualization.

org. Accessed: 2020-01-20.
[8] 2019. MinIO Object Storage. min.io. Accessed: 2020-01-20.
[9] 2019. SLURM Generic Resource (GRES) Scheduling. Accessed: 2020-01-20.
[10] 2020. AWSAPI Pricing. https://aws.amazon.com/api-gateway/pricing/. Accessed:

2020-08-20.
[11] 2020. AWS Lambda Limits. https://docs.aws.amazon.com/lambda/latest/dg/limits.

html. Accessed: 2020-01-20.
[12] 2020. Azure Functions scale and hosting. https://docs.microsoft.com/en-us/

azure/azure-functions/functions-scale. Accessed: 2020-01-20.
[13] 2020. Faasdom. https://github.com/faas-benchmarking/faasdom. Accessed:

2020-08-01.
[14] 2020. FaaSTest. https://github.com/nuweba/faasbenchmark. Accessed: 2020-08-

01.
[15] 2020. Google Cloud Functions Pricing. https://cloud.google.com/functions/

pricing. Accessed: 2020-08-20.
[16] 2020. Google Cloud Functions Quotas. https://cloud.google.com/functions/quotas.

Accessed: 2020-08-20.
[17] 2020. nuclio. https://nuclio.io/. Accessed: 2020-01-20.
[18] 2020. Serverless Framework. https://github.com/serverless/serverless. Accessed:

2020-08-01.
[19] 2020. Standard Performance Evaluation Corporation (SPEC) Benchmarks. https:

//www.spec.org/benchmarks.html. Accessed: 2020-08-01.
[20] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke,

Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND: Towards High-
Performance Serverless Computing. In Proceedings of the 2018 USENIX Conference
on Usenix Annual Technical Conference (Boston, MA, USA) (USENIX ATC ’18).
USENIX Association, USA, 923–935.

[21] LixiangAo, Liz Izhikevich, GeoffreyM. Voelker, andGeorge Porter. 2018. Sprocket:
A Serverless Video Processing Framework. In Proceedings of the ACM Symposium
on Cloud Computing (Carlsbad, CA, USA) (SoCC ’18). Association for Comput-
ing Machinery, New York, NY, USA, 263–274. https://doi.org/10.1145/3267809.
3267815

[22] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H.
Katz, Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, and
Matei Zaharia. 2009. Above the Clouds: A Berkeley View of Cloud Computing.
Technical Report. EECS Department, University of California, Berkeley.

[23] Timon Back and Vasilios Andrikopoulos. 2018. Using a Microbenchmark to Com-
pare Function as a Service Solutions. In Service-Oriented and Cloud Computing.
Springer International Publishing, 146–160. https://doi.org/10.1007/978-3-319-
99819-0_11

[24] Daniel Barcelona-Pons, Marc Sánchez-Artigas, Gerard París, Pierre Sutra, and
Pedro García-López. 2019. On the FaaS Track: Building Stateful Distributed Appli-
cations with Serverless Architectures. In Proceedings of the 20th International Mid-
dleware Conference (Davis, CA, USA) (Middleware ’19). Association for Computing
Machinery, New York, NY, USA, 41–54. https://doi.org/10.1145/3361525.3361535

[25] Scott Beamer, Krste Asanović, and David Patterson. 2013. Direction-optimizing
breadth-first search. Scientific Programming 21, 3-4 (2013), 137–148.

[26] Scott Beamer, Krste Asanović, and David Patterson. 2015. The GAP benchmark
suite. arXiv preprint arXiv:1508.03619 (2015).

[27] Tal Ben-Nun, Maciej Besta, Simon Huber, Alexandros Nikolaos Ziogas, Daniel
Peter, and Torsten Hoefler. 2019. A modular benchmarking infrastructure for
high-performance and reproducible deep learning. In 2019 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 66–77.

[28] Pavel Berkhin. 2005. A survey on PageRank computing. Internet mathematics 2,
1 (2005), 73–120.

[29] Maciej Besta et al. 2019. Slim Graph: Practical Lossy Graph Compression for
Approximate Graph Processing, Storage, and Analytics. (2019).

[30] Maciej Besta, Armon Carigiet, Kacper Janda, Zur Vonarburg-Shmaria, Lukas
Gianinazzi, and Torsten Hoefler. 2020. High-performance parallel graph coloring
with strong guarantees on work, depth, and quality. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. 1–17.

[31] Maciej Besta, Marc Fischer, Tal Ben-Nun, Johannes De Fine Licht, and Torsten
Hoefler. 2019. Substream-Centric Maximum Matchings on FPGA. In ACM/SIGDA

FPGA. 152–161.
[32] Maciej Besta and Torsten Hoefler. 2015. Accelerating irregular computations

with hardware transactional memory and active messages. In ACM HPDC.
[33] Maciej Besta, Florian Marending, Edgar Solomonik, and Torsten Hoefler. 2017.

Slimsell: A vectorizable graph representation for breadth-first search. In IEEE
IPDPS. 32–41.

[34] Maciej Besta, Emanuel Peter, Robert Gerstenberger, Marc Fischer, Michał Pod-
stawski, Claude Barthels, Gustavo Alonso, and Torsten Hoefler. 2019. Demysti-
fying Graph Databases: Analysis and Taxonomy of Data Organization, System
Designs, and Graph Queries. arXiv preprint arXiv:1910.09017 (2019).

[35] Maciej Besta, Michał Podstawski, Linus Groner, Edgar Solomonik, and Torsten
Hoefler. 2017. To push or to pull: On reducing communication and synchroniza-
tion in graph computations. In Proceedings of the 26th International Symposium
on High-Performance Parallel and Distributed Computing. 93–104.

[36] Maciej Besta, Dimitri Stanojevic, Tijana Zivic, Jagpreet Singh, Maurice Hoerold,
and Torsten Hoefler. 2018. Log (graph): a near-optimal high-performance graph
representation.. In PACT. 7–1.

[37] Carsten Binnig, Donald Kossmann, Tim Kraska, and Simon Loesing. 2009. How
is the Weather Tomorrow?: Towards a Benchmark for the Cloud. In Proceedings
of the Second International Workshop on Testing Database Systems (Providence,
Rhode Island) (DBTest ’09). ACM, New York, NY, USA, Article 9, 6 pages. https:
//doi.org/10.1145/1594156.1594168

[38] StephenM. Blackburn, Robin Garner, Chris Hoffmann, AsjadM. Khang, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B.
Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von
Dincklage, and Ben Wiedermann. 2006. The DaCapo Benchmarks: Java Bench-
marking Development and Analysis. SIGPLAN Not. 41, 10 (Oct. 2006), 169–190.
https://doi.org/10.1145/1167515.1167488

[39] Jean-Yves Le Boudec. 2011. Performance Evaluation of Computer and Communi-
cation Systems. EFPL Press.

[40] Ulrik Brandes and Christian Pich. 2007. Centrality estimation in large networks.
International Journal of Bifurcation and Chaos 17, 07 (2007), 2303–2318.

[41] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and Randy
Katz. 2019. Cirrus: A Serverless Framework for End-to-End ML Workflows. In
Proceedings of the ACM Symposium on Cloud Computing (Santa Cruz, CA, USA)
(SoCC ’19). Association for Computing Machinery, New York, NY, USA, 13–24.
https://doi.org/10.1145/3357223.3362711

[42] Anirban Das, Stacy Patterson, and Mike Wittie. 2018. EdgeBench: Benchmarking
Edge Computing Platforms. In 2018 IEEE/ACM International Conference on Utility
and Cloud Computing Companion (UCC Companion). IEEE. https://doi.org/10.
1109/ucc-companion.2018.00053

[43] Jack J Dongarra, Hans W Meuer, Erich Strohmaier, et al. 1997. TOP500 super-
computer sites. Supercomputer 13 (1997), 89–111.

[44] L. Feng, P. Kudva, D. Da Silva, and J. Hu. 2018. Exploring Serverless Computing
for Neural Network Training. In 2018 IEEE 11th International Conference on Cloud
Computing (CLOUD). 334–341. https://doi.org/10.1109/CLOUD.2018.00049

[45] Enno Folkerts, Alexander Alexandrov, Kai Sachs, Alexandru Iosup, Volker Markl,
and Cafer Tosun. 2013. Benchmarking in the Cloud:What It Should, Can, and Can-
not Be. In Selected Topics in Performance Evaluation and Benchmarking, Raghunath
Nambiar and Meikel Poess (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
173–188.

[46] Lester Randolph Ford and Delbert R Fulkerson. 2009. Maximal flow through a
network. In Classic papers in combinatorics. Springer, 243–248.

[47] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee, Christos
Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From Laptop to Lambda:
Outsourcing Everyday Jobs to Thousands of Transient Functional Containers. In
2019 USENIX Annual Technical Conference (USENIX ATC 19). USENIX Association,
Renton, WA, 475–488. https://www.usenix.org/conference/atc19/presentation/
fouladi

[48] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki Balasubra-
maniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George Porter, and
Keith Winstein. 2017. Encoding, Fast and Slow: Low-Latency Video Processing
Using Thousands of Tiny Threads. In Proceedings of the 14th USENIX Conference
on Networked Systems Design and Implementation (Boston, MA, USA) (NSDI’17).
USENIX Association, USA, 363–376.

[49] Yu Gan, Brendon Jackson, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy,
Chris Colen, Fukang Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Yanqi Zhang, Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, Christina
Delimitrou, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki, Ariana
Bruno, Justin Hu, and Brian Ritchken. 2019. An Open-Source Benchmark Suite
for Microservices and Their Hardware-Software Implications for Cloud & Edge
Systems. In Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems - ASPLOS '19.
ACM Press. https://doi.org/10.1145/3297858.3304013

[50] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, and et al. 2019. An
Open-Source Benchmark Suite for Microservices and Their Hardware-Software

https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/pricing/details/bandwidth/
https://azure.microsoft.com/en-us/pricing/details/bandwidth/
https://azure.microsoft.com/en-us/services/functions/
https://cloud.ibm.com/functions/
https://cloud.google.com/functions/
https://github.com/firecracker-microvm/firecracker
https://github.com/Benjamin-Lee/DNAvisualization.org
https://github.com/Benjamin-Lee/DNAvisualization.org
min.io
https://aws.amazon.com/api-gateway/pricing/
https://docs.aws.amazon.com/lambda/latest/dg/limits.html
https://docs.aws.amazon.com/lambda/latest/dg/limits.html
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://github.com/faas-benchmarking/faasdom
https://github.com/nuweba/faasbenchmark
https://cloud.google.com/functions/pricing
https://cloud.google.com/functions/pricing
https://cloud.google.com/functions/quotas
https://nuclio.io/
https://github.com/serverless/serverless
https://www.spec.org/benchmarks.html
https://www.spec.org/benchmarks.html
https://doi.org/10.1145/3267809.3267815
https://doi.org/10.1145/3267809.3267815
https://doi.org/10.1007/978-3-319-99819-0_11
https://doi.org/10.1007/978-3-319-99819-0_11
https://doi.org/10.1145/3361525.3361535
https://doi.org/10.1145/1594156.1594168
https://doi.org/10.1145/1594156.1594168
https://doi.org/10.1145/1167515.1167488
https://doi.org/10.1145/3357223.3362711
https://doi.org/10.1109/ucc-companion.2018.00053
https://doi.org/10.1109/ucc-companion.2018.00053
https://doi.org/10.1109/CLOUD.2018.00049
https://www.usenix.org/conference/atc19/presentation/fouladi
https://www.usenix.org/conference/atc19/presentation/fouladi
https://doi.org/10.1145/3297858.3304013

Middleware ’21, December 6–10, 2021, Québec city, QC, Canada Copik, et al.

Implications for Cloud & Edge Systems. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and
Operating Systems (Providence, RI, USA) (ASPLOS ’19). Association for Computing
Machinery, New York, NY, USA, 3–18. https://doi.org/10.1145/3297858.3304013

[51] Lukas Gianinazzi, Pavel Kalvoda, Alessandro De Palma, Maciej Besta, and Torsten
Hoefler. 2018. Communication-avoiding parallel minimum cuts and connected
components. In ACM SIGPLAN Notices, Vol. 53. ACM, 219–232.

[52] Oleksandr Grygorash, Yan Zhou, and Zach Jorgensen. 2006. Minimum spanning
tree based clustering algorithms. In 2006 18th IEEE International Conference on
Tools with Artificial Intelligence (ICTAI’06). IEEE, 73–81.

[53] Joseph M. Hellerstein, Jose M. Faleiro, Joseph E. Gonzalez, Johann Schleier-
Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. 2018. Serverless
Computing: One Step Forward, Two Steps Back. CoRR abs/1812.03651 (2018).
arXiv:1812.03651 http://arxiv.org/abs/1812.03651

[54] Torsten Hoefler and Roberto Belli. 2015. Scientific Benchmarking of Parallel
Computing Systems. ACM, 73:1–73:12. Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis
(SC15).

[55] Torsten Hoefler and Roberto Belli. 2015. Scientific benchmarking of parallel
computing systems: twelve ways to tell the masses when reporting performance
results. In Proceedings of the international conference for high performance com-
puting, networking, storage and analysis. 1–12.

[56] Torsten Hoefler and Roberto Belli. 2015. Scientific Benchmarking of Parallel
Computing Systems: Twelve Ways to Tell the Masses When Reporting Perfor-
mance Results. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (Austin, Texas) (SC ’15).
Association for Computing Machinery, New York, NY, USA, Article 73, 12 pages.
https://doi.org/10.1145/2807591.2807644

[57] T. Hoefler, T. Schneider, and A. Lumsdaine. 2008. Accurately measuring collective
operations at massive scale. In 2008 IEEE International Symposium on Parallel and
Distributed Processing. 1–8.

[58] Alexandru Iosup, Tim Hegeman, Wing Lung Ngai, Stijn Heldens, Arnau Prat-
Pérez, Thomas Manhardto, Hassan Chafio, Mihai Capotă, Narayanan Sundaram,
Michael Anderson, et al. 2016. LDBC Graphalytics: A benchmark for large-scale
graph analysis on parallel and distributed platforms. Proceedings of the VLDB
Endowment 9, 13 (2016), 1317–1328.

[59] V. Ishakian, V. Muthusamy, and A. Slominski. 2018. Serving Deep Learning
Models in a Serverless Platform. In 2018 IEEE International Conference on Cloud
Engineering (IC2E). 257–262. https://doi.org/10.1109/IC2E.2018.00052

[60] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-che Tsai, Anurag Khan-
delwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja Jayant Yad-
wadkar, Joseph E. Gonzalez, Raluca Ada Popa, Ion Stoica, and David A. Patterson.
2019. Cloud Programming Simplified: A Berkeley View on Serverless Computing.
CoRR abs/1902.03383 (2019). arXiv:1902.03383 http://arxiv.org/abs/1902.03383

[61] Eric Jonas, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht. 2017. Oc-
cupy the Cloud: Distributed Computing for the 99%. CoRR abs/1702.04024 (2017).
arXiv:1702.04024 http://arxiv.org/abs/1702.04024

[62] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan,
Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Profiling a Warehouse-
Scale Computer. SIGARCH Comput. Archit. News 43, 3S (June 2015), 158–169.
https://doi.org/10.1145/2872887.2750392

[63] N. Kaviani and M. Maximilien. 2018. CF Serverless: Attempts at a
Benchmark for Serverless Computing. https://docs.google.com/document/d/
1e7xTz1P9aPpb0CFZucAAI16Rzef7PWSPLN71pNDa5jg. Accessed: 2020-01-20.

[64] Jeongchul Kim and Kyungyong Lee. 2019. FunctionBench: A Suite of Workloads
for Serverless Cloud Function Service. In 2019 IEEE 12th International Conference
on Cloud Computing (CLOUD). IEEE. https://doi.org/10.1109/cloud.2019.00091

[65] Jeongchul Kim and Kyungyong Lee. 2019. Practical Cloud Workloads for Server-
less FaaS. In Proceedings of the ACM Symposium on Cloud Computing - SoCC '19.
ACM Press. https://doi.org/10.1145/3357223.3365439

[66] Ana Klimovic, Yawen Wang, Christos Kozyrakis, Patrick Stuedi, Jonas Pfefferle,
and Animesh Trivedi. 2018. Understanding Ephemeral Storage for Serverless
Analytics. In 2018 USENIX Annual Technical Conference (USENIX ATC 18). USENIX
Association, Boston, MA, 789–794. https://www.usenix.org/conference/atc18/
presentation/klimovic-serverless

[67] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle,
and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral Storage for Serverless
Analytics. In Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation (Carlsbad, CA, USA) (OSDI’18). USENIX Association,
USA, 427–444.

[68] Benjamin D Lee. 2018. Squiggle: a user-friendly two-dimensional DNA se-
quence visualization tool. Bioinformatics (sep 2018). https://doi.org/10.1093/
bioinformatics/bty807

[69] Benjamin D Lee, Michael A Timony, and Pablo Ruiz. 2019. DNAv-
isualization.org: a serverless web tool for DNA sequence visualiza-
tion. Nucleic Acids Research 47, W1 (06 2019), W20–W25. https:
//doi.org/10.1093/nar/gkz404 arXiv:https://academic.oup.com/nar/article-
pdf/47/W1/W20/28879727/gkz404.pdf

[70] Pedro García López, Marc Sánchez Artigas, Simon Shillaker, Peter R. Pietzuch,
David Breitgand, Gil Vernik, Pierre Sutra, Tristan Tarrant, and Ana Juan Ferrer.
2019. ServerMix: Tradeoffs and Challenges of Serverless Data Analytics. CoRR
abs/1907.11465 (2019). arXiv:1907.11465 http://arxiv.org/abs/1907.11465

[71] Andrew Lumsdaine, Douglas Gregor, Bruce Hendrickson, and Jonathan Berry.
2007. Challenges in parallel graph processing. Parallel Processing Letters 17, 01
(2007), 5–20.

[72] Pascal Maissen, Pascal Felber, Peter Kropf, and Valerio Schiavoni. 2020. FaaSdom.
Proceedings of the 14th ACM International Conference on Distributed and Event-
based Systems (Jul 2020). https://doi.org/10.1145/3401025.3401738

[73] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuenzer, Sumit
Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. 2017. My VM is Lighter
(and Safer) than Your Container. In Proceedings of the 26th Symposium on Oper-
ating Systems Principles (Shanghai, China) (SOSP ’17). Association for Comput-
ing Machinery, New York, NY, USA, 218–233. https://doi.org/10.1145/3132747.
3132763

[74] Johannes Manner, Martin EndreB, Tobias Heckel, and Guido Wirtz. 2018. Cold
Start Influencing Factors in Function as a Service. 2018 IEEE/ACM International
Conference on Utility and Cloud Computing Companion (UCC Companion) (2018),
181–188.

[75] Johannes Manner, Martin Endreß, Tobias Heckel, and Guido Wirtz. 2018. Cold
start influencing factors in function as a service. In 2018 IEEE/ACM International
Conference on Utility and Cloud Computing Companion (UCC Companion). IEEE,
181–188.

[76] Ingo Müller, Renato Marroquin, and Gustavo Alonso. 2019. Lambada: Interac-
tive Data Analytics on Cold Data using Serverless Cloud Infrastructure. ArXiv
abs/1912.00937 (2019).

[77] Richard C Murphy, Kyle B Wheeler, Brian W Barrett, and James A Ang. 2010.
Introducing the graph 500. Cray Users Group (CUG) 19 (2010), 45–74.

[78] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
pagerank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[79] Christos H Papadimitriou and Kenneth Steiglitz. 1998. Combinatorial optimization:
algorithms and complexity. Courier Corporation.

[80] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Cur-
ran Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[81] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling, Fast and Slow:
Scalable Analytics on Serverless Infrastructure. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19). USENIX Association,
Boston, MA, 193–206. https://www.usenix.org/conference/nsdi19/presentation/
pu

[82] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther
Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark
Charlebois, William Chou, Ramesh Chukka, Cody Coleman, Sam Davis, Pan
Deng, Greg Diamos, Jared Duke, Dave Fick, J. Scott Gardner, Itay Hubara, Sachin
Idgunji, Thomas B. Jablin, Jeff Jiao, Tom St. John, Pankaj Kanwar, David Lee,
Jeffery Liao, Anton Lokhmotov, Francisco Massa, Peng Meng, Paulius Micike-
vicius, Colin Osborne, Gennady Pekhimenko, Arun Tejusve Raghunath Rajan,
Dilip Sequeira, Ashish Sirasao, Fei Sun, Hanlin Tang, Michael Thomson, Frank
Wei, Ephrem Wu, Lingjie Xu, Koichi Yamada, Bing Yu, George Yuan, Aaron
Zhong, Peizhao Zhang, and Yuchen Zhou. 2019. MLPerf Inference Benchmark.
arXiv:1911.02549 [cs.LG]

[83] Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru Iosup, Khaled Ammar,
Renzo Angles, Walid Aref, Marcelo Arenas, Maciej Besta, Peter A Boncz, et al.
2020. The Future is Big Graphs! A Community View on Graph Processing
Systems. arXiv preprint arXiv:2012.06171 (2020).

[84] Hermann Schweizer, Maciej Besta, and Torsten Hoefler. 2015. Evaluating the
cost of atomic operations on modern architectures. In IEEE PACT. 445–456.

[85] Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. 2019. Architectural
Implications of Function-as-a-Service Computing. In Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture (Columbus, OH,
USA) (MICRO ’52). Association for Computing Machinery, New York, NY, USA,
1063–1075. https://doi.org/10.1145/3352460.3358296

[86] Vaishaal Shankar, Karl Krauth, Qifan Pu, Eric Jonas, Shivaram Venkataraman,
Ion Stoica, Benjamin Recht, and Jonathan Ragan-Kelley. 2018. numpywren:
serverless linear algebra. CoRR abs/1810.09679 (2018). arXiv:1810.09679 http:
//arxiv.org/abs/1810.09679

[87] Edgar Solomonik, Maciej Besta, Flavio Vella, and Torsten Hoefler. 2017. Scaling be-
tweenness centrality using communication-efficient sparse matrix multiplication.
In ACM/IEEE Supercomputing. 47.

https://doi.org/10.1145/3297858.3304013
https://arxiv.org/abs/1812.03651
http://arxiv.org/abs/1812.03651
https://doi.org/10.1145/2807591.2807644
https://doi.org/10.1109/IC2E.2018.00052
https://arxiv.org/abs/1902.03383
http://arxiv.org/abs/1902.03383
https://arxiv.org/abs/1702.04024
http://arxiv.org/abs/1702.04024
https://doi.org/10.1145/2872887.2750392
https://docs.google.com/document/d/1e7xTz1P9aPpb0CFZucAAI16Rzef7PWSPLN71pNDa5jg
https://docs.google.com/document/d/1e7xTz1P9aPpb0CFZucAAI16Rzef7PWSPLN71pNDa5jg
https://doi.org/10.1109/cloud.2019.00091
https://doi.org/10.1145/3357223.3365439
https://www.usenix.org/conference/atc18/presentation/klimovic-serverless
https://www.usenix.org/conference/atc18/presentation/klimovic-serverless
https://doi.org/10.1093/bioinformatics/bty807
https://doi.org/10.1093/bioinformatics/bty807
https://doi.org/10.1093/nar/gkz404
https://doi.org/10.1093/nar/gkz404
https://arxiv.org/abs/https://academic.oup.com/nar/article-pdf/47/W1/W20/28879727/gkz404.pdf
https://arxiv.org/abs/https://academic.oup.com/nar/article-pdf/47/W1/W20/28879727/gkz404.pdf
https://arxiv.org/abs/1907.11465
http://arxiv.org/abs/1907.11465
https://doi.org/10.1145/3401025.3401738
https://doi.org/10.1145/3132747.3132763
https://doi.org/10.1145/3132747.3132763
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.usenix.org/conference/nsdi19/presentation/pu
https://www.usenix.org/conference/nsdi19/presentation/pu
https://arxiv.org/abs/1911.02549
https://doi.org/10.1145/3352460.3358296
https://arxiv.org/abs/1810.09679
http://arxiv.org/abs/1810.09679
http://arxiv.org/abs/1810.09679

SeBS: A Serverless Benchmark Suite for Function-as-a-Service Computing Middleware ’21, December 6–10, 2021, Québec city, QC, Canada

[88] N. Somu, N. Daw, U. Bellur, and P. Kulkarni. 2020. PanOpticon: A Comprehensive
Benchmarking Tool for Serverless Applications. In 2020 International Conference
on COMmunication Systems NETworkS (COMSNETS). 144–151.

[89] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-Smith,
Joseph E. Gonzalez, JosephM. Hellerstein, and Alexey Tumanov. 2020. Cloudburst:
Stateful Functions-as-a-Service. Proc. VLDB Endow. 13, 12 (July 2020), 2438–2452.
https://doi.org/10.14778/3407790.3407836

[90] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. 2010. Collecting
Performance Data with PAPI-C. In Tools for High Performance Computing 2009,
Matthias S. Müller, Michael M. Resch, Alexander Schulz, and Wolfgang E. Nagel
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 157–173.

[91] Jóakim v. Kistowski, Jeremy A. Arnold, Karl Huppler, Klaus-Dieter Lange, John L.
Henning, and Paul Cao. 2015. How to Build a Benchmark. In Proceedings of
the 6th ACM/SPEC International Conference on Performance Engineering (Austin,
Texas, USA) (ICPE ’15). ACM, New York, NY, USA, 333–336. https://doi.org/10.
1145/2668930.2688819

[92] Erwin van Eyk, Alexandru Iosup, Cristina L. Abad, Johannes Grohmann, and
Simon Eismann. 2018. A SPEC RG Cloud Group's Vision on the Performance
Challenges of FaaS Cloud Architectures. In Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering - ICPE '18. ACM Press. https:
//doi.org/10.1145/3185768.3186308

[93] Jeffrey S Vetter, Ron Brightwell, Maya Gokhale, Pat McCormick, Rob Ross, John
Shalf, Katie Antypas, David Donofrio, Travis Humble, Catherine Schuman, et al.
2019. Extreme Heterogeneity 2018-Productive Computational Science in the Era of
Extreme Heterogeneity: Report for DOE ASCR Workshop on Extreme Heterogeneity.

Technical Report. Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United
States).

[94] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and Michael
Swift. 2018. Peeking behind the Curtains of Serverless Platforms. In Proceedings
of the 2018 USENIX Conference on Usenix Annual Technical Conference (Boston,
MA, USA) (USENIX ATC ’18). USENIX Association, USA, 133–145.

[95] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian Lu, Pingchao
Yang, Chenggang Qin, and Haibo Chen. 2020. Characterizing Serverless Platforms
with Serverlessbench. In Proceedings of the 11th ACM Symposium on Cloud Com-
puting (Virtual Event, USA) (SoCC ’20). Association for Computing Machinery,
New York, NY, USA, 30–44. https://doi.org/10.1145/3419111.3421280

[96] Miao Zhang, Yifei Zhu, Cong Zhang, and Jiangchuan Liu. 2019. Video Processing
with Serverless Computing: A Measurement Study. In Proceedings of the 29th
ACM Workshop on Network and Operating Systems Support for Digital Audio
and Video (Amherst, Massachusetts) (NOSSDAV ’19). Association for Computing
Machinery, New York, NY, USA, 61–66. https://doi.org/10.1145/3304112.3325608

[97] Wen Zhang, Vivian Fang, Aurojit Panda, and Scott Shenker. 2020. Kappa:
A Programming Framework for Serverless Computing. In Proceedings of the
11th ACM Symposium on Cloud Computing (Virtual Event, USA) (SoCC ’20).
Association for Computing Machinery, New York, NY, USA, 328–343. https:
//doi.org/10.1145/3419111.3421277

[98] Y. Zhu, D. Richins, M. Halpern, and V. J. Reddi. 2015. Microarchitectural im-
plications of event-driven server-side web applications. In 2015 48th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). 762–774.
https://doi.org/10.1145/2830772.2830792

https://doi.org/10.14778/3407790.3407836
https://doi.org/10.1145/2668930.2688819
https://doi.org/10.1145/2668930.2688819
https://doi.org/10.1145/3185768.3186308
https://doi.org/10.1145/3185768.3186308
https://doi.org/10.1145/3419111.3421280
https://doi.org/10.1145/3304112.3325608
https://doi.org/10.1145/3419111.3421277
https://doi.org/10.1145/3419111.3421277
https://doi.org/10.1145/2830772.2830792

	Abstract
	1 Introduction
	2 Platform Model
	3 Serverless Model Analysis
	3.1 Candidate applications
	3.2 FaaS model aspects
	3.3 FaaS platforms' limitations

	4 Benchmark Specification
	4.1 Benchmark Design Principles
	4.2 Applications

	5 Benchmark Implementation
	5.1 Application Metrics
	5.2 Implementation

	6 Evaluation
	6.1 Benchmark Characteristics
	6.2 Performance analysis
	6.3 Cost Analysis
	6.4 Invocation overhead analysis
	6.5 Container eviction model.

	7 Related Work
	8 Conclusions
	Acknowledgments
	References

