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Abstract Performance models are powerful tools allowing developers to under-
stand the behavior of their applications, and empower them to address performance
issues already during the design or prototyping phase. Unfortunately, the difficulties
of creating such models manually and the effort involved render performance
modeling a topic limited to a relatively small community of experts. This article
summarizes the results of the two projects Catwalk, which aimed to create tools
that automate key activities of the performance modeling process, and ExtraPeak,
which built upon the results of Catwalk and worked toward making this powerful
methodology more flexible, streamlined and easy to use. The sew projects both
provide accessible tools and methods that bring performance modeling to a wider
audience of HPC application developers. Since its outcome represents the final state
of the two projects, we expand to a greater extent on the results of ExtraPeak.

1 Introduction

High-performance computing (HPC) is a key technology of the twenty-first century.
Numerous application examples, ranging from the improved understanding of
matter to the discovery of new materials and from the study of biological processes
to the analysis of social networks, give evidence of its tremendous potential. Mastery
of this technology will decide not only on the economic competitiveness of a society
but will ultimately influence everything that depends on it, including the society’s
welfare and stability. Moreover, there is broad consensus that high-performance
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computing is indispensable to address major global challenges of humankind such
as climate change and energy consumption. However, the demand for computing
power needed to solve problems of such enormous complexity is almost insatiable.
In their effort to answer this demand, supercomputer vendors work alongside
computing centers to find good compromises between technical requirements, tight
procurement and energy budgets, and market forces that dictate the prices of key
components. The results are sophisticated architectures that combine unprecedented
numbers of processor cores into a single coherent system, leveraging commodity
parts or at least their designs to lower the costs where in agreement with design
objectives.

Exploiting the full power of HPC systems has always been hard and is becoming
even harder as the complexity and size of systems and applications continues to
grow. On the other hand, already today the savings potential in terms of energy and
CPU hours that application optimization can achieve is enormous [5]. As the number
of available cores increases at tremendous speed, reaping this potential is becoming
an economic and scientific obligation. For example, an exascale system with a power
consumption of 20 MW (very optimistic estimate) and 5000 h of operation per year
would—assuming an energy price of 0.1e per kWh—produce an energy bill of
10 Me per year.

Ever-growing application complexity across all domains, including but not lim-
ited to theoretical physics, fluid dynamics, or climate research, requires a continuous
focus on performance to productively use the large-scale machines that are being
procured. However, designing such large applications is a complex task demanding
foresight since they require large time investments in development and verification
and are therefore meant to be used for decades. Thus, it is important that the
applications be efficient and potential bottlenecks are identified early in their design
as well as throughout their whole life cycle. Continuous performance analysis
starting in early stages of the development process is therefore an indispensable
prerequisite to ensure early and sustained productivity.

Tuning an application means finding the sweet spot in its combined design
and configuration space. Unfortunately, the sheer size of this space renders its
exhaustive traversal via performance experiments prohibitive. In the absence of
alternatives, many developers still rely on experiments, trying only a small and not
necessarily representative subset of the available design and configuration options.
Because of their limited view, they more than often overlook valuable optimization
opportunities or miss latent performance limitations whose underlying trend they
did not capture.

Performance models, in contrast, allow the design space to be explored much
faster and much more thoroughly. Although often based on simplifying assump-
tions, they offer tremendous insight at the small cost of evaluating a formula.
A model can be easily used to balance important trade-offs and adjust design
parameters such that close to optimal performance is achieved. Such models
allow problems in applications to be detected early on, long before they manifest
themselves in production runs, and their severity to be determined when the cost of
eliminating the problems is comparably small. If the problem is discovered later,
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dependencies between its source and the rest of the code that have grown over
time can make remediation much harder. However, finding performance models
is both hard and time consuming, which is why many developers shy away from
it. Sometimes such models are simply built on inaccurate back-of-the-envelope
calculations, rough estimates, simple and manual spreadsheet calculations, or even
only developer intuition, which may be misleading.

An analytical performance model expresses the performance of an application
in terms of a purely analytical expression [20, 27, 31]. A target metric m (e.g.,
execution time, energy, or number of floating-point operations) is represented as
a function m = f (x1, . . . , xn) of one or more parameters xi (e.g., the number
of cores or the size of the input problem). To make statements about application
performance that can be relied on under changing conditions, it is usually not
enough to focus on any single parameter in isolation. The effect that one varying
parameter has on performance must be considered in the context of the variation of
other relevant parameters, including algorithm options, tuning parameters such as
tiling, or characteristics of the input data set. However, often it is not obvious which
parameters are truly performance-relevant and should be included. In general, the
decision whether to include a certain parameter or not has to trade off different
criteria. Models with fewer parameters are easier to generate and maintain and
provide more high-level insight, whereas models with more parameters can be
more accurate because they consider more effects. Abstract application performance
models with a reasonably small number of parameters can be designed and
maintained by application developers while a system model can only be provided by
system experts. Simpler models can be used as an interface to application developers
and algorithm designers, while more complex models can be used for detailed tuning
and projections. The task of modeling the performance of an application is rather
complex and time-consuming though. This is why—in spite of its potential—it is
rarely used in practice. However, with the help of automatic tools that support the
creation of accurate performance models, this powerful methodology could spread
across a much wider audience of HPC application developers.

This article summarizes the results of the Catwalk and ExtraPeak projects,
which set out to improve this situation. The main goal of Catwalk, the first of
the two projects, was to make performance modeling more attractive for a broader
audience of HPC application developers by providing a method to create insightful
performance models as automatically as possible, in a simple and intuitive way.
Given the success of Catwalk, the follow-up project ExtraPeak aimed to improve
upon the basic performance modeling method by allowing the models to include
more than one parameter, while preserving the speed and accuracy of the original
model generation process. Since ExtraPeak represents the more advanced state of
our research and the outcome of Catwalk is already summarized elsewhere [47],
we take the liberty of expanding mostly on the achievements of ExtraPeak.
The two projects are part of a wider pioneering effort to construct performance
models automatically in multiple application areas also beyond HPC, ranging from
enterprise systems [7] to databases [15] and software product lines [40].
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2 Overview of Contributions

Although we focus on the contributions of ExtraPeak, we start by offering a short
overview of Catwalk and its achievements, given that the former builds upon the
results of the latter. Figure 1 summarizes the accomplishments of both projects and
their relationship to each other. Results from Catwalk are shown in hatched boxes
while results from ExtraPeak are shown in solid boxes.

2.1 Catwalk

The most important goal of Catwalk was to provide an automated method for
constructing performance models. The focus was on the discovery of scalability
bugs, achieved by creating models describing the performance of different parts
of a program when scaled to larger processor configurations and demonstrated
using several realistic applications, including Sweep3D, MILC, and HOMME [10].
The method is the foundation of the performance modeling tool Extra-P, a major
outcome of Catwalk, which has been released under an open-source license. Extra-
P enabled numerous application case studies to showcase the type of insights
this analysis can provide, including UG4 [44], an unstructured-grid package, as
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Fig. 1 Main contributions overview. Contributions in boxes with darker shades and solid fill
represent work completed in the ExtraPeak project, whereas contributions in boxes with lighter
shade and hatched fill represent contribution from the Catwalk project
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well as several state-of-the-art MPI [37] and OpenMP implementations [24]. In
Catwalk, we also worked on approaches leveraging the performance-modeling
base method to allow new research avenues to be explored. The results include a
scalability test framework that combines performance modeling with expectations
to systematically validate the scalability of libraries [37], a tool that automatically
instruments applications to generate performance models at runtime [4], and a fully
static method to derive numbers of loop iterations from loops with affine loop
guards and transfer functions that can be used to limit the performance model search
space [22].

2.2 ExtraPeak

In ExtraPeak, we improved the basic modeling approach and expanded it to allow
the analysis of multiple parameters simultaneously, automating the search space
generation for models and even handling discontinuities in the model space. A
continuous goal in the development of our methods was to ensure flexibility and
ease of use. Our main accomplishments can be divided into three categories: new
features for and improvements of the base method, advanced methods building upon
it to explore new ways of expressing and understanding performance, and finally
case studies leveraging Extra-P to gain insights into the performance of specific
applications.

Base Methods The extensions of the base method cover both multiple model
parameters and a refined model search for a single parameter:

• We extended the basic approach to allow insightful modeling of any combination
of application execution parameters while using heuristics to decrease the time to
find the best models quickly without compromising their quality [11].

• We developed an algorithm to detect segmentation in a sequence of performance
measurements and estimate the point where the behavior changes, allowing
complex irregular behaviors to be modeled [23].

• We designed a new model-generation algorithm by which the search space is built
and automatically refined on demand relieving the user from the burden of search
space selection [34].

Advanced Methods The flexibility of Extra-P together with the width of models
it can express and the insight they offer make it easy to tailor it to advanced tasks
related to the exploration of multi-dimensional performance spaces:

• Task-based programming offers an elegant way to express units of computation
and the dependencies among them, making it easier to distribute the computa-
tional load evenly across multiple cores. We introduced an automated empirical
method for finding the isoefficiency function of a task-based program, binding
efficiency, core count, and the input size in one analytical expression. The insights
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gained via these expressions can be used to co-design programs and shared
system resources [38].

• In the co-design process, a fundamental aspect of the application requirements are
the rates at which the demands for different resources grow as a code is scaled
to a larger machine. We showed how automated performance modeling can be
used to quickly predict application requirements for varying scales and problem
sizes [12].

Case Studies In ExtraPeak, we continued the series of case studies started in
Catwalk, in which we confirm prior expectations or discover the existence of
previously unknown scalability bottlenecks—often in collaboration with other
research teams. Many of them were conducted when we extended our base methods
or developed advanced methods and are described in the work cited above. In
addition, we conducted further case studies with the sole aim of better understanding
the performance of their application targets:

• We helped validate the complexity of Relearn, a code that simulates structural
plasticity in the brain. Inspired by hierarchical methods for solving n-body
problems in particle physics, Relearn uses a scalable approximation algorithm
with the complexity O(n · log n), which can simulate the structural plasticity of
up to 109 neurons—four orders of magnitude more than the naïve O(n2) version
previously available [35].

• We investigated two implementations of the LLL lattice basis reduction algorithm
in the popular NTL and fplll libraries, which helps to assess the security of
lattice-based cryptographic schemes, to validate their complexity in practical
usage scenarios. This task reverses the perspective of classic HPC applications.
In the field of cryptography, high algorithmic complexity is a desirable trait that
characterizes the hardness of breaking certain security protocols [9].

• We performed an analysis of parallel sorting algorithms and further MPI imple-
mentations using the framework for continuous scalability validation previously
developed during the Catwalk project [39].

In the remainder of the article, we further describe the extensions of the base
method as well as the advanced methods building upon it. Since this article focuses
on advances in automatic performance modeling, we cover only case studies
conducted alongside these developments, but do not include more details on the
remaining ones listed above. For those, we refer the reader to the cited literature. The
overview of our technological contributions is followed by a summary of ongoing
developments in our project, a review of related approaches, and eventually a brief
conclusion. However, because it is fundamental to everything we did in ExtraPeak,
we first provide a short introduction to Extra-P, the tool whose development was
started in Catwalk.
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3 Extra-P

The key result of Catwalk has been a method to identify scalability bugs. A
scalability bug is a part of the program whose scaling behavior is unintentionally
poor, that is, much worse than expected. As computing hardware moves towards
exascale, developers need early feedback on the scalability of their software design
so that they can adapt it to the requirements of larger problem and machine sizes.
In addition to searching for performance bugs, the models our tool produces also
support projections that can be helpful when applying for the compute time needed
to solve the next larger class of problems. For a detailed description, the reader may
refer to Calotoiu et al. [10].

The usual input of our tool when used as a scalability bug detector is a set
of performance measurements on different processor counts {p1, . . . , pmax} in
the form of parallel profiles. As a rule of thumb, we use five or six different
configurations. The output of our tool is a list of program regions, ranked by their
predicted execution time at a chosen target scale or by their asymptotic execution
time. We call these regions kernels because they define the code granularity at which
we generate our models.

Model Generation When generating performance models, we exploit the obser-
vation that they are usually composed of a finite number n of predefined terms,
involving powers and logarithms of p:

f (p) =
n∑

k=1

ck · pik · logjk

2 (p). (1)

This representation is, of course, not exhaustive, but works in most practical
scenarios since it is a consequence of how most computer algorithms are designed.
We call it the performance model normal form (PMNF). Moreover, our experience
suggests that neither the sets I, J ⊂ Q from which the exponents ik and jk are
chosen nor the number of terms n have to be arbitrarily large or random to achieve
a good fit. Thus, instead of deriving the models through reasoning, we only need to
make reasonable choices for n, I , and J and then simply try all assignment options

one by one. For example, a default we often use is n = 3, I =
{

0
2 , 1

2 , 2
2 , 3

2 , 4
2 , 5

2 , 6
2

}
,

and J = {0, 1, 2}. A possible assignment of all ik and jk in a PMNF expression is
called a model hypothesis. Trying all hypotheses one by one means that for each
of them we find coefficients ck with optimal fit. Then we apply cross-validation to
select the hypothesis with the best fit across all candidates. As an alternative to the
number of processes p, our method can also support other model parameters such
as the size of the input problem or other algorithmic parameters—as long as we vary
only one parameter at a time.
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Our tool models only behaviors found in the training data. We provide direct
feedback information regarding the number of runs required to ensure statistical
significance of the modeling process itself, but there is no automatic way of
determining at what scale particular behaviors start manifesting themselves. This
version of our method is most effective for regular problems with repetitive
behavior, whereas irregular problems with strong and potentially non-deterministic
dynamic effects require enhancements which we detail in Sect. 4.2.

Open Source Release The Extra-P performance-modeling tool has been made
available online under an open-source license.1 Users have access not only to the
software but also to documentation material describing both our method and its
implementation.2 We have been actively supporting the use of Extra-P at several
organizations, among them the High Performance Computing Center Stuttgart, TU
Darmstadt, Lawrence Livermore National Laboratory, FZ Jülich, and the University
of Washington, just to name a few.

Figure 2 shows how the results of the model generator can be interactively
explored. The GUI annotates each call path with a performance model. The formula
represents a previously selected metric as a function of the number of processes,
and allows other parameters to be represented as well. The user can select one or
more call paths and plot their models on the right. In this way, the user can visually
compare the scalability of different application kernels.

The profiles needed as input for the model generator are created in a series of
performance experiments. To relieve the user from the burden of manually submit-
ting large numbers of jobs and collating their results, we use the Jülich Benchmark
Environment (JUBE) [26], a workflow manager developed at Forschungszentrum
Jülich.

The tool was presented at multiple tutorials at conferences such as EuroMPI and
Supercomputing, as well as at numerous VI-HPS and HKHLR tuning workshops.
Following a 90-min theoretical explanation of the method and the tool, users
were able to model the performance of two example applications, SWEEP3D and
BLAST, in a 90-min practical session. Using previously prepared measurement
data, they were able to generate models for the entire codes, evaluate the results,
and understand the scaling behavior of the two applications. With this knowledge,
attendees are able to apply Extra-P to their own applications, once the required
performance measurements have been gathered. Because Extra-P is compatible
with Score-P an established infrastructure for performance profiling, even collecting
these measurements is straightforward.

1http://www.scalasca.org/software/extra-p/download.html.
2http://www.scalasca.org/software/extra-p/documentation.html.

http://www.scalasca.org/software/extra-p/download.html
http://www.scalasca.org/software/extra-p/documentation.html
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4 Developments of the Base Methods

While the tool created during the Catwalk project is already widely used in the HPC
community and provides meaningful insights to developers seeking to understand
the performance of their codes, we have added significant new features during the
ExtraPeak project which we detail below, most important among them the ability to
model multiple parameters simultaneously.

4.1 Multi-Parameter Modeling

Common questions asked by developers when trying to understand the behavior of
applications are:

• How does application performance change when more processors are used?
• How does application performance change when the problem size is increased or

decreased?

When considering the pressure on applications to judiciously use computing
resources both questions must be answered, and a new vital question arises:

• Are the effects of processor variation and problem-size variation independent of
each other or can they amplify each other?

For example, a weak-scaling run of the kernel SweepSolver in Kripke [28], a
particle transport proxy application, has a runtime model for processor variation
of t (p) = O(p1/3) and a runtime model for varying the number of dimensions of
t (d) = O(d). The number of dimensions influences the problem size proportionally.
It now needs to be determined how these two factors play together. Depending on
their interaction, the application is scalable or not. For example, it would make a
huge difference whether the combined effect of processor variation and number of
dimensions was t (p, d) = O(p1/3 · d) or t (p, d) = O(p1/3 + d).

We expanded the original performance model normal form presented in Sect. 3
to include multiple parameters.

f (x1, . . . , xm) =
n∑

k=1

ck ·
m∏

l=1

x
ikl

l · log
jk l

2 (xl) (2)

This expanded normal form allows a number m of parameters to be combined in
each of the n terms that are summed up to form the model. Each term allows each
parameter xl to be represented through a combination of monomials and logarithms.
The sets I, J ⊂ Q from which the exponents ikl and jkl , respectively, are chosen
can be defined as in the one-parameter case.

Of course, if multiple parameters are considered, performance experiments have
to be conducted for all combinations of parameter values and the total number of
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experiments that is required grows accordingly. While this might be manageable
if the number of parameters considered is small enough and/or the cost of an
individual experiment is very small, another and more serious problem emerges
even for two and three parameters, namely the combinatorial explosion of the model
search space.

Therefore, multi-parameter modeling was outside the reach of automatic meth-
ods due to the exponential growth of the model search space. We developed a new
technique to traverse the search space rapidly and generate insightful performance
models that enable a wide range of uses from performance predictions for balanced
machine design to performance tuning. The details can be found in the work of
Calotoiu et al. [11], but we present the most important heuristics here, together with
a summary of the evaluation.

Hierarchical Search The idea is to first obtain single parameter models for each
individual parameter. Once we have these models, all that is left is to compare
all additive and multiplicative options of combining said models into one multi-
parameter model and to choose the one with the best fit.

The size of the search space for this approach is as follows, given m parameters
and one n-term model for each of them. We must combine all subsets of terms
of each single-parameter model with each subset of terms of each other single
parameter model. The number of subsets of a set of n elements is 2n, so the total
size of the search space is 2n·m.

Assuming there are three parameters, the single-parameter models for all of them
have been computed and each model has three terms (the worst case scenario for
search space cardinality in this case), the number of hypotheses that have to be
tested is 23∗3 = 512. Adding the 3 times 25 steps needed to generate the single-
parameter models, we will need to look at most at 587 models to find the best fit,
compared to the 6.51 · 1014 in the unoptimized approach.

Evaluation To evaluate the multi-parameter modeling approach we quantify the
speedup of the model search in comparison to an exhaustive traversal of the same
search space. Furthermore, we determine the frequency at which our heuristics lead
to models that differ from the ones the exhaustive search produces. In those cases
where the models we discover are different, we analyze these differences and discuss
their impact on the quality of the results. Because traversing the entire search space
for three or more parameters is prohibitively time consuming even with a very small
number of potential terms, we allow only at most two model parameters for the
purpose of this comparison.

The evaluation is divided into two parts. First, we examine how closely the
models generated both through exhaustive search and with the help of heuristics
resemble inputs derived from synthetically generated functions. This allows our
results to be compared with a known optimal model. Second, we compare the results
of both approaches, when applied to actual performance measurements of scientific
codes, which factors in the effects of run-to-run variation.
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Synthetic Data We generated 100,000 test functions by instantiating our normal
form from Eq. 1 with random coefficients. Our model generator responded in three
different ways:

1. Optimal models. The most common result (ca. 95%) is that the heuristically
determined model, the model determined through an exhaustive search, and the
known optimal model are identical.

2. Lead-order term and its coefficient identified, smaller term not modeled by either
method. In rare cases, neither modeling approach is capable of detecting the
smaller term and they both only model the lead-order term. The effect on the
quality of the resulting models is very small, and an attempt to model such small
influences will often lead to noise being modeled instead.

3. Lead-order term and its coefficient identified, smaller additive term only modeled
by exhaustive search. In this case the heuristic approach fails to identify the
parameter with a much smaller effect. The effect on the quality of the resulting
model is again negligible.

Table 1 displays the number of times the modeling identified the entire function
correctly and the times only the lead-order term was identified correctly. The lead-
order term was correctly identified in all test cases. The difference in time required to
obtain the 100,000 models is significant: 1.5 h when using the heuristics compared
to 107 h when trying out all models.

Application Measurements In addition to synthetic data, we evaluated our heuris-
tics with three scientific applications: Kripke, Cloverleaf, and BLAST. For BLAST
we used two qualitatively different solvers and will therefore present separate
results. Real data sets come with new challenges, such as not knowing the optimal
model, and indeed no guarantees that the assumptions required for our method
hold, namely that the optimal model is described by one and only one function
and that the function is part of the search space. Figure 3 shows the results of both
applying the heuristics and searching the entire solution space. As expected, in the
overwhelming majority of cases the two approaches provide the same result (84%),
or at least present the same lead-order term (14%). In about 2% of the cases the
models differ. The reason is that noise and outliers occurring in real data sets are
not limited to any arbitrary threshold compared to the effect of different parameters
on performance. The projection used by the heuristics to generate single-parameter

Table 1 Evaluation of heuristics using synthetic functions

Search type Heuristic Exhaustive

Optimal models identified 95,480 [95.5%] 96,120 [96.1%]
Lead-order term identified 4,520 [4.5%] 3880 [3.9%]
(including coefficient)
Lead-order term not identified 0 [0%] 0 [0%]

Modeling time 1.5 hrs. 107 hrs.
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Fig. 3 Comparison of performance models obtained for all kernels of scientific applications using
either our heuristics or a full traversal of the search space. For each application, we show the
percentage of times where the resulting models were identical (left bar), where only the lead-order
terms and their coefficients were the same (center bar), and where the lead-order terms were also
different (right bar)

models out of multi-dimensional data reduces noisy behavior to a higher degree than
the exhaustive search does. Therefore, in these rare cases, the heuristic approach
results in models with a slower growth rate than the ones identified through an
exhaustive search. The optimal model is not necessarily the one identified by the
exhaustive search, as noise could be modeled alongside the parameter effects.

In all three cases, the model generation for an entire application took only
seconds and was at least a hundred times faster than the exhaustive search.
Generating performance models for an entire application means one model per call
path and target metric. The search space reduction in all three cases was five orders
of magnitude (from 4,250,070 model hypotheses down to 66 per call path and target
metric).

Discussion The evaluation with synthetic and real data demonstrates that our
heuristics can offer results substantially faster than an exhaustive search—without
significant drawbacks in terms of result quality. For three or more parameters, the
size of the search space would have prevented such a comparison altogether, which
also means that the exhaustive search presents no viable alternative beyond two
parameters.

4.2 Segmented Modeling

Although our method is very powerful it struggles with the situation where perfor-
mance data representing two or more different phenomena need to be combined
into a single performance model, effectively being a function composed of multiple
segments. This not only generates an inaccurate model for the given data, but can
also either fail to point out existing scalability issues or create the appearance of
such issues when none are present.
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We have developed an algorithm to help Extra-P detect segmentation in the data
before models are generated. Its input is a set of performance measurements, while
the output indicates whether the given measurements show segmented behavior or
not. If the data turns out to be segmented, the algorithm tries to identify the change
point. With this information, Extra-P can generate separate models for each segment
and/or request new measurements if any segment is too small for model generation.
For more information, we refer the reader to Ilyas et al. [23].

Our method correctly identified segmentation in more than 80% of 5.2 million
synthetic tests and confirmed expected segmentation in three application case
studies. The results of this evaluation show that the proposed algorithm can be
used as an effective way to find segmentation in performance data when creating
empirical performance models. The suggested algorithm does not require any extra
effort on the user’s side, and can work very well on as few as six points.

4.3 Iterative Search Space Refinement

While Extra-P strives to be easy to use and provide meaningful insights even to
users without an extensive background in performance modeling, the version we
developed in the Catwalk project still required the manual pre-configuration of the
search space. This adds a layer of complexity to the modeling process, and requires
the user to have an idea of what type of models can be expected from his application.
Should the search space not include a model found in the code, the method will
still try to approximate by selecting the one best fitting the data from the set of
options available, but the result will be less accurate. Furthermore, noise in the
data often leads to models that indicate a worse behavior than there actually is as
sometimes a model in the search space fits not only the behavior we are trying to
capture but also the noise, leading to overfitting. We have developed a new iterative
model-generation approach, where we configure the search space on demand and
iteratively raise the accuracy of the model until no meaningful improvement can be
made. In this way, we increase both the ease of use for Extra-P and its range of
application without sacrificing accuracy. For details, we refer the reader to the work
by Reisert et al. [34]. In the following we show a summary of the results, showing
the improvements that the new approach provides.

We used measurements from previous case studies to evaluate our new algorithm
on measured data. The measurements include a variety of call paths (i.e., kernels)
and different metrics, such as runtime, number of function calls, memory footprint,
and network traffic.

The results of the comparison, which are presented in Table 2, show that, when
the last (i.e., largest) measured data point is excluded from the data used to calculate
the model, the model produced by our new algorithm allows for a better prediction
of the last point in 19–65% of the cases, which corresponds to 53–85% of those
models that changed in each benchmark. Although some predictions do get worse,
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Table 2 Comparison of the original and our improved algorithm, using data from previous case
studies, showing the quality of predictions of the last data point when that point is not used for
modeling

Benchmark Number of
points

Model
count

Model predictions (percent-
age of all models)

Mean relative predic-
tion error [%]

better same worse before now

Sweep3D [11] 7 96 26.04 56.25 17.71 17.26 6.31
HOMME [11] 9 670 18.81 68.51 12.69 3.69 3.03
MILC [11] 9 1496 30.95 56.48 12.57 36.71 14.53
UG4 [44] 5 2026 52.62 38.01 9.38 68.30 15.58
MPI collect. [38] 7–8 26 65.38 7.69 26.92 52.53 15.89
BLAST [9] 5 103 31.07 41.75 27.18 34.92 10.38
Kripke [9] 5 36 36.11 38.89 25.00 33.05 8.32

Total 5–9 4453 39.12 49.11 11.77 45.71 12.97

the mean relative prediction error decreases across all applications, in all but one
case even significantly.

Not shown in the table is the number of models that are constant, which has
considerably increased in every single case study (from 44 to 76% overall). Because
the synthetic evaluation has shown that our new algorithm is able to recognize
constant functions more reliably, this indicates that the previous algorithm might
have modeled noise or tried to fit a PMNF function to inaccurate measurements.

With iterative refinement we remove the need for a predefined search space and
also significantly reduce the number of false positives by being more resilient to
noisy measurements of constant behavior. Most of the models generated with this
new algorithm are able to make predictions that are equally or even more accurate
than before. We therefore open the way for a performance modeling workflow that
is more automated than ever and equips developers with a tool that helps them
efficiently understand the performance of their applications.

5 Developments of the Advanced Methods

Extra-P is at its core a tool to generate a human-readable function out of a set
of inputs. The flexibility it offers and the features we added over time made it
attractive for uses beyond identifying performance bugs in parallel applications.
Some approaches, such as the compilation and modeling framework by Bhat-
tacharyya et al. [4], were developed during the Catwalk project. The scalability
framework [37] was also developed during the Catwalk project, but we have further
refined and expanded it during the ExtraPeak project, and also tested a number
of parallel sorting algorithms using this framework [39]. Two research directions
newly investigated during the ExtraPeak project are requirements engineering and
iso-efficiency modeling, and are discussed below.
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5.1 Lightweight Requirements Engineering

Co-designing applications and the system is a powerful technique to ensure early
and sustained productivity as well as good system design, especially in high-
performance computing where the cost of systems is very high and applications
are expected to remain in use for long periods of time. In their early phases, such
co-designs often rest on back-of-the-envelope (BOE) calculations. In general, such
calculations allow problems in applications to be detected early on and their severity
to be determined years before the machine is installed or the first prototype becomes
available. This is increasingly important since mitigating such problems can often
take several personyears. On the system side, BOE calculations allow designers
to adjust system parameters to target applications, for example, they can be used
to determine the required bytes-to-flop ratio of memory, network, or even the file
system. In addition, they can be used to determine required memory sizes, usability
of accelerators and co-processors, and even the number of sockets and size of
shared-memory domains in the target system.

We automate these BOE calculations in a lightweight requirements analy-
sis for scalable parallel applications. We introduce a minimal set of hardware-
independent application-centric requirements that cover the most significant aspects
of application behavior. Combining performance profiling [1, 8] and stack-distance
sampling [3] with a lightweight automatic performance-modeling method [10, 11],
we generate empirical models of these requirements that allow projections for
different numbers of processes and problem sizes.

As the foundation of our approach, we define a very simple notion of require-
ments that supports their quantification in terms of the amount of data to be stored,
processed, or transferred by an application. Knowing these numbers alone does not
target a precise prediction of application runtime but can serve as an indicator of
the relative importance of certain system resources and how this ratio changes as we
scale a program to a larger system. Ultimately, our requirements are expressed in the
form of empirical models that allow projections for different numbers of processes
and problem sizes.

Application-Centric Requirements We choose requirements to be purely appli-
cation centric, that is, we do not make any assumption about the hardware other
than the ability to run the code as is. Hence, all our requirement metrics refer to
data flow at the interface between hard- and software—not between lower layers of
the hardware. While specific hardware features could improve the rate at which the
requirements are fulfilled, the classes of behavior our requirement models capture
will not change. For example, even if revolutionary hardware features double
the speed at which floating-point computations are performed, if the number of
floating-point computations that need to be performed grows quadratically with the
number or processes, while all other requirements remain constant, the floating-
point requirement will remain the bottleneck for that particular application as it
scales up.
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Table 3 Requirement metrics

Resource Metric
Memory footprint # Bytes used (resident memory size)
Computation # Floating-point operations (#FLOP)
Network communication # Bytes sent / received
Memory access # Loads / stores; stack distance

Since it is currently the predominant programming model and also expected to be
highly influential in the future, we stipulate that of each target application an MPI
version exists. Application requirements are then expressed as a set of functions
r(p, n) that predict the demand for resource r depending on the number of processes
p and the problem size per process n. Because we regard thread-level concurrency
merely as a way to satisfy the requirements, we consider requirements not below the
granularity of processes, which may nevertheless be multithreaded—either locally
or by launching GPU kernels.

Currently, we consider the requirement metrics listed in Table 3, classified
by the resource they refer to. I/O would be handled analogously to the network
communication requirement. None of our analyzed applications includes significant
I/O traffic, we therefore refrain from including I/O metrics in this analysis. Our
metrics characterize application requirements in terms of space (i.e., memory
consumption) and “data metabolism” (i.e., bytes processed in floating-point units or
exchanged via memory and network). Because the amount of data moved between
processor and memory subsystem alone is barely a reliable indicator of the pressure
an application exerts on the memory subsystem, we also consider memory access
locality.

Co-design The key point of our method is to guide the programmer to find
application bottlenecks relative to an architecture as well as to guide the architect to
find system bottlenecks that a given application would experience. Our requirements
models are functions of the number of MPI processes p and the input problem size
n. To compare the requirements of an application on two different architectures,
all we need to do is to calculate the application requirements using the values for
p and n the application would use on these two systems. For details regarding
the collection of requirement metrics and more detailed case-studies we refer the
readers to Calotoiu et al. [12]. In the following we wish to present a brief example
for the types of insights requirements modeling offers.

LULESH is a widely studied proxy application in DOE co-design efforts
for exascale which calculates simplified 3D Lagrangian hydrodynamics on an
unstructured mesh. The problem size per process is defined as the simulated volume
per process. The growth rates of all requirements with respect to both problem
size and process count are very close to ideal. With the current implementation,
the multiplicative effect process count and problem size per process have on
computation and communication for LULESH is a small obstacle in tailoring and
scaling the application to run on different systems. The growth rates are slow enough
to limit these issues at anything except the most extreme scales. Having introduced



470 A. Calotoiu et al.

Table 4 Per-process requirements models

the per process requirement models, we can now showcase the workflow to evaluate
a possible system upgrade taking account of these requirements. Let us consider the
scenario where LULESH is working on a given system, but needs to be deployed to
a larger system of the same type, for example one having twice the number or racks.

The requirements of LULESH are listed at the top of the table as part of Step I.
Following this process, we can now draw conclusions regarding system utilization,
requirements balance, and usefulness of a particular upgrade. The ratios between
new and old problem sizes indicate how the largest problem size that can be solved
changes, both per process and overall. The ratios between new and old requirements
indicate which system components will experience an increased load relative to
other components (Table 4).

The requirements of LULESH can be expressed as the product of single-
parameter functions that either depend the problem size per process or the number
of processes. When doubling the racks, only the value of p changes, and in
this particular case, all terms depending on n can be reduced when determining
the ratios of the changing requirements. This means that these ratios are valid
regardless of the problem size per process. This will not generally be true as it
depends on the specific relative upgrade. That the number of processes affects
computation and communication means that these requirements increase slightly.
Luckily, computation and communication only increase by 20% and will therefore
allow LULESH to solve an overall problem twice as large with only a small
performance degradation.

Discussion The workflow we propose leverages these models to enable system
designers and application developers to ponder various upgrade and design options.
We characterize performance in terms of relative requirement changes—from one
system or one application to another. This pattern indeed matches the common case,
where an initial version of an application running on an initial system already exists.
And even if no such system exists, our approach can successfully help compare
design options. The main advantage of our approach in relation to architecture-
specific performance models, which are traditionally hard and laborious to produce
with high accuracy, however, is the small effort on the one hand and the low
complexity of the models on the other, facilitating quick insights at low cost—easily
at the scale of an entire compute-center workload (Table 5).
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Table 5 Workflow for determining the requirements of LULESH after doubling the number of
racks
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5.2 Configuring and Understanding the Performance of
Task-Based Applications

Task-based programming models, such as Cilk [6] or OpenMP [32], are well known
and as the number of cores per node continues to increase, they gain more and
more attention. One major advantage of task-based programming is that it allows
parallelism to be expressed in terms of tasks, which are units of computation that
can be either independent, dependent on a previous task, or a prerequisite to a
subsequent task. Explicitly expressing parts of the code as tasks allows the compiler
to take care of all the thread management intricacies, thereby sparing the user from
tedious low-level details.

However, ensuring that that the problem to be solved is large enough to require
a certain number of tasks is a difficult problem, and requires extensive analysis.
The efficiency of the program will decrease as more processing elements are added.
The only way to ensure that efficiency remains constant, as the number of cores
increases, is to increase the input size as well. This concept is embodied in the iso-
efficiency relation [17], which binds the number of processing elements (PEs) the
application uses to the input size. It specifies by which factor the input size has to
increase, with respect to the increase in the number of PEs, to maintain constant
efficiency. Isoefficiency can be generalized to a two-parameter efficiency function
that provides efficiency values as a function of both the PE count and the input size.

Although isoefficiency analysis is useful in understanding the scalability behav-
ior of algorithms, it is not straightforward to apply and requires deep knowledge
of the algorithm. In practice, however, task-based algorithms experience hardware
limitations in the form of resource contention in general and memory contention
in particular. Resources such as cache and memory controllers are limited and
can negatively impact application scalability [46]. These might render theoretical
isoefficiency functions not accurate enough to be used in practice. To be able to
make informed decisions as to how big the input size should be in order to use all of
the allocated cores efficiently, the user not only has to have a realistic isoefficiency
model but also needs to understand the severity of resource contention at higher
scales.

We proposed a novel practical method to automatically model the empirical effi-
ciency functions of task-based applications [38]. Modeling the efficiency function
allows us to easily derive an isoefficiency relation for any realistic target efficiency,
and a carefully designed framework allows replays with different contention
assumptions.

In our approach we identified three different efficiency functions for a task-based
application:

1. Eac(p, n): The actual efficiency function of the application, modeled after the
empirical results of runtime benchmarks. In this case the application runs as it is
and experiences contention. Therefore, this function reflects realistic application
performance including resource contention and scheduling overhead.
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2. Ecf (p, n): The contention-free efficiency function, modeled after the results of
replaying empty task skeletons according to the application’s task dependency
graphs. The replay uses the same task dependency graphs and scheduling policy
as in the original runs that were benchmarked to produce Eac(p, n). Since
the replay is free of resource contention, this efficiency function reflects an
ideal situation in which the application does not experience resource contention
caused by threads accessing the same resource simultaneously.

3. Eub(p, n): An upper bound on the efficiency of the application. Since efficiency

is defined as Sp(n)

p
, an upper bound on the speedup also limits the efficiency.

Considering the average parallelism π(n) for a problem size n, we determined
that Sp(n) ≤ min{p, π(n)}, thus we define Eub(p, n) = min{1,

π(n)
p

}. This
function describes an ideal situation of maximum speedup that is hardly
achievable in practice.

Beyond simply uncovering fundamental scalability limitations in an algorithm,
we can provide insights into the impact of resource contention and determine what
input size is required for any given degree of parallelism to reach a given efficiency.
Further questions that our approach can answer are: What is the required core count
for a given input size such that we maintain a constant, given efficiency? Which
efficiency can we expect for a given number of cores and input size? Both questions
are related to the co-design process when hardware designers have to understand
how to make future systems suitable for both existing and future applications.
Details regarding the approach and the framework required can be found in the
work by Shudler et al. [38].

For an idea of the type of insights we provide, we show the summary of results
for a number of task-based benchmark applications. Table 6 presents the efficiency
models of the evaluated applications. There are 3 rows for each application
listing the three efficiency models that we created (i.e., Eub(p, n), Eac(p, n), and
Ecf (p, n)). In all the models the logarithms are binary. The rRMSE column is the
relative root-mean-square error. It is a standard statistical factor that measures the
relative differences between the observed data and the model, and is defined as:

rRMSE = σ/ȳ, where: σ =
√∑n

i=1(f (xi) − yi)2/n, yi are observed data, and ȳ is
the mean of the yi values. The last column shows the input size n, derived from our
models by letting the efficiency E be 0.8 and the core count p be 60.

All of the Eac(p, n) and Ecf (p, n) models follow the same pattern C−A·f (p)+
B ·f (p)g(n) that empirically emerged from our measurements. The interpretation of
this pattern is that the first term, the constant C, is approximately 1 and it denotes the
maximum attainable efficiency. The second term, −A·f (p), reflects the reduction in
efficiency that occurs when we increase the core count. The last term, B ·f (p)g(n),
denotes the efficiency that we gain when we increase the input size. Together these
terms reflect the interplay between the core count and the input size, and the effect it
has on the efficiency. In the case of FFT, the constant B in the last term of Eac(p, n)

is very small, which means that resource contention is a very significant factor
and even large increases of the input size are not enough to offset the drop in the
efficiency.
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Table 6 Efficiency models of the evaluated applications

By analyzing the discrepancies between these efficiency functions, we are able to
provide answers to questions regarding co-design aspects, the connection between
poor scaling and resource contention, optimization potential, and the presence of
scalability bugs.

Discussion Our approach is viable for analyzing both the effects of resource
contention on efficiency and further optimization potential. It provides users with
an insight into whether the obstacle to scaling is resource contention or insufficient
parallelism in the structure of the task dependency graph. In addition, users can also
calculate the required input sizes to keep efficiency constant on a given core count.
This approach can be used in co-design analysis to understand how many processing
elements to put in a future machine, such that we can have high efficiency with
realistic application input.

6 Ongoing Work

While Extra-P is already a powerful and versatile tool, we believe there are still some
areas where we can improve and streamline our approach even more. Our efforts
are currently focused on methods that would make it easier to consider multiple
parameters in the performance modeling process. In the following, we briefly
discuss two promising and so far unpublished approaches, one aiming to reduce
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the number of inputs the modeling algorithm requires to generate accurate multi-
parameter models, and another targeting the use of compile-time information to
identify relevant parameters and formulate expectations regarding their interaction,
further reducing the need for measurements while improving the quality of the
resulting models.

6.1 Reducing the Cost of Measurements with Sparse Modeling

We have shown how useful the performance models we generate can be to
developers, but even though the modeling is done cheaply and automatically, we still
require a series of small-scale experiments in order to start the process. Therefore,
the experiment design determines the quality of the model as well as the overall cost
of the modeling process. The current state of the art requires at least five different
values for each parameter, and measurements with all possible combinations of
values for all parameters considered. Therefore, an exponential number of samples
is needed, namely 5n if n parameters are being modeled. For specific applications
this makes it impractical to even create performance models. We are working
on a novel parameter sampling approach that utilizes reinforcement learning, and
leverages a sparse modeling technique, which only needs a polynomial number of
samples and allows a more flexible experiment design.

We have made the observation that Extra-P assumes that there is one and only
one behavior with respect to each parameter across the entire measured space. If
this is true, the same function terms describing the effect of a given parameter
should be identified no matter which sequence of five measurements is considered
as long as the effect of all other parameters are kept constant. Rather than requiring
all combinations of all values for each parameter, it could be sufficient to select
a sequence of five measurements for each parameter to create single-parameter
models, but a thorough analysis is required to ensure that lowering the number
and cost of measurements is not detrimental to the quality of the results. When
considering the interaction of parameters a new challenge arises: the binary decision
of whether effect of any parameter pair is additive or multiplicative cannot be
made with only a sequence of five measurements for each parameter. At least one
additional data point is required, one that is not part of those sequences. In our
evaluation, the addition of this one additional point improves the number of correctly
identified models from 81.1 to 99.9%, while more data points only marginally
improved the results.

Figure 4 shows a set of measurements that is usually sufficient to correctly
identify two-parameter performance models. Of course, any of the columns and
rows could be used to generate the performance model. The question as to how to
select which rows and columns to measure as well as which additional points to
consider such that the best models can be generated with the smallest cost is still
open. While selecting the combination with the smallest cost is appealing, we must
quantify how the quality of the models degrades compared to other strategies. For
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Fig. 4 Example set of performance measurements for a two-parameter analysis. The filled circles
represent a subset that is likely to be sufficient to create a performance model

this purpose, we leverage reinforcement learning to compare and evaluate different
strategies.

Using this approach on some of our existing case studies shows very promising
preliminary results: we were able to reduce the average modeling costs by up to 93%
while maintaining 99% of the model accuracy. We are currently in the process of
analyzing the limits of this approach and trying to define if there are any conditions
required for it to be successful, or if it is a valid solution for most applications.

6.2 Taint Analysis for Many-Parameter Modeling

The current workflow of Extra-P follows three major steps: parameter identification,
designing a set of experiments to measure the influence of changes in the parameters
of interest, and estimating the best model from the provided data. A lot of work in
Catwalk and ExtraPeak focused on automating and improving the third step in this
process, leaving the user to still identify parameters of interest and choose which
values to give these parameters for the subsequent measurements that will serve as
input to Extra-P.

We are prototyping a tool called perf-taint to alleviate this issue. Perf-taint is
an LLVM-based hybrid program analysis integrated with Extra-P that will supply
program information to the modeling process. We use taint analysis [14], a computer
security technique which reliably relates marked input values with the program parts
they potentially affect to determine which parameters influence the performance
critical control-flow in the program and detects functions that are constant with
respect to selected performance parameters.

We have preliminary results using two benchmarks: LULESH and su3_rmd from
the MILC suite. In LULESH, we consider three parameters and prune 303 out
of 347 functions. In su3_rmd, we consider four parameters and prune 364 out of
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621 functions. The instrumentation overhead is decreased 45 times in the case of
LULESH compared to a full instrumentation. While these massive improvements
in runtime overhead are likely specific to object-oriented C++ applications, the
quality of the resulting models is increased across all our experiments. We hope this
approach will allow better models to be generated with even less effort even for
large, complex applications where the importance of individual parameters is not
necessarily well understood.

7 Related Work

Performance analysis and prediction of real-world application workloads is most
important in high-performance computing. Performance tools such as Score-P [1]
allow the programmer to observe the performance of real-world applications at
impressive scales but are often limited to observations of the current configuration
and do not provide insight into their behavior when being scaled further.

Such insights can be obtained with the help of analytical performance models,
which have a long history. Early manual models showed to be very effective in
describing application performance characteristics [27] and understanding complex
behaviors [33]. Hoefler et al. established a simple six-step process to guide the
(manual) creation of analytical performance models [21]. The resulting models
lead to interesting insights into application behavior at scale and on unknown
systems [2]. The six-step process formed the blueprint of our own approach.

Various automated performance modeling methods exist. Tools such as
PALM [43] use extensive and detailed per-function measurements to build structural
performance models of applications. The creation of structural models is also
supported by dedicated languages such as Aspen [42]. These methods are powerful
but require the prior manual annotation of the source code.

Hammer et al. combine static source-code analysis with cache-access simulations
to create ECM and roofline models of steady-state loop kernels [19]. While their
approach uses hardware information gathered on the target machine, it does not
actually run the code but relies on static information instead. Lo et al. create
roofline models for entire applications automatically and attempt to identify the
optimal configuration to run an application on a given system [29]. Extra-P, in
contrast, identifies scalability bugs in individual parts of an application rather than
determining the optimal runtime configuration on a particular system.

Vuduc et al. propose a method of selecting the best implementation for a given
algorithm by automatically generating a large number of candidates for a selected
kernel and then choosing the one offering the best performance according to the
results of an empirical search [45]. Our approach generates performance models for
all kernels in a given application to channel the optimization efforts to where they
will be most effective. Zaparanakus et al. analyze and group loops and repetitions
in applications towards automatically creating performance profiles for sequential
algorithms [49]. Goldsmith et al. use clustering and linear regression analysis to
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derive performance model coefficients from empirical measurements [16]. This
approach requires the user to define either a linear or power law expectation for the
performance model unlike the greater freedom offered by the performance model
normal form defined in our approach. Jayakumar et al. predict runtimes of entire
applications automatically using machine-learning approaches [25].

Zhai, Chen, and Zheng extrapolate single-node performance of applications with
a known regular structure to complex parallel machines via simulation [50], but
require the entire memory that would be needed at the target scale to correctly
extrapolate performance. Wu and Müller [48] showed how to predict the communi-
cation behavior of stencil codes at larger scales by extrapolating their traces. While
still requiring an SPMD-style parallel execution paradigm, Extra-P has proven to
work with general OpenMP or MPI codes beyond pure stencil codes.

Carrington et al. introduced a model-based performance prediction framework
for applications on different computers [13]. Marin and Mellor-Crummey utilize
semi-automatically derived performance models to predict performance on different
architectures [30]. Siegmund et al. analyze the interaction of different configuration
options and model how this affects the performance of an application as a whole
rather than looking at its individual components [18, 41].

Reducing the burden of collecting the measurements required for the empirical
learning process is a research effort in its own right. Sarkar et al. [36] suggest
a powerful sampling approach which can be used if all features of interest are
boolean. Another approach for sampling highly configurable systems with boolean
configuration options by Zhang et al. [51] suggests using the Fourier transform
to select the best samples. However, these methods cannot be directly adapted to
our use case: the features modeled by Extra-P are allowed a much wider range
of expression. They can be not just boolean, but functions with polynomial and
logarithmic terms.

8 Conclusion

In the Catwalk project, we initially set out to prove that automated performance
modeling is feasible and that automatically generated models are accurate enough
to identify scalability bugs. We started by showing that in those cases where
hand-crafted models existed in the literature our models are competitive. Our
interaction with many different users from different fields taught us that approximate
models are acceptable as long as the effort to create them is low and they do not
mislead. Furthermore, being able to produce many performance models cheaply
helps drastically improve code coverage, which is as important as model accuracy.
Having approximate models for all parts of the code can be more useful than having
a model with 100% accuracy for just a tiny portion of the code or no model at all.

Finally, after the public release of the Extra-P software and numerous tutorials
where Extra-P was introduced, we have seen growing interest from HPC application
developers—whether for immediate use or in incorporating Extra-P in their own
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research. The continuous development of Extra-P during the ExtraPeak project
was partly driven by feature requests from the users themselves, and while the
collaboration uncovered many challenges, the results invariably proved useful
beyond the problem they were specifically developed to solve: The capability of
modeling the impact of multiple parameters simultaneously paved the way for
complex approaches such as using application-centric requirements in the co-design
process or determining the iso-efficiency of task-based parallel applications. We
confidently claim that Extra-P is a powerful tool capable of providing insightful
performance information for most developers while requiring only a modicum of
experience in performance analysis and few resources.
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