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Abstract

Recent advances in the technology of transmission electron microscopy have allowed for
a more precise visualization of materials and physical processes, such as metal oxidation.
Nevertheless, the quality of information is limited by the damage caused by an electron
beam, movement of the specimen or other environmental factors. A novel registration
method has been proposed to remove those limitations by acquiring a series of low dose
microscopy frames and performing a computational registration on them to understand
and visualize the sample. This process can be represented as a prefix sum with a complex
and computationally intensive binary operator and a parallelization is necessary to enable
processing long series of microscopy images. With our parallelization scheme, the time
of registration of results from ten seconds of microscopy acquisition has been decreased
from almost thirteen hours to less than seven minutes on 512 Intel IvyBridge cores.
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List of symbols and abbrevations

Image Registration

A The registration function for two neighboring frames

B The registration function for two non-neighboring frames

NCC[f, g] The normalized cross–correlation of images f and g

φi,j Deformation matching image fj to fi

fi Image with index i

Parallel prefix sum

SP The measured speedup of an algorithm, defined as a ratio of serial and
parallel exeuction time

P Total number of allocated process cores

S(N,P ) Span, length of critical path of an algorithm for input data of length N
and P workers

SP (N,P ) The theoretical speedup of an algorithm, defined as a ratio of serial and
parallel span

TP Execution time of a parallel execution

TS Execution time of a serial execution

W (N,P ) An amount of work performed by an algorithm for input data of length
N and P workers
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Chapter 1

Introduction

Modern electron microscopes allow an observation of specimens at a nanometer resolu-
tion. Recent advances in the technology of scanning transmission electron microscopy
(STEM) allowed for a more precise visualization of materials and physical processes such
as metal oxidation. Nevertheless, the quality of information obtained during the acqui-
sition is limited by the damage caused by an electron beam, movement of the specimen
or other environmental factors. Restricting the electron dose to avoid the damage re-
sults in obtaining data with an undesirably low signal–to–noise ratio. Image processing
algorithms have been successively applied to extract reliable information from a noisy
electron microscopy data.
Berkels et.al.[1] have proposed a new approach to increase the amount of information
gathered by observation with STEM. Instead of using a single high–dose frame, a series
of low–dose noisy frames f0, f1, . . . , fn is acquired. The quality of frames is affected not
only by the noise but also by the movement of observed object during the acquisition.
Therefore, frames are aligned to the first image f0 to represent only the physical change
of the observed object and not the movement of the specimen.
The information encoded in images is extracted in a two–step series registration method.
First, for each pair of neighboring images (fi, fi+1) an image deformation φi,i+1 is ap-
proximated such that fi ≈ fi+1 ◦ φi,i+1. The process of finding a good estimation for
φi,i+1 is based on a multilevel gradient flow minimizing a normalized cross–correlation
between fi and fi+1 ◦ φi,i+1. A composition of two deformations φi,j and φj,k with a
common center j can be used as a starting to point for registration of frame fk to fi.
A recursive application of this procedure allows aligning each frame fi to the first one
f0. An example of the process is presented on Figure 1.1. A series of deformed images
fi ◦ φ0,i is averaged to produce a single frame representing the observed object.
The theoretical background of the new method and a formal statement of the problem
is introduced in the the Chapter 2. The process of image registration is computationally
intensive. As a matter of fact, the convergence of a gradient flow on three levels 8, 9
and 10, usually takes a few seconds. In our experiments, a serial registration of 4096
frames requires almost 13 hours of computation. Since each second of data acquisition
generates 400 frames, the registration algorithm becomes impractical for an acquisition
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f0 f1 f2 f3 f4
φ0,1 φ1,2 φ2,3 φ3,4

φ0,2

φ0,3

φ0,4

Figure 1.1: An example of series registration for images f0, f1, . . . , f4.

running longer than a few dozen seconds. This problem becomes even more apparent in
applications such as the series averaging procedure, where the registration algorithm is
repeated many times to improve the quality of averaged frame. The computation time
could be reduced by manipulating algorithm parameters to perform fewer iterations, but
this raises the likelihood of gradient flow finding a local minimum which decreases the
quality of results. In this dissertation, we discuss another approach to speed up the
registration procedure which is to employ parallel computing techniques.

In the Chapter 3, we prove that the image registration process can be represented as
a prefix sum. The prefix sum, also known as scan or cumulative sum, accepts a sequence
of input data x0, x1, . . . , xn with a binary operator � and for each element xi, computes
a sum of all preceding elements and the selected item, such as

xi = x0 � x1 � · · · � xi

Parallelization strategies for a prefix sums have been researched for decades to construct
fast and efficient prefix adders, a class of digital circuits performing binary addition.
In the parallel programming, the scan primitive has been proposed as a basic block for
building parallel applications. Therefore, we intend to use the parallel prefix sum as a
basis for parallelization strategy of the image registration problem.

However, properties of the image registration process are entirely different from prefix
sum problems discussed in the literature. Previous work is focused on parallelization
strategies for memory–bound operators where the cost of accessing and moving data
is significantly higher than an application of the operator. Furthermore, the iterative
nature of registration does not allow to predict a total cost of computation, and we have
observed huge variances in execution time between different pairs of frames. We have
not found any examples of a parallel scan with an operator of unpredictable runtime.
Thus, we construct new guidelines for an efficient parallelization and reevaluate existing
strategies.
For an arbitrarily long series of data acquisition, we need a distributed implementation
of a parallel prefix sum. We derive a general strategy which attempts to minimize the
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synchronization between workers. The distributed approach for a parallel prefix sum is
discussed in the Chapter 4.

We implemented the general strategy for a parallel distributed prefix sum as an
extension of QuocMesh[45], a library for Finite Elements computations on Cartesian
grids developed at the Institute for Numerical Simulation at the University of Bonn. The
strategy has been applied to the image registration process, and a comparative evaluation
of different algorithms is presented in Chapter 5. Our results prove that we cannot solve
a fixed size problem efficiently on an arbitrary number of processors. However, we can
use more hardware to register longer series without a significant increase in the execution
time. Further improvements are provided by parallelization of the registration algorithm.

Finally, we present conclusions and suggestions for future work in Chapter 6.

9



Chapter 2

Image registration

In this chapter, we introduce the problem of image registration for series of frames.
We use names image and frame interchangeably for a single item of data acquired
by an electron microscope. Furthermore, we use terms transformation and deformation
interchangeably for a function defining the deformation of an image. Definitions provided
here are based on those given by Modersitzki in [2][3].

2.1 Problem statement

An image is a function which assigns a gray value to each position in the region of
interest, as defined below

Definition 2.1.1. Image A d–dimensional image is a function f

f : Ω −→ R (2.1)

where Ω ∈ Rd is a region of interest and d ∈ N. Img(d) is a set of all d–dimensional
images.

In this chapter, we introduce methods for registration of two–dimensional images
where d = 2. We denote two particular kinds of image: R known as the reference and
T known as the template image. In the image registration problem, we want to find
the transformation φ : Rd −→ Rd of T such that the deformed image is aligned to the
reference image and

T ◦ φ ≈ R (2.2)

For the sake of simplicity, we restrict ourselves to rigid transformations in the descrip-
tion, but techniques described below allow to approximate both rigid and non–rigid
deformations. A rigid deformation is defined as follows

Definition 2.1.2. Rigid transformation A transformation is called rigid when only
rotation and translation are allowed. A rigid transformation is represented by the equa-
tion

φ(x) = R(α) · x+G (2.3)
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where R(α) ∈ Rd×d is an orthogonal matrix and G ∈ Rd.

The name refers to a movement of a rigid body which can not be deformed through
a shear, scaling or any other non–affine transformation. In the two–dimensional case,
the deformation is given by a translation vector b of length two and a single rotation
angle α. Then the transformation shall take the form

φ(x) =

(
cosα − sinα
sinα cosα

)
·
(
x0

x1

)
+

(
t0
t1

)
(2.4)

In practice, however, it is usually impossible to obtain a deformation providing an ideal
match for images. Therefore, a proper metric has to be defined to estimate the similarity
between images and serve the role of an objective functional in the minimization process.
We intend to find a transformation such that given a metric, the distance between a
reference R and a transformed template T ◦ φ is minimal. Finally, we define the image
registration problem

Definition 2.1.3. Image registration problem Given a metric M :−→ R and two
images R, T , find a transformation φ such that

M(R, φ ◦ T ) (2.5)

is minimized.

An example of a trivial transformation is presented in Figure 2.1. For both images,
Ω = [0, 1]2. In the image f1, the rectangle has been translated but not rotated. We
intend to find a deformation φ0,1 such that

f1 ◦ φ0,1 = f0

∀x ∈ Ω f1(φ0,1(x)) = f0(x)

To find a transformation, we observe that no shift is performed on vertical axis and we
solve for the lower–left corner of the rectangle (0.25, 0.25) and (0.5, 0.25)

f0(x) = f1(φ0,1(x))

f0(x) = f1(x+G)

f0((0.25, 0.25)T ) = f1((0.25, 0.25)T + (g0, 0)T )

⇐⇒
(0.5, 0.25) = (0.25, 0.25)T + (g0, 0)T

G = (0.25, 0)T

Thus, the transformation does not deform the template image f1 to match f0. This oper-
ation would require a translation vector −G. The deformation is applied to coordinates
before computing an image value at given position. φ represents a geometrical change
from frame f0 to f1, not the other way around. With both images representing ex-
actly the same object, the transformation encodes a correspondence between coordinate
systems of two images.
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f0
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3
4

1
4

3
4

f1

1
2

1
4

3
4

φ ◦ f1

Figure 2.1: An example of two images containing a rectangle of size (0.5, 0.5), located in
the center of image f0 and on right side of image f1. Deformation φ produces an ideal
match of f1 to f0.

2.2 Electron microscopy data

For the image registration, we consider data from an experiment where ultrahigh vacuum
high–resolution transmission electron microscopy (UVH HRTEM) has been applied to
capture the process of aluminum oxidation[4]. The images have been acquired at the rate
of 400 frames per second, and each experiment has lasted for up to 4 minutes, producing
up to 96,000 frames. The quality of images is lowered by sample drift, a movement of the
aluminum sample between taking consecutive frames, and the presence of low–contrast
frames.

An example of an electron microscopy image is presented on Figure 2.2. The reg-
ular structure on the left represents an atomic grid of aluminum. The approximated
deformation for this pair of images is

φ(x) =

(
0.99 −4.18 · 10−4

4.18 · 10−4 0.99

)
·
(
x0

x1

)
+

(
−4.53 · 10−4

−0.004909

)
(2.6)

A key feature of these pictures is a very low variability between two images with neighbor
indices, presented in Figures 2.2a and 2.2b. It is clearly seen in the deformation, the
estimated angle of rotation is approximately equal 4.18 ·10−4 radians and the translation
on the horizontal axis is insignificant as well. Not surprisingly, it is a hard task to notice
a change in the deformed frame presented on Figure 2.2c. A magnification of the upper-
left corner of this frame is presented on Figure 2.2d. There, a movement of the frame
along the vertical axis can be spotted.
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(a) Frame 25 (b) Frame 26

(c) Deformed frame 26 (d) An upper–left corner of deformed frame 26

Figure 2.2: The first two figures of the top row present frames 25 and 26, respectively,
from twentieth–first second of first minute of the acquisition. The registration has been
performed and the two figures of the bottom row depict the deformed frame 26 and a
magnification of an upper–left corner of this frame. The movement of frame is visible
on the last image.

2.3 Image registration for electron microscopy

This section provides a brief description of the selected method for image registration.
This technique has been proposed for electron microscopy images by Berkels et al. in
[1]. For more details on the method, please refer to the mentioned paper or to [5].
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We begin the description with a definition of selected metric. The mean value of an
image f̄ is defined as

f̄ =
1

|Ω|

∫
Ω
fdx (2.7)

And the standard deviation is defined as follows

σf =

√
1

|Ω|

∫
Ω

(f − f̄)2dx (2.8)

The normalized cross–correlation of reference R and template T is given as

NCC[R, T ] =
1

|Ω|

∫
Ω

R− R̄
σR

T − T̄
σT

dx (2.9)

The value of a normalized cross–correlation is bounded from below by −1 and from
above by 1. Obviously, for a perfect transformation NCC[R, φ ◦T ] = 1. This function is
combined with a regularization term consisting of Dirichlet energy of the displacement
φ(x)− x to form the objective functional for the optimization process

E[φ] = −NCC[R, φ ◦ T ] + λ · 1

2

∫
Ω
‖D(φ(x)− x)‖2dx (2.10)

The additional term, controlled by a regularization parameter λ > 0, has been intro-
duced because of an ill–posedness of the problem. This function is characterized by a
presence of multiple local minima which make finding a unique solution a very non–
trivial problem. A key requirement for well–posedness of a problem is an existence of
a unique solution, and the additional regularization is expected to make the problem
well–posed by leading to a more convex functional with a single minimum[3]. As we are
going to see later, it is usually not the case, and the computed deformation may vary
not only between different starting points for the minimization but also among various
implementations of the same algorithm.

The proposed approach for minimization of the functional is a hybrid one, based on
a combination of a multilevel scheme with a gradient flow minimization process. The
multilevel process and the gradient flow with its spatial discretization are introduced in
the following sections.

2.3.1 Multilevel

The idea of a multilevel algorithm comes from multigrid[6], a major technique developed
for solving partial differential equations. There, a scheme consisting of multiple grids is
used to reduce high–frequency errors by applying a smoother at a fine grid and iteratively
solving the problem on coarser grids. Each step down to a coarser grid requires restricting
the residual, solving problem there and prolongating the solution to a finer grid.
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A multilevel scheme applies those concepts in image registration to minimize the
likelihood of a gradient solver stopping at local minima. The minimization process
operates on grid levels m0,m0 + 1, . . . ,m1 and m0 < m1. For each level l, a grid of size
2l × 2l or (2l + 1)× (2l + 1) is created. For this implementation, we focus on the latter.
A coarser grid Gl of size (2l + 1) × (2l + 1) is extended with a new node between each
pair of nodes. The new finer grid Gl+1 has (2l+1 + 1)× (2l+1 + 1) nodes. An example is
presented in Figure 2.3.
The prolongation operator I2l

l is responsible for copying values from a coarser grid to
corresponding nodes in the finer grid and for computing a bilinear interpolation for each
new node, as defined below

I2l
l f(x, y) =



1
4(f(x, y − l) + f(x, y + l) for x mod 2 = 0

+f(x− l, y) + f(x+ l, y)) ∧ y mod 2 = 0
1
2(f(x− l, y) + f(x+ l, y)) for x mod 2 = 0
1
2(f(x, y − l) + f(x, y + l)) for y mod 2 = 0

f(x, y) otherwise

(2.11)

Since the direction is from a coarse to fine grid, there is no procedure of going back to
the starting level like in the V–cycle in multigrid. However, the restriction operator is
required in the initialization to represent images and the initial guess of deformation on
the coarse grid. This operation is performed by a scaled average of neighbors around
the coarse node and a stencil representation of this operator is

1

16

1 2 1
2 4 2
1 2 1

 (2.12)

On coarser levels, fewer features of an image are preserved which eradicates local min-
ima created by small structures in the image. Furthermore, the multigrid strategy has
been known as an efficient iterative solver because of less computationally intensive
computations on coarse levels.

2.3.2 Gradient flow

A gradient flow solver is a generalization of the gradient descent. The idea behind this
optimization technique is the same - moving in the direction of the negative gradient -
but the gradient is computed with respect to a scalar product G. The update is defined
as an ordinary differential equation

∂φ

∂t
= −gradGE[φ] (2.13)

The scalar product G is selected in a way to help the minimization process avoid local
minima. It has been shown that this ordinary differential equation can be reformulated
as

∂φ

∂t
= −A−1E′[φ] (2.14)
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G1 G2

Prolongation Il
2l

Restriction I2l
l

Figure 2.3: An example of a coarse grid G1 and a finer grid G3. On a fine grid, nodes
copied from a coarse grid are depicted as black, and new nodes are white. For each new
node, arrows depict nodes contributing to the bilinear interpolation I l2l. Dashed and
solid frames symbolize the restriction process. On the finer grid, a frame identifies nodes
to which the stencil operator I2l

l is applied. The result of a restriction is stored in a
node indicated by a corresponding frame on the coarse grid.

E′ refers to the first variation of the functional E i.e. the generalization of the first deriva-
tive of a function of one variable to functionals. The other component A−1 is selected
to smooth the functional. The smoother is applied only in the non–rigid registration.
The equation is discretized in both spatial and time domain. For the latter, a forward
Euler scheme is applied

∂φ

∂t
=
φk+1 − φk

τ
(2.15)

Where τ is a step size and φk is an approximation of deformation from k-th iteration.
The discrete form of equation 2.14 is obtained

φk+1 = φk − τA−1E′[φk] (2.16)

The step size is selected to ensure the convergence and make the update process more
efficient by choosing in each iteration the largest τ still guaranteeing a decrease of energy.
For this problem, an Armijo rule with widening is applied to the energy function of a
new deformation E(φk+1)

Φ(τ) = E[φk − τA−1E′[φk]] (2.17)

A τ value is selected such that all conditions below are satisfied for 0 < σ < 1{
Φ(τ)−Φ(0)

Φ′(τ)τ > σ

τ ≤ τmax
(2.18)
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This ensures that the decay of energy Φ is at least σ times larger than the expected
decrease in energy, given by the derivative Φ′. In the implementation employed for this
problem, σ = 0.5.

2.3.3 Spatial discretization

The image domain Ω is mapped into a uniform rectangular mesh i.e. a mesh consisting
of M equal nodes Ni in shape of a rectangle. Then, a canonical basis needs to be
constructed. For this problem, piecewise bilinear have been selected as basis functions
ϕi. The image function f expressed in the nodal basis is presented in the next equation

f =
M∑
j=1

fjϕj (2.19)

An FE discretization allows introducing the mass matrix M to discretize the integration
over domain Ω

Mi,j =

∫
Ω
ϕiϕjdx (2.20)

As a result, a new equation for a mean of an image can be derived

f̄ =
1

Ω

∫
Ω
fdx

=
M∑
i=1

M∑
j=1

∫
Ω
fiϕiϕjdx

= MF1

(2.21)

where F denotes a vector representation of f in the nodal basis and 1 is a vector of ones.
Furthermore, the standard deviation becomes

σf =

√
1

|Ω|

∫
Ω

(f − f̄)2dx

=
√
M(F − F̄ )2

(2.22)

And the normalized cross–correlation can be formulated as

NCC[R, T ] =
1

|Ω|

∫
Ω

R− R̄
σR

T − T̄
σT

dx

= MR̃T̃
(2.23)

where R̃ and T̃ are FE representations of normalized reference and template images.

17



2.3.4 Summary

Algorithm 1 Multilevel gradient flow for image registration.

1: for i from m1 − 1 to m0 step -1 do . Initialize coarse grids
2: Ri ← restriction(Ri+1)
3: T i ← restriction(T i+1)
4: φi ← restriction(φi+1) . Only for a non–rigid deformations
5: end for
6: for i from m0 to m1 do
7: φi ← solve(Ri, T i, φi) . Gradient flow
8: if i < m1 then . Prolongate deformation to a finer grid
9: φi+1 ← prolongate(φi) . Only for a non–rigid deformations

10: end if
11: end for

The method is summarized on Algorithm 1. The deformation φi is prolongated and
restricted only in the non–rigid case. A rigid transformation consists only of three pa-
rameters, and it does not depend on grid size.
Given relatively low differences between two consecutive frames, setting an identity trans-
formation as the initial guess should not prevent the algorithm from finding a decent
solution. Multilevel start and end levels are selected by the user, and they provide a firm
boundary on the outer loop. On the other hand, the inner loop requires proper stopping
criteria. We employ two criteria:

� convergence ε
stop the computation if a difference in energy E[φk+1]− E[φk] is less than the ε

� maximum number of iterations
perform at most iter max iterations

In the following chapters, we refer to an implementation of this technique as the func-
tion A. It accepts two images with subsequent indices, fi and fi+1, and the initial guess
for deformation φ0 with a default value of this parameter equal to an identity trans-
formation Iφ. The function applies the proposed algorithm to estimate a deformation
φi,i+1

∀i ∈ N φi,i+1 = A(fi, fi+1, φ0 = Iφ) (2.24)

2.4 Registration for series of images

The previous section introduced a multilevel gradient flow for registration of two con-
secutive frames. However , we operate on a sequence of n + 1 images f0, f1, . . . , fn.
Therefore, a strategy for registration of series of frames is necessary.
Given deformation φ0,1 which estimates f1◦φ0,1 ≈ f0, and deformation φ1,2 providing an
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approximation f2 ◦ φ1,2 ≈ f1, we can safely assume that a composition of deformations
φ1,2 ◦ φ0,1 is a decent guess of deformation registering f0 and f2, since

f2 ◦ (φ1,2 ◦ φ0,1) = (f2 ◦ φ1,2) ◦ φ0,1

≈ f1 ◦ φ0,1

≈ f0

(2.25)

Thus, we can approximate the deformation for two non–consecutive frames by using a
specific initial guess. We reuse the function A defined in the previous section to define
a new function B such that

∀i, k ∈ N, |k − i| > 1 ∀j ∈ N, i < j < k φi,k = B(φi,j , φj,k)

= A(fi, fk, φj,k ◦ φi,j)
(2.26)

In particular, if we iterate consecutively from the first image

∀i ∈ N, i > 1 φ0,i = B(φ0,i−1, φi−1,i) (2.27)

The algorithm (2.27) is depicted in Figure 2.4. A series of aligned images may be

f0 f1 f2 f3 f4 f5 f6 f7
φ0,1 φ1,2 φ2,3 φ3,4 φ4,5 φ5,6 φ6,7

φ0,2

φ0,3

φ0,4

φ0,5
φ0,6

φ0,7

Figure 2.4: An image registration process for a series of frames. For an image fi, the
partial result from its predecessor φ0,i−1 is combined with a neighbor deformation φi−1,i

to register the image to the reference frame f0.

averaged to obtain a single image storing all information acquired in the experiment.
Later, the series averaging procedure may be used to obtain results of a better quality
by performing multiple iterations of the algorithm (2.27). For details, please refer to [1].

We formally define the problem as consisting of two steps - a preprocessing stage
to generate neighbor transformations and the general registration for non–consecutive
frames. In next sections, we refer to the second stage as the image registration problem.

Definition 2.4.1. Image series registration Given a sequence of images f0, f1, . . . , fn,
perform a preprocessing step to register each pair of frames

φi,i+1 = A(fi, fi+1, Iφ)

and the series registration step to align each image fi to the reference f0.

19



2.5 A note on the associativity

The standard iterative algorithm outlined in the previous section would require three
applications of function B

φ0,2 = B(φ0,1, φ1,2)

φ0,3 = B(φ0,2, φ2,3)

φ0,4 = B(φ0,3, φ3,4)

(2.28)

It is not the only way of computing φ0,4. The process can be split between two processors
computing independently φ0,2 and φ2,4. Then, results are merged to estimate φ0,4

φ0,2 = B(φ0,1, φ1,2)

φ2,4 = B(φ2,3, φ3,4)

φ0,4 = B(φ0,2, φ2,4)

(2.29)

The first strategy (2.28) returns such deformation

φ0,4(x) =

(
0.999 1.074 · 10−5

−1.074 · 10−5 0.999

)(
x0

x1

)
+

(
4.743 · 10−4

3.431 · 10−3

)
(2.30)

The alternative approach (2.29) produces a result φ′0,4 which is clearly different from the
previous one

φ′0,4(x) =

(
0.999 −1.424 · 10−4

1.424 · 10−4 0.999

)(
x0

x1

)
+

(
5.158 · 10−4

4.325 · 10−3

)
(2.31)

Deformed images have been verified to represent images indistinguishable by a human
operator. For further analysis, we compare these deformations by computing energy
along a line going through both solutions. We evaluate the energy functional for different
deformations

E[tφ0,4 + (1− t)φ′0,4] (2.32)

Obviously, for t = 0 we have E[φ′0,4] and for t = 1 the computed functional is E[φ0,4].
The function is plotted against different values of t in Figure 2.5. In the second case, the
gradient solver has not been able to reach φ0,4 because it got stuck at a local minimum
φ′0,4. An important conclusion here is that the difference between deformations is small
enough to not have any impact on the image. Thus, we consider two solutions to be
identical if the difference between them appears only at the sub–pixel level. We formally
define it by introducing the concept of approximate associativity, a weaker form of the
associativity

Definition 2.5.1. Approximate associativity A binary operation � defined on a set
S is called approximately associative if

∀a, b, c ∈ S (a� b)� c ≈ a� (b� c) (2.33)

where ≈ defines two objects as equal if they are indistinguishable in the context of the
operation represented by � i.e. they represent the same final result.
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Thus, changing the order of operations during evaluation may affect the exact repre-
sentation of the result. Obviously, each associative operator is approximately associative
at the same time. We conclude this chapter with a final remark.

Remark 2.5.1. Function B is approximately associative.

−1 −0.5 0 0.5 1 1.5 2
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φ′
0,4
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t

E
[t
φ
0
,4
+
(1

−
t)
φ
′ 0
,4
]

The evaluation of energy functional in neighborhood of φ0,4 and φ′
0,4

Figure 2.5: An evaluation of the energy function along a line passing through φ0,4 and
φ′0,4. Both solutions appear to be a local minimum and the problem is ill–posed.
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Chapter 3

Prefix sum

In this chapter, we introduce the prefix sum and discuss parallelization strategies known
from the literature. We use names prefix sum and scan interchangeably.

3.1 Introduction

A prefix sum is an operation accepting a sequence of elements and generating a new
sequence of partial sums. The operation has been described under many names in
literature, including names such as inclusive prefix sum, scan, cumulative sum. The
definition is as follows:

Definition 3.1.1. Prefix sum A prefix sum operation applies a binary approximately
associative operator � to a sequence (xi)

x1, x2, x3, . . . , xn−1

generating a new sequence (yi)

y1 = x1

y2 = x1 � x2

y3 = x1 � x2 � x3

. . .

yn−1 = x1 � x2 � · · · � xn−1 = �n−1
i=1 xi

Our definition differs from the one commonly used in the literature in that we permit
approximately associative operators. With such operator, the result may be affected by
changes in the order of operator evaluations, but it is guaranteed to be correct. This
extension is required to treat the image registration problem as a prefix sum.
We use the notation �n−1

i=1 to describe an iterative application of the binary operator �
and x1,n−1 to denote the product of such application. The definition above presents an
inclusive prefix sum where each new element with index i is a sum of first i elements
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of input sequence. In an alternative approach, the new i-th value is a sum of first i− 1
input values. The i-th value is excluded, therefore this approach is known as an exclusive
prefix sum. The method is also known under a name prescan.

Definition 3.1.2. Exclusive prefix sum An exclusive prefix sum operation applies a
binary approximately associative operator �, with an identity element I�, to a sequence
(xi)

x1, x2, x3, . . . , xn−1

generating a new sequence (yi)

y1 = I�

y2 = x1

y3 = x1 � x2

. . .

yn−1 = x1 � x2 � · · · � xn−2 = �n−2
i=1 xi

Inclusive and exclusive prefix sums are closely connected with each other. After all,
for an input sequence of length n, n − 1 output elements are exactly the same in both
scans, only placed in different positions. Obtaining an exclusive result from an inclusive
prefix sum is trivial because all necessary values are already computed, and it is sufficient
to shift results by one position to the right and place the identity element I� on the very
first position. On the other hand, computing an inclusive prefix sum from an exclusive
one may require additional computation. Results are shifted by one position to the left,
and the binary operator is applied to yn−2 and xn−1 to compute the last reduction value
yn−1. In some algorithms, such as Blelloch parallel prefix sum described in section 3.3.1,
this step is unnecessary because the full reduction has already been computed.

The scan algorithm has been originally proposed for APL programming language[7].
Prefix sum is a natural representation for a binary addition of two numbers in digital
circuits[8] and a significant progress have been achieved to improve the performance and
internal design of arithmetical circuits known as parallel prefix adders. Modern parallel
prefix algorithms are usually based on circuit design research.
The parallel prefix sum has been described as a common pattern and fundamental build-
ing block in parallel applications[9][10]. It has been found to be helpful and useful
for implementation and parallelization of multiple computer science problems with se-
rial dependencies, including, but not limited to, polynomial evaluation, various sorting
algorithms, solving recurrence equations, graph and tree algorithms[11][12][13]. The
usefulness of prefix sum has motivated a proposal of scan vector model for parallel com-
putations, where prefix sums are given as a unit time primitive[14].

A proof for the importance of this algorithm is the prevalence of various implementa-
tions of the prefix sum in major programming languages. C++ Standard Template Li-
brary[15] includes a sequential implementation of an inclusive prefix sum std::partial

sum. The order of summation is explicitly defined by the standard and associativity
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of a binary operator is not required. The most recent update of standard1[16] pro-
vides several overloads of std::inclusive scan and std::exclusive scan, both se-
quential and parallel via appropriate execution policies. Associativity of the binary
operator is required, otherwise the behavior is nondeterministic. A similar set of over-
loads std::transform inclusive scan and std::transform exclusive scan trans-
forms input range with an unary operator before a prefix sum is computed. Other
parallel implementations are provided with an inclusive scan and exclusive scan in
OpenCL-based Boost.Compute[46] and and CUDA-based Thrust[17], a multithreaded
implementation in Intel TBB[18] and a distributed implementation of MPI Scan and
MPI Exscan[19].
The prefix sum has been generalized to perform independently multiple scans on seg-
ments, disjoint subsequences of input data, therefore this operation is known as a seg-
mented prefix sum[14]. An additional input is required to distinguish how segments are
located in the input sequence (xi). It could be a bit sequence of the same length as
input data for prefix sum, indicating where new segment starts, or a shorter sequence of
integers containing lengths of consecutive segments. We provide a formal definition for
the former case.

Definition 3.1.3. Segmented prefix sum A segmented prefix sum operation takes as
an input two sequences of the same length, a data sequence (xi) and a flag sequence of
bits (bi), and applies a binary approximately associative operator �, generating a new
sequence (yi)

y1 = x1

y2 = (y1 ⊗ b2)� x2

. . .

yn−1 = (yn−2 ⊗ bi−1)� xn−1

where binary operator ⊗ is defined as follows

x⊗ b =

{
I�, if b = 1.

x, otherwise.

Segmented prefix sum has been found useful in parallelization of the quicksort algo-
rithm[14]. An example of an implementation is MPI Scan which computes k independent
prefix sums for input array of length k.
A further variation of this technique is known as multiprefix[20]. There, multiple exclu-
sive scans are computed for data represented by pairs (k, a), where k is a key encoding in
which subsequence is the value a located. Segments are required to be neither contiguous
nor disjoint. The multiprefix operation can be performed with work–efficient algorithm
of O(

√
n) span[21].

1At the time of writing, C++17 was feature-complete but an official ISO standard has not been
published.
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3.2 Prefix sum for registration problem

In the previous chapter, we have defined the process of applying distinct operators A
and B to register a sequence of images. In this chapter, we focus on the second phase
of the process where neighbor deformations are processed to align all images to the first
one. The initial application of function A to images can be performed independently
and it is not relevant to the analysis.
A short investigation of the approach reveals a striking similarity between registration
process and prefix sum. Indeed, for any final deformation φ0,i we observe

φ0,i = B(φ0,i−1, φi−1,i)

= B(B(φ0,i−2, φi−2,i−1), φi−1,i)

= B(B(B(. . . ), φi−2,i−1), φi−1,i)

= φ0,1 �B φ1,2 �B · · · �B φi−2,i−1

(3.1)

where binary operator �B is defined as follows

φi,j �B φj,k = B(φi,j , φj,k) (3.2)

The new operator inherits approximate associativity from function B and by the defini-
tion 3.1.1, we prove that the problem (3.1) may be represented in terms of a prefix sum.
A stronger formulation of prefix sum with a regular associativity would not allow using
function B as an operator for prefix sum. This result allows to express the parallelization
of image registration as a parallelization of prefix sum, and the parallel prefix pattern
has been found to be applicable in yet another problem.

3.3 Parallel prefix sum

Upon initial inspection, the inevitable sequential nature of prefix sum is a bad indicator
for finding an efficient parallelization strategy. Undoubtedly, in this case, it is not pos-
sible to achieve a perfect linear scaling, but several decades of research have produced
numerous procedures with varying efficiency.
Below we describe distinct approaches for parallelization of prefix sum. A lot of recent
work has been done on researching and optimizing different algorithms for SIMD archi-
tectures such as GPGPU[22][23][24]. New, hybrid strategies have been developed to fit
their execution model[25][26]. Design goals and improvements are, however, related to
the specific execution and memory models, such as removing bank conflicts or proper
utilization of hierarchical memory.

For the simplicity of analysis, we assume that there are exactly as many workers
as data elements and that the length of input data is a power of two. The Chapter 4
presents the general scheme for prefix sum without those assumptions. For simplicity’s
sake, for all discussed algorithms we assume a constant running time C� of the binary
operator �.
Our comparative analysis is based on the span[10] or depth[27] of an algorithm i.e. length
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Figure 3.1: An example of serial prefix sum on 8 data elements. Results are produced
in 7 steps and 7 applications of binary operator.

of the critical path determined by the longest sequence of computation performed during
the execution. A comparison of a span between serial and parallel algorithm gives an
upper bound on attainable parallelism. We provide work complexity as well, which
estimates the span in a case of a fully serialized execution. An algorithm is considered
to be work–efficient if its work complexity scales linearly with the size of input data.
In our PRAM algorithms, we assume the input data to be allocated in a single block
of memory with zero-based indexing. The for loop has an inclusive upper bound in our
notation. As an example, a for loop iterating from 1 to N executes N iterations.

We begin the description by introducing the serial algorithm for prefix sum compu-
tation on Listing 2. Figure 3.1 presents an example of serial prefix sum. Each layer of
nodes depicts a single iteration of the algorithm and filled nodes represent an application
of binary operator. The lines joining nodes represent communication between workers.
The algorithm is a direct mapping from definition 3.1.1. It is worth noting that this
solution is the most optimal in terms of work–efficiency. Total span of the algorithms is
simply equal to N − 1 applications of the operator

SS(N) = N − 1

WS(N) = N − 1
(3.3)
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Figure 3.2: An example of Blelloch parallel prefix sum on 8 data elements. Results are
produced in 6 steps and 14 applications of the binary operator. A black node represents
an application of the binary operator during either up–sweep or down–sweep phase (lines
3 and 14 of Algorithm 3, respectively). A gray node represents a part of down–sweep
where a left child receives a value from its parent and no computation is performed.
This node corresponds to line 12 of Algorithm 3.

Algorithm 2 A pseudocode for serial prefix sum of N deformations.

1: for i from 1 to N − 1 do
2: data[i] = data[i− 1]� data[i]
3: end for

3.3.1 Blelloch scan

One of the most popular parallel prefix sum strategies has been researched and presented
by Guy Blelloch[28]. The tree–based approach correlates with Brent–Kung parallel prefix
adder[29], described separately later. Figure 3.2 depicts an example of Blelloch prefix
sum on eight image deformations.
The algorithm is usually defined as two sweeps on a binary tree. An up-sweep, from
leaves to the root, produces a reduction of all data elements, in our case x0,7. This
procedure requires no more steps than a height of three which is equal to log2N . Then,
a down–sweep is performed, from the root to leaves, and in each iteration workers proceed
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in a triple of a parent, left and right child. The left child, illustrated in the figure with
a gray node, receives a partial result from its parent and the right child, depicted in the
figure with a black node, computes another partial result. In practice, parent and right
child refer to the same worker in different iterations. Once again, a full sweep requires
log2N steps to finish. Listing 3 presents an example of the algorithm.

Algorithm 3 A pseudocode for Blelloch parallel prefix sum.

1: for i from 0 to log2N − 1 do . Up-sweep traversal of the tree.
2: for j from 2i to N step 2i+1 in parallel do
3: data[j] = data[j − 2i+1]� data[j]
4: end for
5: end for
6:

7: data[N − 1] = I� . data[N − 1] stored the final reduction
8:

9: for i from log2N − 1 to 0 do . Down-sweep traversal of the tree.
10: for j from 0 to N − 1 step 2i+1 in parallel do
11: temp = data[j + 2i − 1] . Save value of left child.
12: data[j + 2i − 1] = data[j + 2i+1 − 1] . Copy value to left child.
13: data[j + 2i+1 − 1] = temp� data[j + 2i+1 − 1] . Apply left
14: . child’s value to right child.
15: end for
16: end for

The algorithm computes an exclusive prefix sum, but an inclusive prefix sum may
be computed after a small modification. For a i-th worker, the inclusive value may
be obtained either through one additional application of operator or by receiving the
value of exclusive scan from i + 1-th worker. The former approach is preferable for
applications where it is less expensive to apply the operator rather than communicate
with other workers. This is especially significant on message-passing systems. On the
other hand, the latter approach is desirable for examples where the binary operator is
computationally intensive. In this scenario, the missing value for last worker x0,N−1 is
already computed by the same worker at the end of an up-sweep.
The span of Blelloch prefix sum is bounded by a double traversal of binary tree which
scales logarithmically with the number of workers

SB(N) = 2 · log2N (3.4)

A number of applications of the operator scales linearly with the number of data ele-
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ments. This makes the Blelloch algorithm work–efficient

WB(N) = 2 ·
log2N−1∑
i=0

N

2i+1

= 2 · N
2

1− (1
2)log2N

1− 1
2

= 2 ·N · (1− 1

N
)

= 2 · (N − 1)

(3.5)

3.3.2 Brent–Kung

Brent–Kung adder[29] is a work-efficient circuit design for parallel prefix sum. Figure 3.3
presents an example of Brent–Kung strategy on eight image deformations. The up–sweep
traversal is exactly the same as in Blelloch prefix sum and produces a reduction of all data
elements. In the down–sweep, a breadth–first search (BFS) is performed where only right
child adds partial result from its parent. An implementation may not always synchronize
between workers and given lack of data dependencies, some parts of second tree traversal
may be performed earlier, even during the first tree visit. This improvement, however,
won’t improve algorithm’s span and a less greedy version simplifies the description.
The strategy allows computing results in 2 · log2N − 1 steps, making it slightly more
efficient than Blelloch method. Listing 4 presents the algorithm.
Contrary to the Blelloch algorithm, Brent–Kung produces an inclusive prefix sum. An
exclusive version of Brent–Kung[24], with an integrated rejection of final reduction and
propagation of operator’s identity, exhibits a design very similar to the Blelloch algorithm
with a slightly better depth of Brent–Kung strategy.

Algorithm 4 A pseudocode for Brent–Kung parallel prefix sum.

1: for i from 0 to log2N − 1 do . Up-sweep traversal of the tree.
2: for j from 2i to N step 2i+1 in parallel do
3: data[j] = data[j − 2i+1]� data[j]
4: end for
5: end for
6: . Iterations of an inner loop may be executed concurrently with the loop above
7: for i from log2N − 2 to 0 do . Down-sweep traversal of the tree.
8: for j from 2i+1 to N − 1 step 2i+1 in parallel do
9: . Left child is visited without any computation.

10: data[j + 2i − 1] = data[j − 1]� data[j + 2i − 1]
11: end for
12: end for

The span of Brent–Kung prefix sum is bounded by a full traversal of the binary tree
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Figure 3.3: An example of Brent–Kung parallel prefix sum on 8 data elements. Results
are produced in 5 steps and 11 applications of the binary operator.

and a breadth–first search where root does not perform any computation

SB(N) = 2 log2N − 1 (3.6)

Estimation of performed work is similar to Blelloch case. Brent–Kung strategy is work–
efficient due to linear scaling of performed work

WB(N) =

log2N−1∑
i=0

N

2i+1
+

log2N−2∑
i=0

(
N

2i+1
− 1)

= N − 1 +

log2N−2∑
i=0

N

2i+1
− (log2N − 1)

= N − 1 +
N

2

1− (1
2)log2N−1

1− 1
2

− (log2N − 1)

= N − 1 +N − 2− (log2N − 1)

= 2 ·N − log2N − 2

(3.7)
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Figure 3.4: An example of Kogge–Stone a.k.a. Hillis–Steele parallel prefix sum on 8 data
elements. Results are produced in 3 steps and 17 applications of the binary operator.

3.3.3 Kogge–Stone

This parallelization strategy is based on a Kogge–Stone parallel prefix adder, firstly
proposed by Peter Kogge and Harold Stone in 1973[30]. In 1986, Hillis and Steele[31]
described an application of the adder to PRAM model and the algorithm has been known
under a different name Hillis–Steele parallel prefix sum. This algorithm has also been
discussed under a name recursive doubling algorithm[32].
Figure 3.4 presents an example of parallel prefix sum with Kogge–Stone approach on
eight image deformations. The strategy allows to compute results in log2N steps and
each step produces 2N − 1 partial results. In each iteration, workers apply the binary
operator to its own result and a partial result obtained from one of the workers on their
left. Listing 5 presents the algorithm.
Kogge–Stone produces an inclusive prefix sum. An obvious difference with the Blelloch
prefix sum is a much larger amount of work performed in all steps. Furthermore, the
huge work intensity requires excessive communication. Internally, the algorithm is syn-
chronous and each level depends on results from the previous iteration. This particular
feature makes it sensitive to deviations in execution time between different applications
of the binary operator �.
Another characteristic feature of the algorithm is the presence of Write-After-Read anti-
dependencies, where a worker should not overwrite the previous result until it has been
accessed. A common technique to resolve this problem is double-buffering where two
distinct arrays are used to store partial results[23].
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Algorithm 5 A pseudocode for Kogge–Stone parallel prefix sum.

1: for i from 0 to log2N − 1 do
2: for j from 2(i+ 1) to N in parallel do
3: data[j] = data[j − 2i]� data[j]
4: end for
5: end for

An estimation of time complexity for Kogge–Stone parallel prefix sum is trivial and
the span is simply determined by the outer loop

SKS(N) = log2N (3.8)

Work complexity is assessed by multiplying the number of steps with a number of active
workers in each step

WKS(N) =

log2N−1∑
i=0

N − 2i

= N · log2N −
log2N−1∑
i=0

2i

= N · log2N −
1− 2log2N

1− 2

= N · log2N −N + 1

(3.9)

3.3.4 Sklansky

This strategy is based on a first parallel prefix adder described in 1960 by Sklansky[33].
This inclusive parallel prefix sum is similar to Kogge–Stone in work inefficiency and
purely logarithmic span. The recursive nature of algorithm is visible on Figure 3.5. A
divide–and–conquer approach splits the problem in half at each step, instating twice the
same task for two halves of input data.
The strategy generates results in log2N steps. According to a recent report[24], their
proposed algorithmic description for Sklansky prefix sum is the first iterative version of
Sklansky prefix adder. We present a more verbose version of the algorithm on Listing 6.
In our opinion, it is easier to follow the flow of execution with a triple–nested loop.
Comparing to previously introduced prefix adders, Sklansky is the only one to have
a non-constant number of fan-outs i.e. outbound wires in a logical gate applying the
operator. The example on Figure 3.5 shows how a number of outputs in a node changes
from two to four. Furthermore, the algorithm involves a constant number of tasks per
each iteration which simplifies the mapping of work to hardware in implementations such
as SIMD architectures.
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Figure 3.5: An example of Sklansky parallel prefix sum on 8 image deformations. Results
are produced in 3 steps and 12 applications of the binary operator.

Algorithm 6 A pseudocode for Sklansky parallel prefix sum.

1: for i from 0 to log2N − 1 do
2: . Iterate over sources of result from previous step.
3: for j from 2i − 1 to N step 2i+1 in parallel do
4: . Iterate over destinations for result from previous step.
5: for k from 0 to 2i in parallel do
6: data[j + k + 1] = data[j]� data[j + k + 1]
7: end for
8: end for
9: end for

The span of the Sklansky prefix sum is given by a divide–and–conquer method need-
ing log2N steps for N input elements

SSK(N) = log2N (3.10)

Work complexity is straightforward as well. Each recursive call creates twice as many
problems with a half of the original size, and therefore each level processes the same
number of tasks

WSK(N) =
N

2
· log2N (3.11)

3.4 Relation between span and work

Introduced parallel prefix sum algorithms have different work complexities, but neither
of them can match the purely linear complexity of a serial application. The intuition
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suggests that the sequential nature of prefix sum allows for parallelization only by per-
forming more work but in parallel. This intuition has been formalized and certain bounds
for the relation between span and work of a parallel prefix sum has been proven. These
results have been described with terminology appropriate for prefix adder circuits, but
semantics stay the same and we can apply directly these results to PRAM algorithms.

An important theorem has been proposed and proved for prefix circuits by Snir[34]
in 1986. The theorem introduces a relation between size and depth of a prefix circuit.
The former property describes the number of nodes inside the circuit and corresponds to
work complexity W (N) in a parallel algorithm. The latter represents a delay introduced
by the circuit and it primarily depends on the critical path. Therefore, this attribute
corresponds to span in parallel computation model.

Theorem 3.4.1. Let x0, x1, . . . , xN−1 be a sequence of inputs and fi be prefix sums
computed with i first elements of input sequence. Let G be a prefix circuit that computes
f1, . . . , fN−1, with a size s(G) and depth d(G). Then

s(G) + d(G) ≥ 2N − 2

Proof. The original proof can be found in[34]. Alternative proof not requiring induction
can be found in[35].

An immediate corollary of this theorem is that each gain in improving parallelism,
which reduces critical path of the algorithm, has to be compensated by performing more
work. The question remains whether the excessive work is justified by an improvement in
depth. The concept of zero–deficiency measures if there exists a linear trade-off between
size and depth:

Definition 3.4.1. The deficiency of a prefix circuit is defined as

def(G) = 2N − 2− s(G)− d(G)

A parallel prefix circuit is said to be of zero–deficiency if def(G) = 0

A method for constructing zero–deficiency prefix sums has been proposed for depths
in the range 2 log2N − 2 ≤ d(G) ≤ N − 1. In 2006 a lower bound for depth of zero–
deficiency prefix circuit for a given N was proven[35]. Zero–deficiency prefix circuits do
not exist below this boundary, including prefix circuits of minimal depth log2N , such
as Sklansky or Kogge–Stone. Therefore, the most span–optimal parallel algorithm for
prefix sum can not achieve a linear work complexity.

A trivial example of zero-deficiency prefix sum is the serial algorithm with exactly
N − 1 applications of a binary operator and N − 1 span.

3.5 Other work

A hybrid parallel prefix strategy has been proposed by Han and Carlson[36], where
Brent–Kung and Kogge–Stone prefix adders are merged into a single algorithm. The
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goal of a new layout is to leverage an optimal span of Kogge–Stone and a linear work
complexity of Brent–Kung. The algorithm is parameterized by a non-zero constant k
which controls the balance between span and work complexity. Span is equal to k+log2N
and it has been proved[25] that a proper choice of k allows to bound work complexity
by O(N · log2N) or even O(N). Thus, Han–Carlson strategy achieves asymptotically
optimal span and work complexity.

Ladner and Fischer[8] proposed a general recurrence method of designing circuits for
prefix adders. An interesting application of their method involves a prefix sum using
Sklansky and Brent–Kung strategies to attain a minimum span and a slightly better
work complexity[37][38]. However, some literature describes Sklansky prefix sum under
the name of Ladner–Fischer scan[39].

3.6 Summary

We have described several different algorithms that have been developed and researched
for parallelization of prefix sum. The next chapter defines and explains the methodology
for choosing a right parallel prefix strategy for the problem of image registration.

Table 3.1 presents a comparison of discussed parallel prefix sum algorithms. Kogge–
Stone with Hills–Steele remain a widely-used strategy due to its minimal span. On the
other hand, Sklansky prefix adder does not seem to be as popular. Blelloch and Brent–
Kung strategies are still highly influential and prevalent. Less popular prefix adders, such
as Han–Carlson, Ladner–Fischer or Hockney–Jesshope have been recently researched for
GPGPU architectures.

Name Type Span Work

Sequential Inclusive N − 1 N − 1
Blelloch Exclusive 2 · log2N 2(N − 1)

Brent–Kung Inclusive 2 · log2N − 1 2 ·N − log2N − 2
Kogge–Stone Inclusive log2N N · log2N −N + 1

Sklansky Inclusive log2N
N
2 · log2N

Table 3.1: Comparison of major strategies for parallel prefix sum.
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Chapter 4

Distributed prefix sum

In this chapter, we consider a distributed implementation of an inclusive parallel prefix
sum described in chapter 3. Presented strategies have been developed to attain a best
theoretical speedup when executing in a cluster environment. Furthermore, we demon-
strate how the distributed prefix sum can be implemented within MPI programming
model.
Algorithms accept input data of length N and operate on P workers with separate ad-
dress spaces. A worker is expected to obtain multiple data elements. We use the terms
worker and process interchangeably. For MPI–based implementations we use the term
rank as well. Workers are allocated in a one–dimensional grid and for a worker with
index I, we use terms successor and right neighbor for a worker with index I + 1, if
it has one. Similarly, names predecessor and left neighbor are used interchangeably to
refer to a worker with index I − 1.

4.1 General strategy

We have seen in the previous chapter that the span–optimal solution scales logarithmi-
cally with the number of workers when each one is responsible for one data element.
Logarithmic complexity may be desired for a time complexity of a serial algorithm, but
in a parallel algorithm it prevents any major improvements by spawning more workers
on a larger set of cluster nodes. In a distributed setting, we expect to have significantly
fewer workers than data. Hence, it is preferable to reduce the intra–process part to
log2 P . Thus, this distributed stage requires one input value per a worker and a reduc-
tion step is required to transform the input data from length N to length P .
We name the first part of the general strategy a local stage one. It should accept the

whole sequence of input data and end with a one value per process. For the purpose of
this description, we do not assume any a priori knowledge which could suggest a specific
data distribution policy. Without any hints on the actual running time of the binary
operator on different operands, the safest choice is to split data as equally as possible
over all workers. Each process is assigned K = N

P input elements, if P evenly divides
N . In other case, K shall be equal to

⌊
N
P

⌋
+ 1, first N mod P workers are assigned
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Figure 4.1: The general strategy for distributed prefix sum of N elements on P workers.
An evenly distributed data across workers is passed to a local sequential prefix sum and
the last computed value becomes an input to the global stage. Results from a global
parallel prefix sum are applied on each worker except the first one.

K elements, and the rest obtains K − 1 data elements. For the sake of simplicity, we
assume an evenly distributed data.
The logical distribution of work across processors follows a 1D grid where I-th worker is
responsible for K input elements from xK·I to xK·(I+1)−1. To simplify notation, helper
variables lI and rI are introduced to store left and right boundary for a worker, with
lI equal to the index of first data element K · i and rI equal to the index of last data
element K · (i+ I)− 1. Data layout is depicted on Figure 4.1.

The first local stage is presented on lines 1–3 in Listing 7. Each worker performs per-
forms independently a sequential prefix sum on the assigned chunk of data xli , xli+1, . . . , xri .
Local data is overwritten with partial results and the last item is a reduction of all K
data items �K−1

i=0 xlI+i.
Span is estimated as for a serial prefix sum

SLS1(N,P ) = SS(
N

P
) =

N

P
− 1 (4.1)
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Work complexity is estimated as P workers performing a serial prefix sum

WLS1(N,P ) = P · SS(
N

P
)

= N − P
(4.2)

Algorithm 7 Distributed parallel prefix sum of N data elements on worker I.

1: for i from 1 to K − 1 do
2: data[i]← data[i− 1]� data[i] . Local Stage One
3: end for
4: excl scan← parallel scan(data[K − 1]) . An exclusive prefix sum
5: if I > 0 then
6: for i from 0 to K − 1 do . Local Stage Two
7: data[i] = excl scan� data[i]
8: end for
9: end if

The second stage, a global parallel scan, computes a prefix sum over local reductions.
After the parallel scan, processor I should receive a value which allows combining its
local results �ji=0xlI+j with a reduction of all values assigned to preceding workers
0, 1, . . . , I − 1. Consequently, the global prefix sum has to produce value �rI−1

i=0 xi for
worker I and the scan should be exclusive. Some of the proposed algorithms are by
default inclusive, but they can be applied here without modifications changing their
behavior, as described in section 4.1.2.
The last stage, presented on lines 5–9 in algorithm listing, operates again locally and
independently from other processes. As soon as a result from the parallel stage has
arrived, it is applied to each data item, and local results are transformed into partial
results for a global prefix sum. The corner case here is the first worker who does not
have any predecessors, and it does not perform any computation after first local stage.
This stage is a single loop with K iterations, and therefore span and work analysis are
trivial:

SLS2(N,P ) =
N

P
= SLS1(N,P ) + 1 (4.3)

WLS2(N,P ) = (P − 1) · N
P

= N − N

P

(4.4)

We summarize the strategy by combining estimations for local stages and an unknown
span SGS and work WGS of a global scan which depends only on the number of workers,
not on the input size. The span and work for a distributed scan is given as follows

SDS(N,P ) = SLS1(N,P ) + SGS(P ) + SLS2(N,P )

= 2 · N
P
− 1 + SGS(N,P )

(4.5)
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WDS(N,P ) = WLS1(N,P ) +WGS(P ) + ·WLS2(N,P )

= 2 ·N − P − N

P
+WGS(N,P )

(4.6)

We must remark that this analysis of critical path is possible only in the condition of
an even distribution of data. In the opposite case, a simple summation of the span
for two local stages might yield an incorrect result if critical paths for those stages are
provided by different workers. An example of such situation may be a prefix sum where
N mod P = 1. There, the span of the first stage is given by the first worker who has
one more data element than other processes, but it is inactive in the second local stage.

This general strategy attempts to minimize the asymptotically logarithmic global
stage and perform locally as much computation as possible. The speedup of a local
stage should scale linearly with an increase in a number of workers, and it is expected
that for large values of P and small values of K, the global part is going to dominate
the runtime of application because of its poor scaling.
Moving work from global to local stages may improve the runtime not only because of
a better scalability of local stage. For all parallel prefix sum algorithms introduced in
chapter 3, it holds that for the first step, each worker has to receive a value from its left
neighbor. In this strategy, this value is the last result computed in the local stage which
creates a Read–After–Write (RAW) dependency of the global scan on the local reduction
stage. Any computational imbalance in the latter may influence the former, and the flow
dependency increases the negative influence of time deviations on total runtime. Besides
that, global scan requires sending partial results after each iteration which makes it even
more sensitive to variations in execution time of the binary operator. Local stages are
free of those dependencies.

4.1.1 Scan versus reduce

The general strategy presented above is not the only possible way of organizing work
in a distributed prefix sum. One can notice that the global stage requires only the last
value of local prefix sum which is also a result of performing a reduction on input data.
Hence, preparing input for global stage does not require storing prefix sum, and those
intermediate results can be recomputed in second local stage with a little cost.
After the global stage, a worker operates on received result from an exclusive scan and
unmodified input data. To transform an input value xlI+j to x0 � x1 � · · · � xlI+j , scan
result is merged with the first element xlI and a new partial result x0,lI = x0,rI−1�xlI is
computed. Then, a sequential prefix sum would propagate changes from global scan and
desired results are computed as x0,lI+j = x0,lI � (xlI+1�xlI+2�· · ·�xlI+j). Alternative
strategy is presented in Figure 4.2 and in Listing 8. An alternative second local stage
performs the same number of loop iterations as the old one but one additional application
of binary operator is necessary

SALS2(N,P ) =
N

P
+ 1 (4.7)
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Figure 4.2: An alternative strategy of a distributed prefix sum of N elements on P
workers. A local prefix sum is replaced by a reduction generating just one value as a
result. In the second stage, the global scan value is applied to the first element of input
data and a sequential prefix sum is performed.

More work is performed because the worker with index 0 is active in all stages, hence

WALS2(N,P ) = P · (N
P

+ 1)

= N + P
(4.8)

And the span and work for an alternative distributed scan is as follows

SADS(N,P ) = SLS1(N,P ) + SGS(P ) + SALS2(N,P )

= 2 · N
P

+ SGS(N,P )
(4.9)

WADS(N,P ) = WLS1(N,P ) +WGS(P ) +WALS2(N,P )

= 2 ·N +WGS(N,P )
(4.10)
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Algorithm 8 An alternative distributed parallel prefix sum of N data elements on
worker I.

1: red← data[0]
2: for i from 1 to K − 1 do
3: red← red� data[i] . Local Stage One
4: end for
5: excl scan← parallel scan(red) . An exclusive prefix sum
6: data[0] = excl scan� data[0] . Apply scan result to first value
7: for i from 1 to K − 1 do . Local Stage Two
8: data[i]← data[i− 1]� data[i]
9: end for

4.1.2 Inclusive global scan

In both strategies, an exclusive partial sum is required to start processing the second
local stage. Hence, an exclusive prefix sum is preferred as an algorithm for the global
scan. This, however, does not exclude the possibility of using an inclusive scan. All
exclusive results are already computed, but they are not placed correctly on workers.
Thus, an additional round of communication is necessary. A worker I sends its result to
its successor I + 1, if it has one, and receives a new result from the predecessor I − 1.
A downside of this solution is that additional communication forces each worker to
wait for its left neighbor and adds another flow dependency. Sadly, many prefix sum
algorithms are inclusive by default. However, it is possible to benefit from this situation
by reducing the computation cost in last local stage. An inclusive result for x0,rI is
exactly the result of last loop iteration of the second local stages. Thus, one can directly
assign this value and skip one loop iteration. Algorithm 9 formally defines the case for
an inclusive global scan.

Algorithm 9 The general strategy with an inclusive scan. The inclusive result replaces
the last loop iteration in the second local stage.

1: for i from 1 to K − 1 do
2: data[i]← data[i− 1]� data[i] . Local Stage One
3: end for
4: incl scan← parallel scan(data[K − 1]) . An exclusive prefix sum
5: excl scan← blocking receive(I − 1) . Receive from left neighbor
6: if I > 0 then
7: for i from 1 to K − 2 do . Local Stage Two
8: data[i] = excl scan� data[i]
9: end for

10: data[K − 1]← incl scan
11: end if
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The span of a second local stage combined with an inclusive global scan is reduced
by a constant factor. Nevertheless, this small improvement may be reduced or even
eliminated by an additional synchronization after the global scan

SILS2(N,P ) = SLS2(N,P )− 1

=
N

P
− 1

(4.11)

This optimization may be explored for exclusive prefix sums as well, especially if non–
blocking communication is available. Scan result from a successor may reduce the com-
putation in the second local stage by one loop iteration. Non–blocking communication
can be applied to avoid synchronization because this value is not required until the sec-
ond local stage is finished. Algorithm 10 presents the application of optimization to an
exclusive scan.

Algorithm 10 An optimized general strategy with an exclusive scan. Function
probe receive is a simplified notation for a function intended to return a boolean true
value only if a specific message has been received. In an actual MPI implementation,
MPI Test or MPI Wait may be used.

1: for i from 1 to K − 1 do
2: data[i]← data[i− 1]� data[i] . Local Stage One
3: end for
4: excl scan← parallel scan(data[K − 1]) . An exclusive prefix sum
5: if I > 0 & I < P − 1 then . Last worker does not have a successor
6: incl scan← non blocking receive(I + 1) . Receive from neighbor
7: end if
8: if I > 0 then
9: for i from 1 to K − 2 do . Local Stage Two

10: data[i] = excl scan� data[i]
11: end for
12: if (I > 0 & I < P − 1) & probe receive(incl scan) then
13: data[K − 1]← incl scan
14: else
15: data[K − 1]← excl scan� data[K − 1]
16: end if
17: end if

We do not expect this change to reduce the theoretical span because it does not apply
to the last worker which may leave the critical path unaffected. However, it is worth
considering this small improvement in applications where differences in computation
time lead to large imbalances. There, it is not uncommon for processes to finish much
later than the last one, even if lengths of their computation paths are exactly the same.
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4.2 Related work

Literature review reveals that an approach similar to the general strategy has been eval-
uated for GPGPU architectures. Our general strategy is known there under the name
scan–then–propagate[40]. This strategy has also been presented as an algorithm for pre-
fix sum where a limited number of processors is available[32].
The idea behind an alternative strategy has been presented in the algorithm for vec-
torization of prefix sum on CRAY Y-MP by Chatterjee et. al.[11]. In addition, this
approach has been described as the reduce–then–scan strategy for GPGPU architec-
tures[26]. There, it may outperform the general strategy because of a smaller global
memory footprint in reduction phase.
Pipelined binary trees have been proposed for a distributed implementation of MPI scan
collective[41]. Later, the performance of prefix sum in message–passing systems has been
improved by exploiting a bidirectional communication[42][43]. This research has been
focused on reducing the communication cost and improving bandwidth. Furthermore,
only simple memory–bound operators have been evaluated. As explained in the next
section, the requirements for a distributed prefix sum in image registration problem are
quite different.

4.3 Registration problem

In the previous chapter, we have proved that the problem of image registration can be
represented as a prefix sum with the function B as a binary operator. This function has
several important properties which make our problem much more specific and different
from applications and case studies analyzed in the literature.

We begin with the actual cost of applying the operator. The simplest case found in
the literature, which happens to be the one most frequently evaluated, is an integer
addition which should not take more than one CPU cycle on modern processors. More
complex examples still involve relatively cheap operations, such as polynomial evaluation
with floating–point multiplication and addition or summed area table where the binary
operator performs multiple additions.
As a result, parallel prefix sum algorithms tend to be optimized for memory–bound
applications with a rather low execution time of the operator. Image registration does
not fit into this category. Figure 4.3 presents the execution time for a serial registration
process. Each single image registration is much more computationally expensive and
the actual execution time is of a completely different order of magnitude than a simple
integer of floating–point number operation. It is very likely that different parallelization
strategies may be required for a prefix sum with an operator taking several seconds to
compute a single result.

Each non–rigid deformation stores only three floating–point values and the cost of
sending this amount of data between cluster nodes is dominated by the latency, not the
bandwidth. As a matter of fact, each execution of the registration function requires
corresponding image data which is stored on the disk. We assume that each worker has
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Figure 4.3: An example of serial registration for 64 images. The function A has been
applied 64 times to create neighbor deformations φi,i+1 and a serial prefix sum applied
function B 63 times to generate final deformations φ0,i.

access to each image file through usual and serial I/O operations.
The cost of sharing data between workers is negligible when compared with the com-
putation time. Because of this difference, our problem will not benefit from prefix sum
algorithms developed for message–passing systems which concentrated on minimizing
the number of communication cycles.

In contrast to operations with a deterministic execution time, here in both functions
A and B the actual computation cost is not only unpredictable but highly variant. Due
to the iterative nature of problem solved by the two functions, as explained in Chapter 2,
we can not foresee for a given input data how many iterations are necessary to reach a

44



0 2 4 6

80

90

100

110
8 ranks

0 5 10 15
30

40

50

60

70

16 ranks

0 5 10 15 20 25 30
10

15

20

25

30

35

MPI Rank

T
im

e
[s
]

32 ranks

0 20 40 60

5

10

15

64 ranks

Actual time
Averaged time

Figure 4.4: A comparison of the execution time of the first local stage for N = 128 image
registrations within an MPI implementation. Four cases are presented, with P values
varying from 8 to 64. Red squares represent execution time for each worker and the
black line represents a theoretical mean, an ideal distribution of work in an imaginary
case where all operator applications take the same amount of time.

stopping criterion. Figure 4.4 presents execution times of the first local stage for different
workers. The black line represents an average computation time across workers. This
scenario is not feasible, but it allows us estimating the delay introduced by an unequal
load balance. In the first iteration of the global stage, workers are required to wait for
a result from its predecessor, and it is not unusual that this idle time can be as large as
the total runtime of local stage.
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Regarding actual implementation, our operator depends on external objects sup-
plying data structures such as multiple levels of a multigrid. Since constructing these
objects in each application of the operator adds an undesired overhead, it is preferred to
implement an operator able to capture external objects. We summarize the characteris-
tics of our problem in several suggestions. We have used these pieces of advice to choose
which parallel prefix algorithms, strategies, and optimizations may be interesting to our
problem.

� Prefer replacing computation with communication
In contrast to usual design principles for prefix sum in a distributed environment,
we do not optimize to reduce the latency of data transmission – quite the oppo-
site, computational intensiveness of our application suggest that we should prefer
sharing partial results between workers if it allows reducing the amount of work
to perform.

� Do more work but in parallel
A lot of research have been done to design prefix sums with a logarithmic span
and optimal, linear work complexity. For image registration, the most promis-
ing algorithms are the one who attains a minimum span with a non–linear work
complexity.

� Reduce dependencies when computation time is not predictable
There is a very little we could do with work distribution when no a priori knowledge
on time imbalance is present. We can, however, look for parallel algorithms with
the minimum number of flow dependencies.

4.4 MPI implementation

In this section, we present an MPI implementation of the general strategy combined with
various algorithms for a global parallel prefix sum. Work, span and speedup estimations
are provided.

4.4.1 MPI scan

MPI defines two functions to perform parallel prefix sum, MPI Scan for an inclusive
and MPI Exscan for an exclusive prefix sum. Besides that, non–blocking alternatives
MPI Iscan and MPI Iexscan have been added in MPI 3.0. The C declaration of MPI Scan

function is presented on Listing 4.1.

int MPI_Scan(const void *sendbuf , void *recvbuf , int count , MPI_Datatype

datatype , MPI_Op op, MPI_Comm comm);

Listing 4.1: An interface of MPI function for an inclusive parallel prefix sum.
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Figure 4.5: An example of executing MPI Scan on three ranks with four data elements
per rank. After the execution, each array element stores a result corresponding to one
of four different scans.

The operation requires all ranks to pass the same arguments for count, datatype and
comm. Input data is provided in sendbuf and results are written in recvbuf. A user–
defined operator is assumed to be associative and can be declared as commutative to
enable selection of more optimized algorithms. A C prototype of an operator is presented
on Listing 4.2.

void MPI_User_function(void* invec , void* inoutvec , int *len ,

MPI_Datatype *datatype);

Listing 4.2: An interface of MPI user–defined operator for reducion function.

The function is expected to apply len times the operation inoutvec[i] = invec[i] �
inoutvec[i]. The scan operator is applied elementwise to each element of the input
buffer. Consequently, for count data elements passed to an MPI scan on each rank, count
different prefix sums are computed. Given this limitation, existing MPI algorithms can
not be used outside the general strategy for parallel prefix sum unless there is exactly
one data item per rank. Otherwise, a specific type of segmented prefix sum is computed
with only one data item per scan allowed on each rank. Figure 4.5 demonstrates this
problem. MPI literature does not describe the problem in detail, nor it proposes any
idea alternative to already described general scheme.
The MPI specification does not put performance requirements for an implementation.
We provide a brief overview of algorithms present in two evaluated MPI implementations.

OpenMPI

OpenMPI documentation does no provide any information on actual implementation. An
investigation of current source code[47] revealed an MPI Scan implementation in ompi/m-
ca/coll/basic/coll basic scan.c and an MPI Exscan in ompi/mca/coll/basic/coll basic exscan.c.
Both have been implemented with a fully serial algorithm where an MPI rank receives
a value from its predecessor, computes a new value and sends it to its successor.
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The same algorithm can be found in an implementation of MPI Iscan in ompi/m-
ca/coll/libnbc/nbc iscan.c and MPI Iexscan in ompi/mca/coll/libnbc/nbc iexscan.c.

IntelMPI

IntelMPI documentation shortly mentions types of algorithms implemented for the prefix
sum[44]. The selection of algorithm can be manipulated by setting environment variable
I MPI ADJUST SCAN or I MPI ADJUST EXSCAN with an integer value corresponding to al-
gorithm selection.
For an inclusive scan, two algorithms are offered to the user: Partial results gathering
and Topology aware partial results gathering. An exclusive scan can be computed with
two algorithms, the first one is the same as in inclusive scan and the other one is called
Partial results gathering regarding layout of processes.

Unfortunately, the documentation does not describe algorithms in detail and the
available information is limited only to these names.

4.4.2 Serial

With an exclusive sequential global prefix sum in the global stage, the span of a dis-
tributed scan becomes

SDS(N,P ) = SLS1(N,P ) + SGS(P ) + SLS2(N,P )

=
N

P
− 1 + P − 2 +

N

P

= 2 · N
P

+ P − 3

(4.12)

Then, the theoretical speedup is given as

SPSerial(N,P ) =
N − 1

2 · NP + P − 3
(4.13)

This term reaches its maximum value when denominator reaches its minimum. Removing
constants simplifies the term to minimize to

2N

P
+ P (4.14)

and as the literature suggests[10], it may be interpreted as doubled arithmetic mean of
2N
P and P . Arithmetic mean is bounded from below by the geometric mean

2N
P + P

2
≥
√

2N

P
· P (4.15)

Arithmetic and geometric means are equal if and only if both operands are equal which
implies that for a fixed N the minimum is obtained for

P =
2N

P

P =
√

2N

(4.16)
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This result proves that for any N the best speedup is obtained for a number of processors
much smaller than N . Thus, the maximum speedup is

P=N
max
P=1

SPSerial(N,P ) =
N − 1

2N√
2N

+
√

2N − 3

=

√
2N · (N − 1)

4N − 3
√

2N

(4.17)

As we can see, even for quite large input the attainable speedup is very low, no matter
how many processor cores are available. The limit on scalability and very poor upper
bound on speedup make this solution not attractive for a distributed implementation.

4.4.3 Blelloch

With a double sweep of a tree, the span is equal to

SDS(N,P ) = SLS1(N,P ) + SGS(P ) + SLS2(N,P )

=
N

P
− 1 + 2 · log2 P +

N

P

=
2N

P
− 1 + 2 · log2 P

(4.18)

and the theoretical speedup of distributed scan becomes

SPBlelloch(N,P ) =
N − 1

2N
P − 1 + 2 · log2 P

(4.19)

The maximum of this function is found by minimizing the denominator

f(P ) =
2N

P
− 1 + 2 · log2 P

df

dP
= −2N

P 2
+

2

P ln 2

=
2P − 2N ln 2

P 2 ln 2

(4.20)

The derivative reaches zero when

P0 = N ln 2 (4.21)

To find out whether it is a maximum or minimum, second derivative is tested

d2f

dP 2
|P=N ln 2 =

4N

P 3
− 2

P 2 ln 2
|P=N ln 2

=
4N ln 2− 2P

P 3 ln 2
|P=N ln 2

=
2N ln 2

N3 ln4 2

(4.22)

49



Obviously, the second derivative is greater than zero for any positive value of N . Hence,
P0 is a local minimum of f(P ) and a local maximum of S. The important result here
is that critical point is always greater than N, implying that for practical values of P it
is always possible to improve the result by adding more processors until the number of
processors reaches the number of data elements.

Work performed at all stages is equal to

WDS(N,P ) = 2 ·N − P − N

P
+WGS(P )

= 2 ·N − N

P
− P + 2 · (P − 1)

= 2 ·N − N

P
+ P − 2

(4.23)

which proves that work complexity is linear in both input size and number of workers.

4.4.4 Kogge–Stone

With an inclusive scan, we apply the optimization and the span of distributed scan
becomes

SKS(N,P ) = SLS1(N,P ) + SGS(P ) + SILS2(N,P )

=
N

P
− 1 + P − 2 +

N

P
− 1

=
2N

P
− 2 + log2N

(4.24)

The analysis of speedup is similar to Blelloch algorithm, with the derivative

df

dP
=

2P −N ln 2

P 2 ln 2
(4.25)

Here the local maximum is reached for

P0 = 2 ·N ln 2 (4.26)

Which is, again, an impractical value. Work performed at all stages is

WDS(N,P ) = 2 ·N − P − N

P
+WGS(P )

= 2 ·N − N

P
− P + P · log2 P − P + 1

= 2 ·N − N

P
+ P · (log2 P − 2) + 1

(4.27)

which proves that work complexity is linear in input size but O(n log n) in number of
workers.
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4.4.5 Sklansky

Sklansky parallel prefix adder has the same span as Kogge–Stone algorithm. Therefore,
attainable speedup is exactly the same. The work complexity is slightly different but
asymptotically equal to work performed by Kogge–Stone prefix sum

WDS(N,P ) = 2 ·N − P − N

P
+WGS(P )

= 2 ·N − N

P
− P +

P

2
· log2 P

= 2 ·N − N

P
+ P · ( log2 P

2
− 1)

(4.28)

4.4.6 Summary

We select for evaluation several instantiations of our general strategy

� MPI–based
Global scan implementation provided by the MPI library. Evaluate inclusive and
exclusive variants against OpenMPI and different implementations of the scan in
IntelMPI.

� Blelloch

� Kogge–Stone, Sklansky

Figure 4.6 presents a theoretical prediction of attained speedup for selected variants.
Clearly, the small constant factor in a span between Blelloch and Kogge–Stone prefix
sums may lead to a large difference. Figure 4.7 compares selected strategies against a
linear scaling to demonstrate that even with an ideal implementation, the parallel prefix
sum is a problem which can not be efficiently parallelized on a large number of processor
cores.

We expect to find answers for key questions:

� How these algorithms perform with a computationally intensive operator?

� How load imbalance influences different algorithms? Does the theoretical promise
of scalability holds up?

� Is there a gain in selecting an algorithm with a slightly better span but noticeably
worse work complexity?

� What is the quality of prefix sum provided by MPI implementations?

� How does an inclusive and exclusive MPI algorithm perform in the general strat-
egy?
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Figure 4.6: Theoretical speedup attainable by the general strategy with various imple-
mentation of the global stage. The horizontal axis is logarithmic with a base of two.
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attainable by the general strategy with various implementation of the global stage.
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Chapter 5

Results

This chapter presents and analyses evaluation of parallel prefix sum algorithms for image
registration. Experiments have been performed on cluster nodes consisting of Intel Xeon
E5-2680 v2 CPUs. Each node contains two ten–core processors with frequency of 2.80
GHz and 3.60 GHz in TurboBoost mode. Our compiler of choice is GCC in version 5.3.0.
MPI libraries selected for evaluations are OpenMPI in version 1.10.4 and IntelMPI in
version 2017.1. Each measurement has been performed with the help of MPI Wtime

function, preceded by an MPI Barrier as it is advised in the MPI standard[19]. Timings
have been averaged over five repetitions and the standard deviation has been calculated
to ensure the quality of results.
A comparison of different parallel prefix strategies in terms of strong and weak scalability
is presented in sections 5.1 and 5.2, respectively. The section 5.3 provides a detailed
view of MPI performance in the parallel prefix sum problem. In the section 5.4, a brief
comparison of the general and alternative strategy is provided. Results of experimental
shared–memory parallelization of the operator are presented in section 5.5.

5.1 Strong scaling

In this section, we investigate the parallel performance of a distributed prefix sum when
the number of processor cores is increased from 1 to 512 and the problem size is fixed.
Thus, the size of work chunk for each worker is decreased. An ideal linear speedup is
not possible to obtain in our problem because of an increased workload in the parallel
execution. For the comparison, we select results from following parallel prefix sums

� Kogge–Stone, Sklansky
our implementation of work–inefficient prefix adders with a logarithmic span

� Blelloch
our implementation of a classical work–efficient scan

� OpenMPI
an inclusive MPI collective function MPI Scan
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� IntelMPI
an exclusive MPI collective MPI Exscan with the algorithm Partial results gathering
regarding layout of processes

For MPI libraries, we have selected the best performing implementation for this com-
parison. A detailed overview is presented in section 5.3.
The speedup is measured as a ratio of serial and parallel execution time. For all results,
the standard deviation of measured speedup SP has not exceeded 0.1. Thus, we can
safely compare various algorithms even when the difference in speedup is rather small.
A standard deviation of speedup SP is given as a

σSP = SP
√

(
σt1
t1

)2 + (
σt2
t2

)2 (5.1)

where times t1 and t2 with their respective deviations σt1 and σt2 are measured runtime
of a serial and parallel execution.

Figure 5.1 presents the image registration of 4096 frames. We compare our im-
plementations against the theoretical upper bound, with Sklansky and Kogge–Stone
implementations having the highest bound due to the lowest span of the global stage.
We expect that an ideal implementation should be able to achieve such speedup for
problems with a low variation in execution time for the binary operator of prefix sum.
We do not observe any significant difference in experiments with less than 32 MPI ranks,
where each process has a large work chunk and the cost of the global stage is relatively
low. For larger runs, the best performance is attained by a Kogge–Stone implementa-
tion. Interestingly enough, the Sklansky implementation performs worse even though
both algorithms have the same span. Moreover, the Sklansky prefix sum has a lower
work complexity which should indicate a better performance. A possible explanation of
this phenomena may be the non–constant fan–out of Sklansky algorithm, as explained
in section 3.3.4. In both algorithms, N

2 workers are active in the last iteration but their
dependencies are different. In the Kogge–Stone prefix sum, each active worker depends
on a result from a different worker. In the Sklansky algorithm, all active workers have
to wait for a result from the same worker with index N

2 − 1. Therefore, a significant
delay on this worker has a much serious influence on the total performance. The work–
efficient Blelloch scan performs slightly worse than a Kogge–Stone approach. A large
work complexity seems to not be a problem in the image registration, as long as the
span is minimal.
We do not have any expectations about the performance of an exclusive IntelMPI im-
plementation because of a lack of details about the algorithm in the documentation. It
behaves similarly to the Blelloch prefix sum, which might suggest that the tree–based
scan has been implemented as MPI Exscan. At the same time, the source code analysis
of OpenMPI suggested a serial implementation of the scan operation and measurements
confirm this hypothesis. This implementation performs very poorly and it is simply
unable to scale beyond a certain upper limit.
Results of a smaller experiment are presented in Figure 5.2. Here, the execution time

is even more dominated by the global stage, because of a much smaller workload in local
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Figure 5.1: Speedups of different implementations of a distributed prefix sum, plotted
as dashed lines, are compared with the theoretical upper bounds, presented with solid
lines. The horizontal axis is logarithmic with a base of two.

stages. A corner case is P = 512 where each worker obtains only one data element, and
no computation is done in local phases. Three implementations - Kogge–Stone, Sklansky
and IntelMPI - attain the best speedup for P = 256. Surprisingly, the Blelloch algorithm
improves even for P = 512. Although this result proves that the work–efficient Blelloch
algorithm can perform better in some scenarios than a span–optimal Kogge–Stone al-
gorithm, we note that this is a pathological case of N = P . Thus, Kogge–Stone is a
preferable choice for real–world applications.

It is not surprising that the efficiency of all algorithms drops quickly on a larger
number of MPI ranks. An increased number of workers means that more iterations are
performed in the global stage and each one involves a blocking receive of results from
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Figure 5.2: Speedups of different implementations of a distributed prefix sum, plotted
as dashed lines, are compared with the theoretical upper bounds, presented with solid
lines. The horizontal axis is logarithmic with a base of two.

another worker. This synchronization increases the likelihood of a rank idle waiting due
to an unequal distribution of workload.

56



5.2 Weak scaling

In the case of weak scaling, the performance is measured for a fixed amount of work
performed by each worker. In contrary to strong scaling, where the algorithm is stressed
to utilize all available parallelism, weak scaling answers the question: is the algorithm
able to solve a bigger problem without a decrease in efficiency, when more hardware is
available? For an ideal linear scaling, the algorithm should be able to match an available
parallelism of more processors with an increased size of the problem and the execution
should stay constant.
In a distributed prefix sum, the span is given in a general form

S(N,P ) =
2N

P
+ C1 log2 P + C2 (5.2)

for some constants C1, C2 ∈ N. For an equal increase in the problem size and the number
of processing elements, the span of a prefix sum is given as

S(2N, 2P ) =
4N

2P
+ C1 log2 2P + C2 (5.3)

=
2N

P
+ log2 P + C2 + C1 (5.4)

Thus, we can not expect that the execution time stays constant. Nevertheless, as long
as the amount of work per worker is relatively high, we should observe that the increase
in span does not cause a significant growth of execution time.

We begin with considering the case N
P = 8. The smallest and largest experiments

have been performed with 128 and 4096 images, respectively. Results are presented on
Figure 5.3. The IntelMPI implementation has the lowest increase in time of 34% but
it has been the slowest solution at the beginning. Kogge–Stone and Blelloch perform
similarly with 50% and 51.6% increase, respectively. Sklansky algorithm outperforms all
competitors most of the time but the sudden decrease in the least measurement gives it
the worst result - 77% increase in execution time. On average, the increase in execution
time is approximately equal to 42.8%. The OpenMPI solution is excluded from this
analysis due to a large difference between its execution time and all other algorithms. It
is sufficient to say that the runtime increases from 196 to 2041 seconds i.e. by 941%.
The analysis reveals more interesting information about the algorithms. Although
Kogge–Stone provided the best performance in large runs, it is the only algorithm to
not have a monotonic increase in execution time1. The significant increase from 16 to
64 ranks, followed by a sharp decrease on 128 ranks is a very unusual behavior. The
variance of measurements is relatively low and we have found no reason to doubt the
quality of conducted experiments. A possible explanation may be a huge sensitivity to
load imbalance, causing a serious performance degradation for specific distributions of
work.

1The Sklansky algorithm exhibits a small decrease between 64 and 128 ranks but the decrease is lower
than the standard deviation of measurements.
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Figure 5.3: The smallest and largest experiments have been performed with 128 and
4096 images, respectively. The OpenMPI solution is excluded from this plot due to
comparatively large values of execution time. The horizontal axis is logarithmic with a
base of two.

Another results are presented on Figure 5.4. An experiment with the larger amount
of work per rank N

P = 32 is expected to perform better because a constant increase should
have less effect when the span is dominated by 2N

P . All algorithms show a high increase
in execution time from 4 to 8 ranks and a slow and rather stable increase for other
values. Although Blelloch is the slowest algorithm on 128 images, its 14.3% increase in
execution time is the lowest one, followed by 27.4% increase for Sklansky, 29.3% for the
IntelMPI implementation and 34.4% for the Kogge–Stone algorithm. The average 28%
increase can not be compared with a 165% increase for OpenMPI.

We observe that some image registration problem algorithms are not able to match
theoretical bounds. For Kogge–Stone and Sklansky algorithms, the increase is much
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Figure 5.4: The smallest and largest experiments have been performed with 128 and
4096 images, respectively. The OpenMPI solution is excluded from this plot due to
comparatively large values of execution time. The horizontal axis is logarithmic with a
base of two.

higher than theoretical limits of 27.7% and 7.8% increase, obtained by dividing the total
increase with a span for the first measurement. This time, the Kogge–Stone algorithm
exhibits a sudden increase in execution time at the last stage. On the other hand,
Blelloch performs better than theoretical limits of 52.6% and 14.9%.

5.3 MPI implementation

In this section, we compare the performance of a distributed image registration with the
global stage wrapped over a built–in MPI parallel scan. First, we present various im-
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plementations in the IntelMPI library. Then, we measure the performance of OpenMPI
scan and compare it against the best available IntelMPI scan.

5.3.1 IntelMPI
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Figure 5.5: An IntelMPI–based implementation of a distributed prefix sum for N = 4096.
The left vertical axis corresponds to the bar plot presenting the execution time for
algorithms. The right vertical axis corresponds to the plot of a difference in execution
time between the first and second algorithm. The standard deviation is plotted with a
reflection over the horizontal axis.

Inclusive and exclusive IntelMPI algorithms are compared on Figures 5.5a and 5.5b,
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respectively. Interestingly, the inclusive partial results gathering performs better than its
topology–aware counterpart for runs which do not span across nodes. For computations
requiring intra–node communication, the difference is lower than a combined standard
deviation. On the other hand, results with an exclusive MPI algorithm are much less
clear, since inter–node results are not consistent, and they are too close to each other to
justify a verdict. However, we prefer the second algorithm because of a slightly better
stability of measurements.
The figure 5.5c compares a default implementation of an inclusive scan and the topology–
aware implementation of the exclusive scan. The inclusive implementation provides a
lower runtime when the number of MPI ranks is low. There, the difference in execution
time is only an insignificant percentage of the total execution time. The exclusive scan
surpasses the other algorithm on 128, 256 and 512 processor cores where this improve-
ment has a noteworthy influence on the performance.

5.3.2 OpenMPI vs IntelMPI
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Figure 5.6: An MPI–based implementation of a distributed prefix sum for N = 4096.
The left vertical axis corresponds to the bar plot presenting the execution time for
algorithms. The right vertical axis corresponds to the plot of a difference in execution
time between the first and second algorithm. The standard deviation is plotted with a
reflection over the horizontal axis.

Figure 5.6a compares the performance of two scan implementations in OpenMPI. A
negative difference suggests that the inclusive prefix sum tends to perform better for
all runs utilizing less than 128 cores. Later, the difference is too small to differentiate
between them. We have not found any explanation why the exclusive prefix sum per-
forms worse in a serial implementation. We have decided to use the inclusive scan for
comparisons with other prefix sums.
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Finally, we compare best–performing implementations for IntelMPI and OpenMPI. Al-
though the Figure 5.6b clearly shows that IntelMPI provides a superior performance for
executions spanning multiple cluster nodes, results for 16, 32 and 64 ranks are surprising.
Again, a likely explanation is that multiple iterations of a parallel scan intensify delays
created by ab unequal computation time between workers.

5.4 Alternative strategy

Section 4.1.1 introduced a formulation of the distributed prefix sum problem alternative
to scan–then–apply general strategy. Using the notation from the previous chapter,
we can express the default strategy in terms of how result xi, located on worker I, is
computed

x0,i =

Second local stage︷ ︸︸ ︷
x0,lI︸︷︷︸

Global scan

� ((xlI � xlI+1 � · · · � xi−1)� xi)︸ ︷︷ ︸
First local stage

(5.5)

The final result is obtained by two applications of operator � to xi. On the other hand,
the reduce–then–scan strategy achieves the same goal with a single application of the
binary operator. Result from the first local stage is passed only to the global prefix sum

x0,i =

Second local stage︷ ︸︸ ︷
(x0,lI︸︷︷︸

Global scan

� xlI � xlI+1 � · · · � xi−1)� xi) (5.6)

Within the context of image registration, the approximately associative operator with
an unpredictable runtime creates a possibility where a different ordering of execution
may lead to improved initial guesses for consecutive calls to function B. Thus, we have
to compare these two strategies to find out which one is better suited for this task.

Figure 5.7 presents the execution time of two strategies for the distributed image
registration of 4096 frames, with a Kogge–Stone implementation of global prefix sum.
For all measurements, up to the 256 cores, the default strategy performs better but the
difference is monotonically decreasing. The alternative strategy is slightly faster than the
default strategy for P = 128. We have seen in the section 5.2 that the default strategy
with Kogge–Stone global scan exhibits a strange drop in performance for N = 4096
and P = 128. In the execution on 512 cores, the difference becomes smaller than the
combined standard deviation.
To get a better picture, we analyze as well a measurement with a smaller data chunk per
worker. Results presented on Figure 5.8 are not drastically different from the previous
experiment.
We have not found any indication that investigating the alternative strategy may improve
the algorithm’s performance.
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Figure 5.7: The left vertical axis corresponds to runtime for two strategies plotted as bars.
The right vertical axis corresponds to a difference between the default and alternative
strategy, presented with the standard deviation of difference. Both vertical and the left
horizontal axes are logarithmic with base two.

5.5 Multithreading

To overcome the poor scalability of prefix sum on a large number of cores, we inves-
tigated the possibility of a hybrid parallelization. Instead of allocating P MPI ranks
performing the distributed prefix sum, one could allocate N

2 or even N
4 ranks with two

of four threads per rank. There, a better performance could be achieved by utilizing
hardware to parallelize the image registration process.
A performance analysis of the image registration revealed two parallelizable functions
which are responsible for approximately two-thirds of the execution time. According to
Amdahl’s law, it should allow for a speedup of 1.67 times on two threads and 3 times
on four threads.
An experimental result for with GOMP, a GNU implementation of OpenMP for GCC
compiler, is presented in Figure 5.9. We observe that a shared–memory parallelization
of the operator is beneficial on computations on a large number of cores and with small
chunk of work per MPI rank, even if the speedup of operator parallelization is not linear.
An investigation of OpenMP runtime for Intel compiler did not reveal significantly dif-
ferent results.
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are logarithmic with base two.
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Figure 5.9: The left vertical axis corresponds to runtime of a hybrid parallelization,
plotted as bars. The right vertical axis corresponds to speedup of a hybrid parallelization,
plotted as solid lines. Both vertical and the left horizontal ax are logarithmic with base
two. The last value for 4 threads is hardly visible because it is too small when compared
with other data points.
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Chapter 6

Summary

In this dissertation, we have discussed a parallelization strategy for registration of series
of electron microscopy images. We have approached the problem by representing the
registration procedure as a prefix sum. Several parallel prefix sum algorithms have been
implemented, evaluated and compared against each other and their respective theoretical
predictions. In this chapter, we present the conclusions and suggest future improvements.

Scalability

Strong scaling analysis of our problem reveals that an upper boundary on attainable
speedup makes a massively parallel execution quite inefficient. Furthermore, a load
imbalance induced by variances in execution time makes it even more wasteful in terms
of computational resources.
Instead of trying to speedup fixed size problems, we focus on utilizing available resources
to solve larger problems. A weak scaling analysis indicates there a more efficient use of
available hardware.

MPI facilities

Our results show a stunning difference between MPI libraries in the quality of collective
operations. A review of the literature suggests that this state of affairs may be caused
by a relatively low popularity of the scan primitive in MPI community. Multiple papers
have been written about optimal algorithms for collective operations such as barrier,
broadcast, scatter, gather or even reduce. The IntelMPI library offers at least nine algo-
rithms with variants for MPI Allreduce, MPI Barrier, MPI Bcast and MPI Reduce[44].
Sadly, the same cannot be said about the MPI Scan.
The image registration problem demonstrates that there is a need for high quality im-
plementations of distributed prefix sum algorithms.
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Our contribution

We believe that the parallel image registration is the first example of the parallel prefix
sum applied to a problem where the binary operator is

� not associative

� computationally intensive

� of iterative nature with huge variances in convergence time

We have investigated algorithms existing in the literature and derived alternative for-
mulations of the problem. The research on parallel prefix adders has been concentrated
on constructing work–efficient strategies with a minimal span. Parallel and distributed
prefix sum algorithms have been designed for memory–bound operations and, as a re-
sult, they are optimized to minimize the cost of communication and memory access. Our
work shows that there is a class of problems where better alternatives exist as neither
work–efficiency nor optimized communication is desired.

Limitations and future work

The scalability of our parallelization scheme is inherently limited by the logarithmic
nature of a parallel prefix sum and an unpredictable runtime for image registration
operators. Our results suggest that a parallelization of the prefix sum operator is the
only way of significantly improving the efficiency of a distributed prefix sum.

However, there are optimizations which can be applied to our problem. A major
cause of a poor efficiency on many MPI ranks is a huge variation in execution times
between workers. This impacts the global stage where each iteration involves an implicit
synchronization through point–to–point communication. A shared–memory parallel im-
plementation could decrease effects of a load imbalance by allocating one MPI rank per
node and performing work–stealing inside a node. Negative effects of synchronization
and communication in the global stage are decreased because they grow with the num-
ber of nodes, not the number of workers. Such improvement could boost the efficiency
of computations spanning among a limited number of nodes, but it would not enable
efficient, massively parallel computations.

Another way of improving performance is by redistributing the work after the global
stage. In parallel prefix sum algorithms, many workers are not required to perform
exactly log2 P iterations, and they are allowed to start computing final deformations
earlier. Furthermore, in the general strategy the very first worker is not performing any
work at all after the first local phase.
Sadly, an analysis of results suggests that workers with a largest theoretical span are
not always the slowest ones. Besides, the second local phase tends to require much less
computational effort than other stages. Even a successful reduction of the last phase on
the slowest worker would only slightly decrease the total execution time. And there is
evidence to suggest that a redistribution policy based on a theoretical prediction of span
could cause more harm than good.
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