Parallel Prefix Algorithms for Registration of
Arbitrarly Long Electron Micrograph Series

Marcin Copik

Master’s Colloquuium
June 14th, 2017

Outline

Acquisition technique

» transmission electron microscopy (TEM)

v

an electron beam passes through a sample

P the interaction of electrons with the specimen is mapped to a
display device

» the quality of data is limited by changes in the sample induced
by electrons

Data sample

Figure: An example of frame acquired with TEM.

All images courtesy of the University of Manchester.

Improved acqusition
First step: replace a single high—dose frame with a series of
low—dose frames
» decreases the risk of beam damage
» captures motion of the observed object
> captured frames may have a low signal-to—noise ratio

» data analysis obstructed by sample drift during the acquisition

Improved acqusition
First step: replace a single high—dose frame with a series of
low—dose frames
» decreases the risk of beam damage
» captures motion of the observed object
> captured frames may have a low signal-to—noise ratio

» data analysis obstructed by sample drift during the acquisition

Second step: image registration for a series of frames

> aligning frames to the first one removes the sample motion

» aligned frames can be averaged to represent the sample in one
frame

P quality of results depends on the image processing

P image registration can be computationally expensive - can we
parallelize that?

Data sample

Example: aluminum oxidation

» acquisition performed with an ultrahigh vacuum
high-resolution transmission electron microscopy (UHV
HRTEM)

» capture 400 frames per second

> 2.7 GB of data per a second of acquisition

Image registration problem

Input: images R, T

Image registration problem

Input: images R, T

Goal: find a deformation ¢ such that

R~Tog¢

Image registration problem

Input: images R, T

Goal: find a deformation ¢ such that
R~Tog¢
which means

given a dissimilarity measure M

M[R, T o ¢] — min

Registration method

Gradient—based multilevel registration

> find a rigid deformation

cosa —sina X0 to
x)=|{_. :
o) <sma cos) <x1> + (tl)
P solve the registration problem for multiple image sizes, and at
each level use a standard gradient descent optimization

» small image features are not preserved on lower levels,
decreasing the likelihood of solver converging to a local
minimum

» the number of levels is known a priori, but the total number
of iterations is unknown because of a gradient descent solver

» as far as we are aware, a method with constant execution time
does not exist for non—convex problems

Series registration

Given a series of images

fo, 1, f2,. . fn

Series registration

Given a series of images

fo, 1, f2,. . fn

How to register two neighboring frames?

A registration method introduced before

diiv1 = A(fi, fir1)

Series registration

Given a series of images

fo, 1, f2,. . fn

How to register two neighboring frames?

A registration method introduced before
diiv1 = A(fi, fiy1)
How to register two non-neighboring frames?

$0,2,903; - - -, Po,n

Series registration

Given a series of images

fo, 1, f2,. . fn

How to register two neighboring frames?

A registration method introduced before
diiv1 = A(fi, fiy1)
How to register two non-neighboring frames?

$0,2,903; - - -, Po,n

dik = B(dij, djk)

Series registration

Series registration

Full registration for a series
Let's define a new operator ©Op

¢ij OB ik = B(dij, 9jk)
Then, the registration becomes

$0,1 = ¢o,1
02 = P01 OB P1,2
$0,3 = ¢0,1 O $12 OB P23

$0,n = $0,1 OB P12 OB+ OB Pn—1,n

For input deformation ¢; i1, apply ©g i times to first i input
deformations.

Series registration

Full registration for a series
Let's define a new operator ©Op

¢ij OB ik = B(dij, 9jk)
Then, the registration becomes

$0,1 = ¢o,1
$0,2 = ¢0,1 OB P12
$0,3 = ¢0,1 OB $12 O $23

$0,n = $0,1 OB P12 OB+ OB Pn—1,n

For input deformation ¢; i1, apply ©g i times to first i input
deformations.
A prefix sum of a sequence ¢g1,P12,...,Pn—1,n

Series registration

A parallel approach

» preprocessing step transforms a sequence of images
fb) ﬂ.a cey fn
into a sequence of neighbor deformations

¢0,1a ¢1727) ¢nfl,n

P a prefix sum registers each frame to the first image, producing
a new sequence

¢0,17 ¢0,27 R ¢017I"

Series registration

A parallel approach

» preprocessing step transforms a sequence of images
fb) ﬂ.a cey fn
into a sequence of neighbor deformations

¢0,1a ¢1727) ¢nfl,n

trivially parallelizable

P a prefix sum registers each frame to the first image, producing
a new sequence

¢0,17 ¢0,27 R ¢017n

Series registration

A parallel approach

» preprocessing step transforms a sequence of images
fb) ﬂ.a cey fn
into a sequence of neighbor deformations

¢0,1a ¢1727) ¢nfl,n

trivially parallelizable

P a prefix sum registers each frame to the first image, producing
a new sequence

¢0,17 ¢0,27 R ¢017n

a parallel prefix sum is necessary

Outline

Prefix sum

Inclusive prefix sum

vvyYyy

vy

YVi=X0Ox1 O - 0OXxi-10©X

also known under names scan, cumulative scan, partial sum
heavily researched for parallel prefix adders in electronics
a basic parallel programming pattern

dozens of applications: sorting, image processing, tridiagonal
solvers, graph and tree algorithms etc.

an active research area on GPUs

multiple implementations: C++/C++17, MPI_Scan,
IntelTBB, Boost.Compute

Prefix sum

Inclusive prefix sum
YVi=X0OXx1 O - OXx-1 00X

Exclusive prefix sum
Yi=X OX1 0 OX—1

Inclusive — Exclusive
Shift elements by one position to the right, insert identity element
at the beginning

Exclusive — Inclusive
Shift elements by one position to the left, compute last position

Parallel Prefix Sum

Parallel prefix algorithms
» Sklansky, 1960
» Kogge—Stone, 1973
» Brent—Kung, 1980
» Blelloch, 1989
» multiple other variants and combinations

Properties

» span, depth - the length of a critical path in the algorithm
» work, size - how many times is the operator applied?

Serial

Input

Xi Xj

Xi

Xi

Output

S(N)=N -1

Flow

Sklansky

Xi

Xj

Xi © X;j

Xi

Xj

Input

X0 X1 X2 X3 X4 X5 6 o

O 1 X , . 5 6 7
OizgXi Oj—pXi Oi—eXi Oj—oXi Oj_Xi Oj—oXi Oj—oXi Oj_oXi

Output

S(N) = logy N

Flow

Kogge—Stone

Xi Xj

Xi © X;j

Xi

Xj

X0 X1

N

)\

0 1
Op—oXi Oj—oXi

Input

X2 X3 X4

2 3 :
OizoXi OjzoXi Oj—oXi

Output

S(N) = logy N

X5

5
@i:OXi

X6

6
OF_gXi

X7

7
®© i=0Xi

Flow

Brent—Kung

Input

Xi Xj X0 X1 X2 X3 X4 X5 X6 X7

Flow

1 2 ~ 4 - .
O oxi Ofoxi OLgx i Obegxi OLgxi ©OLgx Ol

Output

S(N)=2log, N —1

Blelloch

Input
X Xj X0 X1 X2
Xi © Xj
X
i Io
H
w
Xj
X Xj
L
swap(xi, X;) I 0 x ol x 02ox O3 ox O x @5 ox O
(o} ©OizgXi Oj—Xi Di—Xi Oi_Xi Wi—Xi Of—oXi Ji=0

Output

S(N) =2log, N

Comparison

Name Type Span Work
Sequential Inclusive N-—-1 N-—-1
Blelloch Exclusive 2-logy, N 2(N—-1)
Brent—-Kung Inclusive 2-log, N—1 2-N —logy, N —2
Kogge—Stone Inclusive logy N N-loggN—N+1
Sklansky Inclusive logy N % -logy N
Properties

P decrease in span is accompanied by an increase in work

» there is a class of zero—deficient parallel prefix algorithms,
where a decrease in span is equal to an increase in work

» span—optimal algorithms can not be zero—deficient

Outline

Problem statement

Distributed implementation

» register N + 1 images on P MPI ranks

» image files accessible by all ranks, only deformations are
shared between workers

P in a rigid case, the communication cost is equal to sending
three floating—point numbers

Related work
» pipelined binary trees (2006)
» 2Tree algorithm exploiting bidirectional communication (2009)

> research focused on reducing communication cycles and
improving bandwidth

Computational intensity

Execution time for functions A and B for serial matching of 64 images.

14

12 '

8e,

10 e : .

Time [s]

e

10 20 30 40 50 60
Deformation index

—e— Function A -+- Function B

Variance of execution time

Time [s]

110

100

90

80

35

30

25

20

8 ranks

16 ranks

o
g O

70

60

50

40

4
32 ranks

30

10

15

MPI Rank

7

Figure: Execution time of function B for 128 images

Associativity

In registration of fy and f4, is there a difference between

$o,2 = B(do,1, ¢1,2)
$0,3 = B(¢o,2, $2,3)
$o,4 = B(do,3, $3.4)

and

$0,2 = B(¢o,1, ¢1,2)
$2.4 = B(¢23, $34)
$0,4 = B(do2, $2,4)

Associativity

In registration of fy and f4, is there a difference between

$o,2 = B(do,1, ¢1,2)
$0,3 = B(¢o,2, $2,3)
$o,4 = B(do,3, $3.4)

and

$0,2 = B(¢o,1, ¢1,2)
$2.4 = B(¢23, $34)
$0,4 = B(do2, $2,4)

Yes.

Approximate associativity

The evaluation of energy functional in neighborhood of ¢4 and ¢ 4

—0.4

0.4]
| \ oAl
o o o o
B S DS S
E w N [

Eltpoa + (1 — t)eyp,

|
<
~
o

—0.46

Registration operator

Literature describes prefix sums where the operator
P is simple and not computationally intensive
P has a stable and deterministic execution time

P is associative

Registration operator

Literature describes prefix sums where the operator
P is simple and not computationally intensive
P has a stable and deterministic execution time

P is associative

In the image registration, the prefix sum operator is

P is complex and computationally intensive
» has an unpredictable execution time

> is approximately associative i.e. changing the order of
execution may result in a different, but still correct solution

Algorithm

Assumptions
» reduce the span to minimum - "do more work but in
parallel”
» communication cost is much smaller than computation cost

» log, P < log, N = a global prefix sum with one data
element per rank

» equal distribution of work between MPI ranks

Algorithm

Lineout

» rank J obtains a sequence of data x;,, X,41,...,X;, with
K = % elements

» rank J performs a local prefix sum, reducing sequence to x;, ,

S(N,P):%—l

> a global exclusive prefix sum on reduced values x;, ,, is
performed. rank / obtains a result xo r, ,

S(N,P) = Cylog, P
» xo,r, , and xj, ;,4; are combined to form xg ;4

SV, P) =5

Algorithm

Worker 0 Worker 1 Worker P-2 Worker P-1
Input
X0y -+ XK—1 XKooy X2 K1 Xp_gs -+ Xrp_a Xlp_y5+ - X]
X0, -+ X0,K—1 XKy - XK,2-K—1 . Xlp_gs+++ s Xlp_a\rp_2 Xlp_ys -+ Xlp_1,N—1
X0,K—1y XK,2-K=15++ s XlIp_p,rp_25 Xlp_1 ,N—~1
‘ Exclusive parallel prefix sum ‘
X0,Ks - -+ X0,rp_35 X0,rp_s
X0y -y X0,K—1 X0,K5+ -+ 5 X0,2-K—1 .- X0,lp_p5 s X0,rp_2 X0,lp_15 - -+ s X0O,N—1

Output

Global Scan

Local Stage One

Local Stage Two

Alternative formulation

Worker 0 Worker 1 Worker P-2 Worker P-1
Input
X0y -+ XK1 XKoo X2.K-1 Xlp_z5 -+ Xrp_2 Xlp_1>++ s XN-1
X0,K—1 XK,2-K—1 e Xlp_,rp—2 Xip_3,N—1
| J
X0,K—15 XK, 2-K—15+ + + s Xlp_p,rp_3s Xlp_1,N—1
6, X0,K 5+ -+ X0,rp_35 X0,rp_s
‘ Prefix sum ‘ ‘ Prefix sum ‘ Prefix sum Prefix sum
X0, -+ s X0,K—1 X0,K5 -+ -2 X0,2-K—1 X0,lp_p1 -+ X0,rp_p X0,lp_y15 -+ s XO,N—1

Output

Global Scan

Local Stage One

Local Stage Two

Distributed prefix sum

Span

N N
S(N,P):ﬁ—f-CllogzP—Fﬁ—FCg

constant C; depends on choice of strategy and global prefix sum

Speedup

N-—-1
%+C1|Og2P+C2

SP(N, P) =

Global prefix sum

Algorithms

» Kogge—Stone
Sklansky

| 2
» Blelloch
| 2

OpenMPI
» MPI_Scan
» MPI_Exscan
IntelMPI

» MPI_Scan, MPI_Exscan
» topology—aware versions of standard algorithms

v

Theoretical comparison

Theoretical speedup for a distributed prefix sum.

350 \

300

250

200

150

Speedup

100

50

0

20 21 22 23 24 25 26 27 28 29 210 211 212
Number of workers

—e— Kogge—Stone, Sklansky —s— Blelloch —— Serial

Outline

Results

Scenarios
P strong scaling
» weak scaling
» multithreading

Other results

» for OpenMPI, an inclusive prefix sum attains the best
performance

» for IntelMPI, an exclusive prefix sum with a topology—aware
algorithm attains the best performance

» the alternative strategy does not improve the performance

Strong scaling

P test the algorithm for an increasing number of MPI ranks P
and a constant size N

» with a decreasing chunk of work per rank, the global stage
starts to dominate the runtime

Strong scaling

Speedup

180

160

140

120

100

80

60

40

20

Distributed prefix sum for image registration, N = 4096

g

MPI ranks

—— Kogge-Stone — Blelloch —

- #- Blelloch - - Kogge-Stone - - OpenMPI - «- IntelMPI - +- Sklansky

Serial

Strong scaling

Distributed prefix sum for image registration, N = 512
T T T T

Speedup

| !
128 256 512

MPIT ranks

- - Blelloch - e- Kogge-Stone - - OpenMPI - 4- IntelMPI - +- Sklansky
Kogge—Stone—— Blelloch —— Serial

Weak scaling

> test the algorithm for a constant chunk of work per rank %

> the span of a distributed prefix sum can be given in a generic
form

2N
S(N,P) = =3 + Glogo, P+ G, G, G eN
then

4N
S(2N,2P) = >p + Glogy 2P + G

thus, an increase in execution time is expected

Weak scaling

Time [s]

Weak scaling for distributed prefix sum, work chunk per MPI rank 32.

580 -]

560 - AT

500 |-

460%
440 4~
420F 8
400 -/ 8
380 |- i

4 8 16 32 64 128
MPI ranks

- u- Blelloch - e- Kogge—Stone - 4- IntelMPI - 4- Sklansky

Multithreading

> instead of a distributed prefix sum on P ranks, use ; ranks

and allocate T threads for each rank to parallelize the
registration process

P the image registration operator can be parallelized with
estimated speedup 1.67 times on two threads and 3 times on
four threads

» results are presented for GCC OpenMP runtime, the Intel
OpenMP runtime did not perform significantly different

Multithreading

1,020

512

Time [s]

256

128

A distributed prefix sum with GOMP multithreading, N = 512.
L

/

/,
/)

o,

T T T T
8 16 32 64 128
Number of processor cores

101 Thread D2 Threads[[14 Threads |

256

30

25

20

15

10

Speedup

Outline

Summary

Conclusions

>

>

as expected, our problem does not scale well on a large
number of processors

weak scaling is far from ideal as well

the actual performance does not meet theoretical predictions
because of an unbalanced workload

the span—optimal Kogge—Stone algorithm provides the best
performance in many experiments, but not in all of them

Summary

Conclusions

P as expected, our problem does not scale well on a large
number of processors

> weak scaling is far from ideal as well

» the actual performance does not meet theoretical predictions
because of an unbalanced workload

» the span—optimal Kogge—Stone algorithm provides the best
performance in many experiments, but not in all of them

Possible improvements

» balancing the workload in last stage

» a shared—memory implementation may reduce effects of load
imbalance

> further parallelization of the binary operator

