
HPX and GPU-parallized STL

Marcin Copik 1

Louisiana State University
Center for Computation and Technology

The STEllAR Group
1mcopik@gmail.com

May 13, 2016

1 of 65

GSoC ’15 Project

Project: ”Integrate a C++AMP Kernel with HPX”
Mentor: Hartmut Kaiser

2 of 65

Plan

HPX
Parallelism in C++

Concepts
GPU in HPX

Execution
Data placement

GPU standards for C++

C++AMP
Khronos SYCL
Compilers

Results
Implementation
STREAM benchmark

Goals

2 of 65

What is HPX?

� High Performance ParalleX 1,2

� Runtime for parallel and distributed applications

� Written purely in C++, with large usage of Boost

� Unified and standard-conforming C++ API

1
Parallex an advanced parallel execution model for scaling-impaired applications-H. Kaiser et al - ICPPW, 2009

2
A Task Based Programming Model in a Global Address Space - H. Kaiser et al - PGAS, 2014

3 of 65

What is HPX?

4 of 65

HPX and C++ standard

HPX implements and even extends:

� Concurrency TS, N4107

� Extended async, N3632

� Task block, N4411

� Parallelism TS, N4105

� Executor, N4406

Another components

� partitioned vector

� segmented algorithms3

3
Segmented Iterators and Hierarchical Algorithms-Austern, Matthew H. - Generic Programming: International

Seminar on Generic Programming, 2000

5 of 65

HPX and C++ standard

HPX implements and even extends:

� Concurrency TS, N4107

� Extended async, N3632

� Task block, N4411

� Parallelism TS, N4105

� Executor, N4406

Another components

� partitioned vector

� segmented algorithms3

3
Segmented Iterators and Hierarchical Algorithms-Austern, Matthew H. - Generic Programming: International

Seminar on Generic Programming, 2000

5 of 65

Plan

HPX
Parallelism in C++

Concepts
GPU in HPX

Execution
Data placement

GPU standards for C++

C++AMP
Khronos SYCL
Compilers

Results
Implementation
STREAM benchmark

Goals

5 of 65

Overview

6 of 65

Execution policy

Puts restriction on execution, ensuring thread-safety

Parallelism TS
� sequential

� parallel

� parallel vector

HPX
� asynchronous sequential

� asynchronous parallel

7 of 65

Execution policy

Extended API for algorithms:

template <typename ExecutionPolicy , typename InputIt , typename

UnaryFunction >

void for_each(ExecutionPolicy && policy , InputIt first , InputIt

last , UnaryFunction f)

8 of 65

Executor

Platform and vendor independent abstraction for launching work

� generic sequential and parallel executor

� core

� NUMA domain

� cluster node

� accelerator

9 of 65

Executor API

Requires only one function:

template <typename F>

hpx::future <typename hpx::util::result_of <

typename hpx::util::decay <F>:: type()

>::type >

async_execute(F && f)

{

return hpx::async(launch ::async , std::forward <F>(f));

}

Synchronous execution and bulk overload may be provided through
executor traits

10 of 65

Algorithm example

std::vector <std::size_t > c(n);

std::iota(boost:: begin(c), boost::end(c), std::rand());

/** Semantically same as std:: for_each **/

hpx:: parallel :: for_each(hpx:: parallel ::seq , boost::begin(c),

boost::end(c), [](std:: size_t& v) { v = 42;});

/** Parallelize for_each **/

hpx:: parallel :: for_each(hpx:: parallel ::par , boost::begin(c),

boost::end(c), [](std:: size_t& v) { v = 43;});

11 of 65

Executor parameters

Provide specific launch parameters

� chunk size controls scheduling, similar to OpenMP

Bind executor with parameter
hpx:: parallel :: for_each(

par.with(hpx:: parallel :: static_chunk_size (100)),

...)

Bind executor with tasking and parameter
hpx:: parallel :: for_each(

par.on(hpx:: parallel ::task).with(hpx:: parallel ::

static_chunk_size (100)),

...)

12 of 65

Asynchronous execution

Future
� represents result of an unfinished computation

� enables sending off operations to another thread

� TS allows for concurrent composition of different algorithms

� explicit depiction of data dependencies

Compose different operations
future <type > f1 = for_each(par_task , ...);

auto f2 = f1.then(

[](future <type > f1) {

for_each(par_task , ...);

}

);

13 of 65

Plan

HPX
Parallelism in C++

Concepts
GPU in HPX

Execution
Data placement

GPU standards for C++

C++AMP
Khronos SYCL
Compilers

Results
Implementation
STREAM benchmark

Goals

13 of 65

GPU execution policy

Why a separate policy?

� allows to specialize algorithms behaviour

� explicit offloading of computation to a device

� wraps a default type of executor

Code does not depend on executor

#if defined(HPX_WITH_AMP)

typedef parallel :: gpu_amp_executor executor_type;

#else

typedef parallel :: gpu_sycl_executor executor_type;

...

gpu:: executor_type my_exec;

14 of 65

GPU execution policy

Why a separate policy?

� allows to specialize algorithms behaviour

� explicit offloading of computation to a device

� wraps a default type of executor

Code does not depend on executor

#if defined(HPX_WITH_AMP)

typedef parallel :: gpu_amp_executor executor_type;

#else

typedef parallel :: gpu_sycl_executor executor_type;

...

gpu:: executor_type my_exec;

14 of 65

GPU executor

� implements functions for synchronous and asynchronous execution

� currently provides interface for data allocation

GPU executors:
� C++AMP

� SYCL

� CUDA4

� probably HC in future

4Separate project
15 of 65

Data placement on device

Scheme of execution on GPU:
� transfer data from host to device

� submit kernel

� wait for finish

� transfer data back from device

Solution: algorithm automatically transfers data to GPU

+ user is not aware of data transfer

+ algorithms API does not change

16 of 65

Data placement on device

Scheme of execution on GPU:
� transfer data from host to device

� submit kernel

� wait for finish

� transfer data back from device

Solution: algorithm automatically transfers data to GPU

+ user is not aware of data transfer

+ algorithms API does not change

16 of 65

Data placement on device

Scheme of execution on GPU:
� transfer data from host to device

� submit kernel

� wait for finish run more kernels

� transfer data back from device

Solution: algorithm automatically transfers data to GPU

+ user is not aware of data transfer

+ algorithms API does not change

− unnecessary data transfers for operations over the same data

17 of 65

Data placement on device

Scheme of execution on GPU:
� transfer data from host to device

� submit kernel

� wait for finish run more kernels

� transfer data back from device

Solution: algorithm automatically transfers data to GPU

+ user is not aware of data transfer

+ algorithms API does not change

− unnecessary data transfers for operations over the same data

17 of 65

Data placement on device

Solution: GPU iterator
� use executor API to place data on GPU

� run many algorithms using iterator defined in executor

� synchronize data on GPU with host when it’s needed

std::vector <int > vec (10);

auto buffer = exec.create_buffers(vec.begin(), vec.end());

hpx:: parallel :: for_each(hpx:: parallel ::gpu , buffer.begin(),

buffer.end(), ...);

buffer.synchronize ();

18 of 65

Data placement on device

Solution: GPU iterator
� use executor API to place data on GPU

� run many algorithms using iterator defined in executor

� synchronize data on GPU with host when it’s needed

Solution: GPU iterator

+ optimized data transfer

+ algorithms API does not change

− explicit dependency on a GPU executor

19 of 65

Data placement on device

Solution: GPU iterator
� use executor API to place data on GPU

� run many algorithms using iterator defined in executor

� synchronize data on GPU with host when it’s needed

Solution: GPU iterator

+ optimized data transfer

+ algorithms API does not change

− explicit dependency on a GPU executor → GPU-aware data
structure

20 of 65

Plan

HPX
Parallelism in C++

Concepts
GPU in HPX

Execution
Data placement

GPU standards for C++

C++AMP
Khronos SYCL
Compilers

Results
Implementation
STREAM benchmark

Goals

20 of 65

C++AMP

� open specification proposed by Microsoft

� designed primarily for implementation based on DirectX

� allows for scheduling C++ kernels on accelerators

� current version 1.2, released in March 2013

� warning: Microsoft specific extensions, code may not be portable

21 of 65

Accelerators

accelerator
� abstract view of a computing device (e.g. CPU, GPU)

� provides necessary information, e.g. amount of memory

� standard specifies only two accelerator types: cpu and a default one

� may be used to control on which device place data and run job

accelerator view
� a queue for submitting jobs

� enables synchronization through wait method

� multiple views are safe in a multi-threaded application

22 of 65

Data placement

array

� N-dimensional generic container for data on device

� type restrictions: proper alignment of compound types and at least
for 4 bytes per fundamental type

� bound to a specific accelerator

array view

� cached view of data with an implicit copy

� useful for containers or pointers

23 of 65

Kernel submission

parallel for each

� uses separate extent structure to specify number of threads
created on device

� function executed on GPU has exactly one argument - index
specifying location inside thread grid

� call should be synchronous, but may be optimized by compiler and
return earlier

� first copy of data out of device enforces synchronization

extent
� creates N-dimensional grid of threads

� dimensionality known at compile time

24 of 65

Kernel submission

Restrictions
� no virtual functions

� no RTTI

� no exceptions

� recursion allowed since AMP 1.2

� functions called on device must be visible at compile time

� keyword restrict(amp) must be used on functions executed on
device

25 of 65

Kernel submission for iterators

std::vector <int > v = { ’G’, ’d’, ’k’, ’k’, ’n’, 31, ’v’, ’n’,

’q’, ’k’, ’c’};

Concurrency ::extent <1> extent(v.size());

Concurrency ::array <int > data(extent , v.begin (), v.end());

Concurrency :: parallel_for_each(extent ,

[&data , lambda](index <1> idx) restrict(amp) {

lambda(data[idx [0]]);

}

);

Concurrency ::copy(data , v.begin());

26 of 65

Heterogeneous Computing

� modification of C++AMP designed by AMD

� very novel idea, no formal specification yet

� uses concepts and design from AMP, but lifts some restrictions

Changes:

� keyword restrict is no longer necessary

� dynamic choice of extent dimensionality

� common address space for both host and device on HSA platforms

27 of 65

SYCL

� proposed by Khronos Group

� brings many concepts known from OpenCL

� version 1.2 of specification released in May 2015

� version 2.2 released in March 2016

� targets devices supporting different versions of OpenCL

28 of 65

Accelerators

� similar to OpenCL in design - platform, context, device, queue

� device selection through a separate selector: default, gpu, cpu, host

� non standard device selection through a custom selector

� kernel submission in a queue

29 of 65

Data placement

buffer
� N-dimensional generic container for data

� type restrictions: C++11 standard layout

buffer accessor
� data accessor on host or device

� doesn’t expose iterators, only index operator

� needs to be captured by lambda executed on device

� device accessor can be created only in queue code

30 of 65

Kernel submission for iterators

std::vector <int > data{ ’G’, ’d’, ’k’, ’k’, ’n’, 31, ’v’, ’n’,

’q’, ’k’, ’c’};

default_selector selector; queue myQueue(selector);

auto first = data.begin (); std:: size_t size = data.size();

/** Create buffer with copy back**/

std::shared_ptr <int > buf_data{new int[size],

[first , size](int * ptr) {

std::copy(ptr , ptr + size , first);

delete [] ptr;

}

};

std::copy(data.begin(), data.end(), buf_data.get());

buffer <int , 1> buf(buf_data , cl::sycl::range <1>(size));

31 of 65

Kernel submission for iterators

/** Send kernel **/

myQueue.submit ([&](handler& cgh) {

auto ptr = buf.get_access <access ::mode::read_write >(cgh);

auto lambda = [](int & v) { ++v; };

cgh.parallel_for <class HelloWorld >(range <1>(data.size()),

[=](id <1> idx) {

lambda(ptr[idx [0]]);

}

);

});

32 of 65

Kernel submission for iterators II

std::vector <int > data{ ’G’, ’d’, ’k’, ’k’, ’n’, 31, ’v’, ’n’,

’q’, ’k’, ’c’};

default_selector selector; queue myQueue(selector);

buffer <int , 1> buf(data.begin(), data.end());

myQueue.submit ([&](handler& cgh) {

auto ptr = buf.get_access <access ::mode::read_write >(cgh);

auto lambda = [](int & v) { ++v; };

cgh.parallel_for <class HelloWorld >(range <1>(data.size()),

[=](id <1> idx) {

lambda(ptr[idx [0]]);

}

);

});

auto host_acc = buf.get_access <access ::mode::read , access ::

target :: host_buffer >();

std::copy(host_acc.get_pointer (), host_acc.get_pointer () +

buf.get_count (), data.begin());

33 of 65

Kernel restrictions

� no virtual functions

� no exceptions

� no RTTI

� no recursion

� functions called on device must be visible at compile time

34 of 65

Kernel name

� two-tier compilation needs to link kernel code and invocation

� name has to be unique across whole program

� breaks the standard API for STL algorithms

� different extensions to C++ may solve this problem5

C++ code

cgh.parallel_for_each <class KernelName >(...);

5
Khronos’s OpenCL SYCL to support Heterogeneous Devices for C++ - Wong, M. et al. - P0236R0

35 of 65

Kernel name

� two-tier compilation needs to link kernel code and invocation

� name has to be unique across whole program

� breaks the standard API for STL algorithms

� different extensions to C++ may solve this problem5

C++ code

cgh.parallel_for_each <class KernelName >(...);

5
Khronos’s OpenCL SYCL to support Heterogeneous Devices for C++ - Wong, M. et al. - P0236R0

35 of 65

Kernel name

Names in template methods

template <typename FloatingType >

void solve_pde(vector <FloatingType > & in , vector <FloatingType >

& out)

{

// ...

cgh.parallel_for_each <class FDSolver >(...);

}

/* ... */

if (user_wants_less_precision)

solve_pde(float_data , float_result);

else

solve_pde(double_data , double_result);

error: definition with same mangled name as another definition

36 of 65

Kernel name

Names in template methods

template <typename FloatingType >

void solve_pde(vector <FloatingType > & in , vector <FloatingType >

& out)

{

// ...

cgh.parallel_for_each <class FDSolver >(...);

}

/* ... */

if (user_wants_less_precision)

solve_pde(float_data , float_result);

else

solve_pde(double_data , double_result);

error: definition with same mangled name as another definition

36 of 65

Names in template methods

template <typename FloatingType , typename SolverName >

void solve_pde(vector <FloatingType > & in , vector <FloatingType >

& out)

{

// ...

cgh.parallel_for_each <SolverName >(...);

}

/* ... */

if (user_wants_less_precision)

solve_pde <class FloatSolver >(float_data , float_result);

else

solve_pde <class DoubleSolver >(double_data , double_result);

37 of 65

Named execution policy

� execution policy contains the name

� use the type of functor if no name is provided

� used in prototype implementation of ParallelSTL done by Khronos6

struct DefaultKernelName {};

template <class KernelName = DefaultKernelName >

class sycl_execution_policy {

...

};

6https://github.com/KhronosGroup/SyclParallelSTL/

38 of 65

https://github.com/KhronosGroup/SyclParallelSTL/

HCC - Heterogeneous Computing Compiler

� started as Clamp for C++AMP, renamed later to Kalmar

� since November 2015 development supported by AMD

� LLVM-based compiler, two passes over source code

� requires libc++

Frontends
� C++AMP

� HC

Backends
� OpenCL C

� OpenCL SPIR

� HSAIL

� AMD Native GCN ISA

39 of 65

HCC - Heterogeneous Computing Compiler

� started as Clamp for C++AMP, renamed later to Kalmar

� since November 2015 developed supported by AMD

� open source and LLVM-based compiler, two passes over code

� requires libc++

Frontends
� C++AMP

� HC

Backends
� OpenCL C

� OpenCL SPIR

� HSAIL

� AMD Native GCN ISA

40 of 65

ComputeCPP

� SYCL device compiler developed by Codeplay

� closed source, LLVM-based compiler

� no official release candidate (yet)

41 of 65

ComputeCPP

� SYCL device compiler developed by Codeplay

� closed source, LLVM-based compiler

� no official release candidate (yet)

� one backend: OpenCL SPIR

41 of 65

ComputeCPP

� SYCL device compiler developed by Codeplay

� closed source, LLVM-based compiler

� no official release candidate (yet)

� one backend: OpenCL SPIR → no support on NVIDIA GPUs

41 of 65

ComputeCPP

� SYCL device compiler developed by Codeplay

� closed source, LLVM-based compiler

� no official release candidate (yet)

� one backend: OpenCL SPIR → no support on NVIDIA GPUs

computecpp

� device code

� .sycl header for C++
+

cxx

� host code

� includes kernel
header

41 of 65

Plan

HPX
Parallelism in C++

Concepts
GPU in HPX

Execution
Data placement

GPU standards for C++

C++AMP
Khronos SYCL
Compilers

Results
Implementation
STREAM benchmark

Goals

41 of 65

Integration with HCC

� HPX needs to be compiled and linked with libc++

� HCC becomes the CMAKE CXX COMPILER

� expect that it may not always work out of the box

+ easy integration with existing build system

− increased time and memory usage for compilation, even for
non-GPU source code

42 of 65

Executor

� two phase compilation requires pseudo-dependencies on targets in
CMake

� CMAKE CXX COMPILER doesn’t change

+ no change in environment - same compiler, same implementation
of C++

+ it is possible to apply new compiler only to files with GPU-code

− may be tricky to get it right with different build systems

43 of 65

Named execution policy

� execution policy contains the name

� use the type of functor if no name is provided

� used in prototype implementation of ParallelSTL done by Khronos7

struct DefaultKernelName {};

template <class KernelName = DefaultKernelName >

class sycl_execution_policy {

...

};

7https://github.com/KhronosGroup/SyclParallelSTL/

44 of 65

https://github.com/KhronosGroup/SyclParallelSTL/

Implementation of for each n

Current parallel implementation:

template <typename ExPolicy , typename F,

typename Proj = util:: projection_identity >

static typename detail :: algorithm_result <ExPolicy , Iter >:: type

parallel(ExPolicy policy , Iter first , std:: size_t count ,

F && f, Proj && proj)

{

if (count != 0)

{

return foreach_n_partitioner <ExPolicy >:: call(policy ,

first , count , [f, proj](Iter begin , std:: size_t size) {

loop_n(begin , size , [=](Iter const& curr)

{

invoke(f, invoke(proj , *curr));

}); });

}

return detail :: algorithm_result <ExPolicy , Iter >:: get(

std::move(first));

}

45 of 65

Implementation of for each n

How do we implement synchronous bulk execution?

static typename detail :: bulk_execute_result <F, Shape >:: type

bulk_execute(F && f, Shape const& shape)

{

// Shape elements are tuples with iterator , data count and

chunk size

typedef typename Shape:: value_type tuple_t;

for(auto const & elem : shape) {

auto iter = hpx::util::get <0>(elem);

std:: size_t data_count = hpx::util::get <1>(elem);

std:: size_t chunk_size = hpx::util::get <2>(elem);

std:: size_t threads_to_run = data_count / chunk_size;

std:: size_t last_thread_chunk = data_count -

(threads_to_run - 1)*chunk_size;

46 of 65

Implementation of for each n

How do we implement it?

Concurrency ::extent <1> e(threads_to_run);

Concurrency :: parallel_for_each(e, [=](Concurrency ::index

<1> idx) restrict(amp)

{

std:: size_t part_size =

idx [0] != static_cast <int >(threads_to_run - 1) ?

chunk_size : last_thread_chunk;

auto it = iter;

it.advance(idx [0]* chunk_size);

tuple_t tuple(it, 0, part_size);

f(tuple);

});

accelerator_view.wait();

}

}

47 of 65

Implementation of for each n

How do we call it?

std::vector <int > c(n);

std::iota(boost:: begin(c), boost::end(c), std::rand());

auto buffer = hpx:: parallel ::gpu.executor ().create_buffers(c.

begin(), c.end());

hpx:: parallel :: for_each(hpx:: parallel ::gpu ,

buffer.begin(), buffer.end(),

[](int& v) {

v = 400;

});

buffer.sync();

48 of 65

Implementation of transform

What is an unary transform?

typedef hpx::util:: zip_iterator <FwdIter , output_iterator >

zip_iterator;

typedef typename zip_iterator :: reference reference;

for_each_n <zip_iterator >().call(policy ,

hpx::util:: make_zip_iterator(first , dest),

std:: distance(first , last),

[f, proj](reference t)

{

using hpx::util::get; get <1>(t) = f(get <0>(t));

}));

What is a binary transform?

Same idea, just three iterators.

49 of 65

Implementation of transform

Wouldn’t it be great if it worked immediately on GPUs?

gpu amp executor?

yes, I can do that!

50 of 65

Implementation of transform

Wouldn’t it be great if it worked immediately on GPUs?

gpu amp executor?
yes, I can do that!

50 of 65

Implementation of transform

Wouldn’t it be great if it worked immediately on GPUs?

gpu sycl executor?

error: can not capture object ptr of type ’class cl::sycl::accessor[...]’ in
a SYCL kernel, because it is a non standard-layout type
error: class std::tuple is not standard layout, because multiple classes
among its base classes declare non-static fields

51 of 65

Implementation of transform

Wouldn’t it be great if it worked immediately on GPUs?

gpu sycl executor?

error: can not capture object ptr of type ’class cl::sycl::accessor[...]’ in
a SYCL kernel, because it is a non standard-layout type

error: class std::tuple is not standard layout, because multiple classes
among its base classes declare non-static fields

51 of 65

Implementation of transform

Wouldn’t it be great if it worked immediately on GPUs?

gpu sycl executor?

error: can not capture object ptr of type ’class cl::sycl::accessor[...]’ in
a SYCL kernel, because it is a non standard-layout type
error: class std::tuple is not standard layout, because multiple classes
among its base classes declare non-static fields

51 of 65

Executor parameters

Chunk size
� parallel algorithm exposes dynamic, static, guided, auto

� most of them doesn’t make sense on GPU, where there is a certain
overhead of launching small jobs

� GPU executor takes a static chunk size

Also:
� kernel name

� tiling size (local work size) in future

52 of 65

Name as an executor parameter

� name is still tied to an executor

� same API calls for both AMP and SYCL

#include <hpx/include/parallel_executor_parameters.hpp >

hpx:: parallel :: transform(hpx:: parallel ::gpu.with(

hpx:: parallel :: static_chunk_size (32),

hpx:: parallel :: kernel_name <class Add >()), ...);

53 of 65

Naming the kernel

� light wrapper around the kernel

� name is tied directly to the executed function

� not applicable for algorithms without user-defined operator

#include <hpx/parallel/executors/parallel_executor_parameters.

hpp >

#include <hpx/parallel/kernel_name.hpp >

hpx:: parallel :: for_each(

hpx:: parallel ::gpu.with(hpx:: parallel :: kernel_name <class

FalseName >()),

d.begin(), d.end(),

hpx:: parallel :: make_kernel <class CorrectName >([](int & v) {

v = 42;

})

);

54 of 65

Known problems

HCC
� problems with correct linking of kernel (HPX only)

� known bugs in OpenCL backend which most likely won’t be fixed

ComputeCPP

� incorrect capture of const integers in device lambda (HPX only)

� unfriendly build scripts

55 of 65

STREAM bechmark 8

STREAM benchmark consists of:

1 scalar k, 3 input arrays a, b, c and 4 operations

copy
c = a
scale

b = k ∗ c
add

c = b + a
triad

a = b + k ∗ c

8
Memory Bandwidth and Machine Balance in Current High Performance Computers - McCalpin, John D - IEEE

Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter, December 1995

56 of 65

STREAM bechmark 8

STREAM benchmark consists of:

1 scalar k, 3 input arrays a, b, c and 4 operations
copy
c = a

scale
b = k ∗ c

add
c = b + a

triad
a = b + k ∗ c

8
Memory Bandwidth and Machine Balance in Current High Performance Computers - McCalpin, John D - IEEE

Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter, December 1995

56 of 65

STREAM bechmark 8

STREAM benchmark consists of:

1 scalar k, 3 input arrays a, b, c and 4 operations
copy
c = a
scale

b = k ∗ c

add
c = b + a

triad
a = b + k ∗ c

8
Memory Bandwidth and Machine Balance in Current High Performance Computers - McCalpin, John D - IEEE

Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter, December 1995

56 of 65

STREAM bechmark 8

STREAM benchmark consists of:

1 scalar k, 3 input arrays a, b, c and 4 operations
copy
c = a
scale

b = k ∗ c
add

c = b + a

triad
a = b + k ∗ c

8
Memory Bandwidth and Machine Balance in Current High Performance Computers - McCalpin, John D - IEEE

Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter, December 1995

56 of 65

STREAM bechmark 8

STREAM benchmark consists of:

1 scalar k, 3 input arrays a, b, c and 4 operations
copy
c = a
scale

b = k ∗ c
add

c = b + a
triad

a = b + k ∗ c

8
Memory Bandwidth and Machine Balance in Current High Performance Computers - McCalpin, John D - IEEE

Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter, December 1995

56 of 65

Benchmarking hardware

C++AMP

� GPU: AMD Radeon R9 Fury Nano

� OpenCL: AMD APP SDK 3.02

� HSA: AMD ROCm 1.0

Khronos SYCL
� GPU: AMD Radeon R9 Fury Nano

� ComputeCPP: 15.10

� OpenCL: AMD APP SDK 3.02

GPU-STREAM has been used to measure OpenCL and HSA
performance: https://github.com/UoB-HPC/GPU-STREAM

57 of 65

https://github.com/UoB-HPC/GPU-STREAM

How does AMP perform?

58 of 65

How does AMP perform?

59 of 65

How does SYCL perform?

60 of 65

Overhead

HCC
� Compilation of HPX is approximately 2.4x slower

� Compilation of benchmark example increased from 20 to 48
seconds, 2.4x slower

� Peak memory usage of compiler and binary size are both
comparable

ComputeCPP

� For benchmark example, the overhead of device is compiler is 12
seconds to 20 seconds required by g++, slowing the compilation
1.6 times.

� Peak memory usage of compiler and binary size are both
comparable

61 of 65

Plan

HPX
Parallelism in C++

Concepts
GPU in HPX

Execution
Data placement

GPU standards for C++

C++AMP
Khronos SYCL
Compilers

Results
Implementation
STREAM benchmark

Goals

61 of 65

Data placement revised

How and when to place data?

� in the current implementation algorithm is responsible for data
allocation

� different types of memory on GPUs =⇒ executor should know
where execute kernel, not how to place data

� STL: algorithms and containers =⇒ container with special
allocator

� we want to support multiple GPUs =⇒ a partitioned vector with
segmented algorithms

62 of 65

Algorithms

63 of 65

hpx::compute

� ongoing work to provide standard compliant GPU algorithms in an
”STL way”

� includes AMP/SYCL backends presented here

� includes existing and developed support for CUDA and OpenCL

� focused on distributed computing

64 of 65

Thanks for your attention

mcopik@gmail.com

github.com/mcopik/

65 of 65

	HPX
	Parallelism in C++
	Concepts

	GPU in HPX
	Execution
	Data placement

	GPU standards for C++
	C++AMP
	Khronos SYCL
	Compilers

	Results
	Implementation
	STREAM benchmark

	Goals

