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Acquisition technique

I transmission electron microscopy (TEM)

I an electron beam passes through a sample

I the interaction of electrons with the specimen is mapped to a
display device

I the quality of data is limited by changes in the sample induced
by electrons
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Data sample

Figure: An example of frame acquired with TEM.

All images courtesy of the University of Manchester.



5/1

Improved acqusition

First step: replace a single high–dose frame with a series of
low–dose frames
I decreases the risk of beam damage

I captures motion of the observed object

I captured frames may have a low signal–to–noise ratio

I data analysis obstructed by sample drift during the acquisition

Second step: image registration for a series of frames

I aligning frames to the first one removes the sample motion

I aligned frames can be averaged to represent the sample in one
frame

I quality of results depends on the image processing

I image registration can be computationally expensive - can we
parallelize that?
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Data sample

Example: aluminum oxidation

I acquisition performed with an ultrahigh vacuum
high-resolution transmission electron microscopy (UHV
HRTEM)

I capture 400 frames per second

I 2.7 GB of data per a second of acquisition
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Image registration problem

Input: images R, T

Goal: find a deformation φ such that

R ≈ T ◦ φ

which means

given a dissimilarity measure M

M[R, T ◦ φ]→ min
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Registration method

Gradient–based multilevel registration

I find a rigid deformation

φ(x) =

(
cosα − sinα
sinα cosα

)
·
(
x0
x1

)
+

(
t0
t1

)
I solve the registration problem for multiple image sizes, and at

each level use a standard gradient descent optimization

I small image features are not preserved on lower levels,
decreasing the likelihood of solver converging to a local
minimum

I the number of levels is known a priori, but the total number
of iterations is unknown because of a gradient descent solver

I as far as we are aware, a method with constant execution time
does not exist for non–convex problems
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Series registration

Given a series of images

f0, f1, f2, . . . , fn

How to register two neighboring frames?

A registration method introduced before

φi ,i+1 = A(fi , fi+1)

How to register two non-neighboring frames?

φ0,2, φ0,3, . . . , φ0,n

φi ,k = B(φi ,j , φj ,k)
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Series registration

f0 f1 f2 f3 f4 f5 f6 f7
φ0,1 φ1,2 φ2,3 φ3,4 φ4,5 φ5,6 φ6,7

φ0,2
φ0,3

φ0,4
φ0,5

φ0,6 φ0,7
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Series registration

Full registration for a series

Let’s define a new operator �B

φi ,j �B φj ,k = B(φi ,j , φj ,k)

Then, the registration becomes

φ0,1 = φ0,1

φ0,2 = φ0,1 �B φ1,2

φ0,3 = φ0,1 �B φ1,2 �B φ2,3

. . .

φ0,n = φ0,1 �B φ1,2 �B · · · �B φn−1,n

For input deformation φi ,i+1, apply �B i times to first i input
deformations.
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. . .

φ0,n = φ0,1 �B φ1,2 �B · · · �B φn−1,n

For input deformation φi ,i+1, apply �B i times to first i input
deformations.
A prefix sum of a sequence φ0,1, φ1,2, . . . , φn−1,n
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Series registration

A parallel approach

I preprocessing step transforms a sequence of images

f0, f1, . . . , fn

into a sequence of neighbor deformations

φ0,1, φ1,2, . . . , φn−1,n

trivially parallelizable

I a prefix sum registers each frame to the first image, producing
a new sequence

φ0,1, φ0,2, . . . , φ01,n

a parallel prefix sum is necessary
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Prefix sum

Inclusive prefix sum

yi = x0 � x1 � · · · � xi−1 � xi

I also known under names scan, cumulative scan, partial sum

I heavily researched for parallel prefix adders in electronics

I a basic parallel programming pattern

I dozens of applications: sorting, image processing, tridiagonal
solvers, graph and tree algorithms etc.

I an active research area on GPUs

I multiple implementations: C++/C++17, MPI Scan,
IntelTBB, Boost.Compute
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Prefix sum

Inclusive prefix sum

yi = x0 � x1 � · · · � xi−1 � xi

Exclusive prefix sum

yi = x0 � x1 � · · · � xi−1

Inclusive → Exclusive
Shift elements by one position to the right, insert identity element
at the beginning

Exclusive → Inclusive
Shift elements by one position to the left, compute last position
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Parallel Prefix Sum

Parallel prefix algorithms

I Sklansky, 1960

I Kogge–Stone, 1973

I Brent–Kung, 1980

I Blelloch, 1989

I multiple other variants and combinations

Properties

I span, depth - the length of a critical path in the algorithm

I work, size - how many times is the operator applied?
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Serial

x0 x1 x2 x3 x4 x5 x6 x7

�0
i=0xi �1

i=0xi �2
i=0xi �3

i=0xi �4
i=0xi �5

i=0xi �6
i=0xi �7

i=0xi

xjxi

xi � xj

xi

xi

Input

Output

F
lo

w

S(N) = N − 1
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Sklansky

x0 x1 x2 x3 x4 x5 x6 x7

�0
i=0xi �1

i=0xi �2
i=0xi �3

i=0xi �4
i=0xi �5

i=0xi �6
i=0xi �7

i=0xi

Input

Output

xjxi

xi � xj

xi

xi

F
lo

w

S(N) = log2N
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Kogge–Stone

x0 x1 x2 x3 x4 x5 x6 x7
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Brent–Kung

x0 x1 x2 x3 x4 x5 x6 x7

�0
i=0xi �1

i=0xi �2
i=0xi �3

i=0xi �4
i=0xi �5

i=0xi �6
i=0xi �7

i=0xi

Input

Output

xjxi

xi � xj

xi

xi

F
lo

w

S(N) = 2 log2N − 1
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Blelloch

x0 x1 x2 x3 x4 x5 x6 x7

I�

I� �0
i=0xi �1

i=0xi �2
i=0xi �3

i=0xi �4
i=0xi �5

i=0xi
�6

i=0xi

Input

Output

xjxi

xi � xj

xi

xi

xjxi

swap(xi , xj)

F
lo

w

S(N) = 2 log2N
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Comparison

Name Type Span Work

Sequential Inclusive N − 1 N − 1
Blelloch Exclusive 2 · log2N 2(N − 1)

Brent–Kung Inclusive 2 · log2N − 1 2 · N − log2N − 2
Kogge–Stone Inclusive log2N N · log2N − N + 1

Sklansky Inclusive log2N
N
2 · log2N

Properties

I decrease in span is accompanied by an increase in work

I there is a class of zero–deficient parallel prefix algorithms,
where a decrease in span is equal to an increase in work

I span–optimal algorithms can not be zero–deficient
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Problem statement

Distributed implementation

I register N + 1 images on P MPI ranks

I image files accessible by all ranks, only deformations are
shared between workers

I in a rigid case, the communication cost is equal to sending
three floating–point numbers

Related work
I pipelined binary trees (2006)

I 2Tree algorithm exploiting bidirectional communication (2009)

I research focused on reducing communication cycles and
improving bandwidth
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Computational intensity

10 20 30 40 50 60

0

2

4

6

8

10

12

14

Deformation index

T
im

e
[s

]

Execution time for functions A and B for serial matching of 64 images.

Function A Function B



26/1

Variance of execution time
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Associativity

In registration of f0 and f4, is there a difference between

φ0,2 = B(φ0,1, φ1,2)

φ0,3 = B(φ0,2, φ2,3)

φ0,4 = B(φ0,3, φ3,4)

and

φ0,2 = B(φ0,1, φ1,2)

φ2,4 = B(φ2,3, φ3,4)

φ0,4 = B(φ0,2, φ2,4)

Yes.
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Approximate associativity
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Registration operator

Literature describes prefix sums where the operator

I is simple and not computationally intensive

I has a stable and deterministic execution time

I is associative

In the image registration, the prefix sum operator is

I is complex and computationally intensive

I has an unpredictable execution time

I is approximately associative i.e. changing the order of
execution may result in a different, but still correct solution
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Algorithm

Assumptions

I reduce the span to minimum - ”do more work but in
parallel”

I communication cost is much smaller than computation cost

I log2 P < log2N =⇒ a global prefix sum with one data
element per rank

I equal distribution of work between MPI ranks
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Algorithm

Lineout
I rank J obtains a sequence of data xlJ , xlJ+1, . . . , xrJ with

K = N
P elements

I rank J performs a local prefix sum, reducing sequence to xlJ ,rJ

S(N,P) =
N

P
− 1

I a global exclusive prefix sum on reduced values xlJ ,rJ is
performed. rank I obtains a result x0,rJ−1

S(N,P) = C1 log2 P

I x0,rJ−1
and xlJ ,lJ+i are combined to form x0,lJ+i

S(N,P) =
N

P
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Algorithm

x0, . . . ,x0,K−1x0,K−1x0,K−1

Prefix sum

x0, . . . , xK−1

Worker 0

xK , . . . ,xK ,2·K−1xK ,2·K−1xK ,2·K−1
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Alternative formulation
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Distributed prefix sum

Span

S(N,P) =
N

P
+ C1 log2 P +

N

P
+ C2

constant C2 depends on choice of strategy and global prefix sum

Speedup

SP(N,P) =
N − 1

2N
P + C1 log2 P + C2
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Global prefix sum

Algorithms

I Kogge–Stone

I Sklansky

I Blelloch
I OpenMPI

I MPI Scan
I MPI Exscan

I IntelMPI
I MPI Scan, MPI Exscan
I topology–aware versions of standard algorithms
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Theoretical comparison
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Results

Scenarios
I strong scaling

I weak scaling

I multithreading

Other results
I for OpenMPI, an inclusive prefix sum attains the best

performance

I for IntelMPI, an exclusive prefix sum with a topology–aware
algorithm attains the best performance

I the alternative strategy does not improve the performance
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Strong scaling

I test the algorithm for an increasing number of MPI ranks P
and a constant size N

I with a decreasing chunk of work per rank, the global stage
starts to dominate the runtime
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Strong scaling
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Strong scaling
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Weak scaling

I test the algorithm for a constant chunk of work per rank N
P

I the span of a distributed prefix sum can be given in a generic
form

S(N,P) =
2N

P
+ C1 log2 P + C2, C1,C2 ∈ N

then

S(2N, 2P) =
4N

2P
+ C1 log2 2P + C2

= S(N,P) + C1

thus, an increase in execution time is expected
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Weak scaling
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Multithreading

I instead of a distributed prefix sum on P ranks, use P
T ranks

and allocate T threads for each rank to parallelize the
registration process

I the image registration operator can be parallelized with
estimated speedup 1.67 times on two threads and 3 times on
four threads

I results are presented for GCC OpenMP runtime, the Intel
OpenMP runtime did not perform significantly different



45/1

Multithreading
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Summary

Conclusions
I as expected, our problem does not scale well on a large

number of processors

I weak scaling is far from ideal as well

I the actual performance does not meet theoretical predictions
because of an unbalanced workload

I the span–optimal Kogge–Stone algorithm provides the best
performance in many experiments, but not in all of them

Possible improvements

I balancing the workload in last stage

I a shared–memory implementation may reduce effects of load
imbalance

I further parallelization of the binary operator
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