HPX and GPU-parallized STL

Lsu ‘ cCe:;errnm;r)utation & Technology

Interdisciplinary | Innovative | Inventive

@ STE||AR GROUP

1 of 65

Marcin Copik !

Louisiana State University
Center for Computation and Technology
The STEIIAR Group
I mcopik@gmail.com

May 13, 2016

@ STE||AR GROUP

GSoC '15 Project

Project: "Integrate a C++AMP Kernel with HPX"
Mentor: Hartmut Kaiser

2 of 65 @ STE||AR GROUP

Plan

HPX

2 of 65 @ STE||AR GROUP

What is HPX?

High Performance ParalleX 12

Runtime for parallel and distributed applications

Written purely in C++4, with large usage of Boost
Unified and standard-conforming C++ API

1Para//ex an advanced parallel execution model for scaling-impaired applications-H. Kaiser et al - ICPPW, 2009
2A Task Based Programming Model in a Global Address Space - H. Kaiser et al - PGAS, 2014

3 of 65 @ STE||AR GROUP

What is HPX?

w
(5}
=
3}
=
—
=}
Ay
-
5}
g
B

Policy En

4 of 65

C++1y Parallelism APIs

. Local Control Objects
Threading Subsystem (LCOs)

Performance Counter
Framework

Active Global Address
Space (AGAS) Parcel Transport Layer

@ STE||AR GROUP

HPX and C++ standard

HPX implements and even extends:
m Concurrency TS, N4107

Extended async, N3632

Task block, N4411

Parallelism TS, N4105
Executor, N4406

3Segmented Iterators and Hierarchical Algorithms-Austern, Matthew H. - Generic Programming: International
Seminar on Generic Programming, 2000

5 of 65 @ STE||AR GROUP

HPX and C++ standard

HPX implements and even extends:
m Concurrency TS, N4107

Extended async, N3632

Task block, N4411

Parallelism TS, N4105
Executor, N4406

Another components

B partitioned vector

® segmented algorithms3

3Segmented Iterators and Hierarchical Algorithms-Austern, Matthew H. - Generic Programming: International
Seminar on Generic Programming, 2000

5 of 65 @ STE||AR GROUP

Plan

Parallelism in C4++

5 of 65 @ STE||AR GROUP

Overview

Application ‘

Parall el
Asynchr

Restrictions —

Futures, Async, Dataflow

e.g. chunk size
Sequence, Concepts Exceution Policies ﬁ 3 egr ik s ’
)

\-\--_
Parameters...
! T
\

RIS @ STE||AR GROUP

Execution policy

Puts restriction on execution, ensuring thread-safety

Parallelism TS HPX
B sequential ® asynchronous sequential
® parallel ® asynchronous parallel

® parallel_vector

7 of 65 @ STE||AR GROUP

Execution policy

Extended API for algorithms:

template<typename ExecutionPolicy, typename InputlIt, typename
UnaryFunction>

void for_each(ExecutionPolicy&& policy, InputIt first, Inputlt
last, UnaryFunction f)

8 of 65 @ STE||AR GROUP

Executor

Platform and vendor independent abstraction for launching work
B generic sequential and parallel executor

® core

= NUMA domain

® cluster node

accelerator

9 of 65 @ STE||AR GROUP

Executor API

Requires only one function:

template <typename F>
hpx::future<typename hpx::util::result_of<
typename hpx::util::decay<F>::type()

>::type>
async_execute (F && f)
{

return hpx::async(launch::async, std::forward<F>(f));
}

Synchronous execution and bulk overload may be provided through
executor_traits

10 of 65 @ STE||AR GROUP

Algorithm example

std::vector<std::size_t> c(n);

std::iota(boost::begin(c), boost::end(c), std::rand());

/** Semantically same as std::for_each xx*/

hpx::parallel::for_each(hpx::parallel::seq, boost::begin(c),
boost::end(c), [I(std::size_t& v) { v = 42;});

/** Parallelize for_each *x/
hpx::parallel::for_each(hpx::parallel::par, boost::begin(c),
boost::end(c), [J(std::size_t& v) { v = 43;});

11 of 65 @ STE||AR GROUP

Executor parameters

Provide specific launch parameters

® chunk size controls scheduling, similar to OpenMP

Bind executor with parameter
hpx::parallel::for_each(

par.with(hpx::parallel::static_chunk_size (100)),
)

Bind executor with tasking and parameter
hpx::parallel::for_each(

par.on(hpx::parallel::task).with(hpx::parallel::
static_chunk_size (100)),
2

12 of 65 @ STE||AR GROUP

Asynchronous execution

Future

® represents result of an unfinished computation
B enables sending off operations to another thread

® TS allows for concurrent composition of different algorithms
m explicit depiction of data dependencies

Compose different operations
future<type> f1 =
auto f2 = f1.then(
[] (future<type> f1) {
for_each(par_task, ...);

for_each(par_task, ...);

}
)

13 of 65 @ STE||AR GROUP

Plan

GPU in HPX

13 of 65 @ STE||AR GROUP

GPU execution policy

Why a separate policy?
B allows to specialize algorithms behaviour

m explicit offloading of computation to a device

® wraps a default type of executor

14 of 65 @ STE||AR GROUP

GPU execution policy

Why a separate policy?
B allows to specialize algorithms behaviour
m explicit offloading of computation to a device

® wraps a default type of executor

Code does not depend on executor
#if defined (HPX_WITH_AMP)

typedef parallel::gpu_amp_executor executor_type;
#else

typedef parallel::gpu_sycl_executor executor_type;

gpu::executor_type my_exec;

14 of 65 @ STE||AR GROUP

GPU executor

® implements functions for synchronous and asynchronous execution

® currently provides interface for data allocation

GPU executors:
C++AMP

SYCL

CUDA*

probably HC in future

“Separate project

15 of 65 @ STE||AR GROUP

Data placement on device

Scheme of execution on GPU:

® transfer data from host to device
® submit kernel

® wait for finish

® transfer data back from device

16 of 65 @ STE||AR GROUP

Data placement on device

Scheme of execution on GPU:

® transfer data from host to device
® submit kernel

® wait for finish

® transfer data back from device

Solution: algorithm automatically transfers data to GPU

-+ user is not aware of data transfer
+ algorithms API does not change

16 of 65 @ STE||AR GROUP

Data placement on device

Scheme of execution on GPU:
® transfer data from host to device
® submit kernel

m wait-forfinish run more kernels

® transfer data back from device

17 of 65 @ STE||AR GROUP

Data placement on device

Scheme of execution on GPU:

® transfer data from host to device

® submit kernel

m wait-forfinish run more kernels

® transfer data back from device

Solution: algorithm automatically transfers data to GPU

-+ user is not aware of data transfer

+ algorithms APl does not change
— unnecessary data transfers for operations over the same data

17 of 65 @ STE||AR GROUP

Data placement on device

Solution: GPU iterator

® yse executor APl to place data on GPU

B run many algorithms using iterator defined in executor
® synchronize data on GPU with host when it's needed

std::vector<int> vec (10);

auto buffer = exec.create_buffers(vec.begin(), vec.end());
hpx::parallel::for_each(hpx::parallel::gpu, buffer.begin(),
buffer.end (), ...);

buffer.synchronize () ;

18 of 65 @ STE||AR GROUP

Data placement on device

Solution: GPU iterator
® use executor APl to place data on GPU
® run many algorithms using iterator defined in executor

® synchronize data on GPU with host when it's needed

Solution: GPU iterator
+ optimized data transfer
+ algorithms APl does not change

— explicit dependency on a GPU executor

19 of 65 @ STE||AR GROUP

Data placement on device

Solution: GPU iterator
® yse executor API to place data on GPU
B run many algorithms using iterator defined in executor

B synchronize data on GPU with host when it's needed

Solution: GPU iterator
+ optimized data transfer

+ algorithms APl does not change
— explicit dependency on a GPU executor — GPU-aware data
structure

20 of 65 @ STE||AR GROUP

Plan

GPU standards for C++

20 of 65 @ STE||AR GROUP

C++AMP

® open specification proposed by Microsoft

designed primarily for implementation based on DirectX

allows for scheduling C++ kernels on accelerators

® current version 1.2, released in March 2013

warning: Microsoft specific extensions, code may not be portable

21 of 65 @ STE||AR GROUP

Accelerators

accelerator

® abstract view of a computing device (e.g. CPU, GPU)

® provides necessary information, e.g. amount of memory

® standard specifies only two accelerator types: cpu and a default one

® may be used to control on which device place data and run job

accelerator_view
® 3 queue for submitting jobs
® enables synchronization through wait method

® multiple views are safe in a multi-threaded application

22 of 65 { STE||AR GROUP

Data placement

array
® N-dimensional generic container for data on device

B type restrictions: proper alignment of compound types and at least
for 4 bytes per fundamental type
® bound to a specific accelerator

array_view
® cached view of data with an implicit copy

m useful for containers or pointers

23 of 65 @ STE||AR GROUP

Kernel submission

parallel_for_each

B uses separate extent structure to specify number of threads
created on device

® function executed on GPU has exactly one argument - index
specifying location inside thread grid

® call should be synchronous, but may be optimized by compiler and
return earlier

® first copy of data out of device enforces synchronization

extent
m creates N-dimensional grid of threads

® dimensionality known at compile time

24 of 65 { STE||AR GROUP

Kernel submission

Restrictions

® no virtual functions

® no RTTI

B no exceptions

B recursion allowed since AMP 1.2

m functions called on device must be visible at compile time

m keyword restrict(amp) must be used on functions executed on
device

25 of 65 @ STE||AR GROUP

Kernel submission for iterators

std::vector<int> v = { °G’, ’d’, ’k’, ’k’, ’n’, 31, ’v’, ’n’,
;q;, 7k’, 7C’};

Concurrency::extent<1> extent(v.size());

Concurrency::array<int> data(extent, v.begin(), v.end());

Concurrency::parallel_for_each(extent,
[&data, lambda](index<1> idx) restrict(amp) {
lambda (datal[idx[0]]);
}
)

Concurrency::copy(data, v.begin());

26 of 65 @ STE||AR GROUP

Heterogeneous Computing

® modification of C++AMP designed by AMD
® very novel idea, no formal specification yet

B uses concepts and design from AMP, but lifts some restrictions

Changes:
® keyword restrict is no longer necessary
® dynamic choice of extent dimensionality

®m common address space for both host and device on HSA platforms

27 of 65 { STE||AR GROUP

SYCL

proposed by Khronos Group

brings many concepts known from OpenCL

version 1.2 of specification released in May 2015
version 2.2 released in March 2016

targets devices supporting different versions of OpenCL

28 of 65 @ STE||AR GROUP

Accelerators

similar to OpenCL in design - platform, context, device, queue

device selection through a separate selector: default, gpu, cpu, host

B non standard device selection through a custom selector

kernel submission in a queue

29 of 65 @ STE||AR GROUP

Data placement

buffer

® N-dimensional generic container for data

® type restrictions: C++11 standard layout

buffer accessor

® data accessor on host or device

® doesn't expose iterators, only index operator

B needs to be captured by lambda executed on device

® device accessor can be created only in queue code

30 of 65 @ STE||AR GROUP

Kernel submission for iterators

std::vector<int> data{ ’G’, ’d’, ’k’, ’k’, ’n’, 31, ’v’, ’n’,
7q:, 7k’, ’C’};

default_selector selector; queue myQueue(selector);

auto first = data.begin(); std::size_t size = data.size();

/** Create buffer with copy backx*x/
std::shared_ptr<int> buf_data{new int[sizel],
[first, size]l(int * ptr) {
std::copy(ptr, ptr + size, first);
delete[] ptr;
}
};
std::copy(data.begin(), data.end(), buf_data.get());
buffer<int, 1> buf (buf_data, cl::sycl::range<i>(size));

31 of 65 @ STE||AR GROUP

Kernel submission for iterators

/** Send kernel xx/
myQueue . submit ([&] (handler& cgh) {
auto ptr = buf.get_access<access::mode::read_write>(cgh);
auto lambda = [I1(int & v) { ++v; };
cgh.parallel_for<class HelloWorld>(range<i>(data.size()),
[=1(id<1> idx) {
lambda (ptr[idx [0]]);
}
)
B

32 of 65 @ STE||AR GROUP

Kernel submission for iterators I

std::vector<int> data{ ’G’, ’d’, ’k’, ’k’, ’n’, 31, ’v’, ’n’,
;q:, ’k’, ’C’};
default_selector selector; queue myQueue(selector);
buffer<int, 1> buf(data.begin(), data.end());
myQueue.submit ([&] (handler& cgh) {
auto ptr = buf.get_access<access::mode::read_write>(cgh);
auto lambda = [](int & v) { ++v; };
cgh.parallel_for<class HelloWorld>(range<i>(data.size()),
[=] (id<1> idx) {
lambda(ptr[idx[0]]);
}
)
1
auto host_acc = buf.get_access<access::mode::read, access::
target::host_buffer>();
std::copy(host_acc.get_pointer (), host_acc.get_pointer () +
buf.get_count (), data.begin());

33 of 65 @ STE||AR GROUP

Kernel restrictions

® no virtual functions
B no exceptions

® no RTTI

® no recursion

® functions called on device must be visible at compile time

34 of 65 @ STE||AR GROUP

Kernel name

® two-tier compilation needs to link kernel code and invocation
® name has to be unique across whole program
breaks the standard API for STL algorithms

different extensions to C+-+ may solve this problem®

5Khronos's OpenCL SYCL to support Heterogeneous Devices for C++ - Wong, M. et al. - P0236R0

35 of 65 @ STE||AR GROUP

Kernel name

® two-tier compilation needs to link kernel code and invocation
® name has to be unique across whole program
® breaks the standard API for STL algorithms

= different extensions to C++ may solve this problem®

C++ code

cgh.parallel_for_each<class KernelName>(...);

5Khronos's OpenCL SYCL to support Heterogeneous Devices for C++ - Wong, M. et al. - P0236R0

35 of 65 @ STE||AR GROUP

Kernel name
Names in template methods

template<typename FloatingType>
void solve_pde(vector<FloatingType> & in, vector<FloatingType>

& out)
{

// ...

cgh.parallel_for_each<class FDSolver>(...);
}
/* .. %/

if (user_wants_less_precision)
solve_pde(float_data, float_result);
else
solve_pde (double_data, double_result);

36 of 65 @ STE||AR GROUP

Kernel name
Names in template methods

template<typename FloatingType>
void solve_pde(vector<FloatingType> & in, vector<FloatingType>

& out)
{

// ...

cgh.parallel_for_each<class FDSolver>(...);
}
/* .. %/

if (user_wants_less_precision)
solve_pde(float_data, float_result);
else
solve_pde (double_data, double_result);

error: definition with same mangled name as another definition

36 of 65 @ STE||AR GROUP

Names in template methods

template<typename FloatingType, typename SolverName>
void solve_pde(vector<FloatingType> & in, vector<FloatingType>

& out)
{
//
cgh.parallel_for_each<SolverName>(...);
}
/* ... %/

if (user_wants_less_precision)

solve_pde<class FloatSolver >(float_data, float_result);
else

solve_pde<class DoubleSolver >(double_data, double_result);

37 of 65 @ STE||AR GROUP

Named execution policy

B execution policy contains the name
B use the type of functor if no name is provided

® used in prototype implementation of ParallelSTL done by Khronos®

struct DefaultKernelName {};

template <class KernelName = DefaultKernelName>
class sycl_execution_policy {

};

https://github. com/KhronosGroup/SyclParallelSTL/

38 of 65 @ STE||AR GROUP

https://github.com/KhronosGroup/SyclParallelSTL/

HCC - Heterogeneous Computing Compiler

® started as Clamp for C++AMP, renamed later to Kalmar
® since November 2015 development supported by AMD

B [LVM-based compiler, two passes over source code

® requires libc++

Frontends Backends

m C++AMP ®m OpenCL C

m HC m OpenCL SPIR
= HSAIL

AMD Native GCN ISA

39 of 65 @ STE||AR GROUP

HCC - Heterogeneous Computing Compiler

® started as Clamp for C++AMP, renamed later to Kalmar
B since November 2015 developed supported by AMD

® open source and LLVM-based compiler, two passes over code
® requires libc++

Frontends Backends

» C++AMP m OpenCL C

® HC B OpenCESPIR
m HSAIL

® AMD Native GCN ISA

40 of 65 @ STE||AR GROUP

ComputeCPP

m SYCL device compiler developed by Codeplay
® closed source, LLVM-based compiler

® no official release candidate (yet)

41 of 65 @ STE||AR GROUP

ComputeCPP

SYCL device compiler developed by Codeplay

closed source, LLVM-based compiler

no official release candidate (yet)
one backend: OpenCL SPIR

41 of 65 @ STE||AR GROUP

ComputeCPP

SYCL device compiler developed by Codeplay

closed source, LLVM-based compiler

no official release candidate (yet)
one backend: OpenCL SPIR — no support on NVIDIA GPUs

41 of 65 @ STE||AR GROUP

ComputeCPP

SYCL device compiler developed by Codeplay

closed source, LLVM-based compiler

no official release candidate (yet)
one backend: OpenCL SPIR — no support on NVIDIA GPUs

computecpp CXX
® device code " ® host code
® sycl header for C++ ® includes kernel
header

41 of 65 @ STE||AR GROUP

Plan

Results

41 of 65 @ STE||AR GROUP

Integration with HCC

® HPX needs to be compiled and linked with libc++
m HCC becomes the CMAKE_CXX_COMPILER

® expect that it may not always work out of the box

+ easy integration with existing build system

— increased time and memory usage for compilation, even for
non-GPU source code

42 of 65 { STE||AR GROUP

Executor

B two phase compilation requires pseudo-dependencies on targets in
CMake

8 CMAKE_CXX_COMPILER doesn’t change

+ no change in environment - same compiler, same implementation
of C++

+ it is possible to apply new compiler only to files with GPU-code
— may be tricky to get it right with different build systems

43 of 65 { STE||AR GROUP

Named execution policy

B execution policy contains the name
B use the type of functor if no name is provided

® used in prototype implementation of ParallelSTL done by Khronos’

struct DefaultKernelName {};

template <class KernelName = DefaultKernelName>
class sycl_execution_policy {

};

"https://github. com/KhronosGroup/SyclParallelSTL/

44 of 65 @ STE||AR GROUP

https://github.com/KhronosGroup/SyclParallelSTL/

Implementation of for_each_n

Current parallel implementation:

template <typename ExPolicy, typename F,
typename Proj = util::projection_identity>
static typename detail::algorithm_result<ExPolicy, Iter>::type
parallel (ExPolicy policy, Iter first, std::size_t count,
F && f, Proj && proj)

{
if (count != 0)
{
return foreach_n_partitioner <ExPolicy>::call(policy,
first, count, [f, projl(Iter begin, std::size_t size) {
loop_n(begin, size, [=](Iter const& curr)
invoke (f, invoke(proj, *curr));
P b
}
return detail::algorithm_result<ExPolicy, Iter>::get(
std::move (first));
}

45 of 65 @ STE||AR GROUP

Implementation of for_each_n

How do we implement synchronous bulk execution?

static typename detail::bulk_execute_result<F, Shape>::type
bulk_execute(F && f, Shape const& shape)
{
// Shape elements are tuples with iterator, data count and
chunk size
typedef typename Shape::value_type tuple_t;
for(auto const & elem : shape) {

auto iter = hpx::util::get<0>(elem);
std::size_t data_count = hpx::util::get<i1>(elem);

std::size_t chunk_size = hpx::util::get<2>(e1em);

std::size_t threads_to_run = data_count / chunk_size;

std::size_t last_thread_chunk = data_count -
(threads_to_run - 1)*chunk_size;

46 of 65 @ STE||AR GROUP

Implementation of for_each_n

How do we implement it?

Concurrency::extent<1> e(threads_to_run);
Concurrency::parallel_for_each(e, [=](Concurrency::index
<1> idx) restrict (amp)

{
std::size_t part_size =
idx [0] != static_cast<int>(threads_to_run - 1) 7
chunk_size : last_thread_chunk;
auto it = iter;

it.advance (idx [0l *chunk_size);
tuple_t tuple(it, O, part_size);
f (tuple);

B

accelerator_view.wait ();

47 of 65 @ STE||AR GROUP

Implementation of for_each_n

How do we call it?

std::vector<int> c(n);
std::iota(boost::begin(c), boost::end(c), std::rand());

auto buffer = hpx::parallel::gpu.executor().create_buffers(c.
begin(), c.end());
hpx::parallel::for_each(hpx::parallel::gpu,
buffer.begin(), buffer.end(),
[1(int& v) {

v = 400;

b
buffer.sync();

48 of 65 @ STE||AR GROUP

Implementation of transform

What is an unary transform?

typedef hpx::util::zip_iterator<FwdIter, output_iterator>
zip_iterator;
typedef typename zip_iterator::reference reference;
for_each_n<zip_iterator >().call(policy,
hpx::util::make_zip_iterator (first, dest),
std::distance(first, last),
[f, projl(reference t)
{
using hpx::util::get; get<1>(t) = f(get<0>(t));
s

What is a binary transform?

Same idea, just three iterators.

49 of 65 @ STE||AR GROUP

Implementation of transform

Wouldn't it be great if it worked immediately on GPUs?

gpu_amp_executor?

50 of 65 @ STE||AR GROUP

Implementation of transform

Wouldn't it be great if it worked immediately on GPUs?

gpu_amp_executor?
yes, | can do that!

50 of 65 @ STE||AR GROUP

Implementation of transform

Wouldn't it be great if it worked immediately on GPUs?

gpu_sycl_executor?

51 of 65 @ STE||AR GROUP

Implementation of transform

Wouldn't it be great if it worked immediately on GPUs?

gpu_sycl_executor?

error: can not capture object ptr of type 'class cl::sycl::accessor|...]" in
a SYCL kernel, because it is a non standard-layout type

51 of 65 @ STE||AR GROUP

Implementation of transform

Wouldn't it be great if it worked immediately on GPUs?

gpu_sycl_executor?

error: can not capture object ptr of type 'class cl::sycl::accessor|...]" in
a SYCL kernel, because it is a non standard-layout type

error: class std::tuple is not standard layout, because multiple classes
among its base classes declare non-static fields

51 of 65 @ STE||AR GROUP

Executor parameters

Chunk size
® parallel algorithm exposes dynamic, static, guided, auto

® most of them doesn't make sense on GPU, where there is a certain
overhead of launching small jobs

m GPU executor takes a static chunk size

Also:
® kernel name

®m tiling size (local work size) in future

52 of 65 @ STE||AR GROUP

Name as an executor parameter

® name is still tied to an executor
®m same API calls for both AMP and SYCL

#include <hpx/include/parallel_executor_parameters.hpp>

hpx::parallel::transform(hpx::parallel::gpu.with(
hpx::parallel::static_chunk_size (32),
hpx::parallel::kernel_name<class Add>()), ...);

53 of 65 @ STE||AR GROUP

Naming the kernel

® |ight wrapper around the kernel
® name is tied directly to the executed function
® not applicable for algorithms without user-defined operator

#include <hpx/parallel/executors/parallel_executor_parameters.
hpp>
#include <hpx/parallel/kernel_name.hpp>

hpx::parallel::for_each(
hpx::parallel::gpu.with (hpx::parallel::kernel_name<class
FalseName>()),
d.begin(), d.end (),
hpx::parallel::make_kernel<class CorrectName>([](int & v) {
v = 42;
b
)

54 of 65 @ STE||AR GROUP

Known problems

HCC
® problems with correct linking of kernel (HPX only)
® known bugs in OpenCL backend which most likely won't be fixed

ComputeCPP

® incorrect capture of const integers in device lambda (HPX only)

® unfriendly build scripts

55 of 65 @ STE||AR GROUP

STREAM bechmark 8

STREAM benchmark consists of:

1 scalar k, 3 input arrays a, b, ¢ and 4 operations

8Memory Bandwidth and Machine Balance in Current High Performance Computers - McCalpin, John D - IEEE
Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter, December 1995

56 of 65 @ STE||AR GROUP

STREAM bechmark 8

STREAM benchmark consists of:

1 scalar k, 3 input arrays a, b, ¢ and 4 operations

copy
c=a

8Memory Bandwidth and Machine Balance in Current High Performance Computers - McCalpin, John D - IEEE
Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter, December 1995

56 of 65 @ STE||AR GROUP

STREAM bechmark 8

STREAM benchmark consists of:

1 scalar k, 3 input arrays a, b, ¢ and 4 operations
copy
c=a
scale
b=kxc

8Memory Bandwidth and Machine Balance in Current High Performance Computers - McCalpin, John D - IEEE
Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter, December 1995

56 of 65 @ STE||AR GROUP

STREAM bechmark 8

STREAM benchmark consists of:

1 scalar k, 3 input arrays a, b, ¢ and 4 operations
copy
c=a
scale
b=kxc
add
c=b+a

8Memory Bandwidth and Machine Balance in Current High Performance Computers - McCalpin, John D - IEEE
Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter, December 1995

56 of 65 @ STE||AR GROUP

STREAM bechmark 8

STREAM benchmark consists of:

1 scalar k, 3 input arrays a, b, ¢ and 4 operations

copy
c=a
scale

b=kxc
add

c=b+a
triad

a=b+kxc

8Memory Bandwidth and Machine Balance in Current High Performance Computers - McCalpin, John D - IEEE
Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter, December 1995

56 of 65 @ STE||AR GROUP

Benchmarking hardware

C++AMP

® GPU: AMD Radeon R9 Fury Nano
= OpenCL: AMD APP SDK 3.02

= HSA: AMD ROCm 1.0

Khronos SYCL

® GPU: AMD Radeon R9 Fury Nano
= ComputeCPP: 15.10

= OpenCL: AMD APP SDK 3.02

GPU-STREAM has been used to measure OpenCL and HSA
performance: https://github.com/UoB-HPC/GPU-STREAM

57 of 65 { STE||AR GROUP

https://github.com/UoB-HPC/GPU-STREAM

How does AMP perform?

Performance in STREAM benchmark

1000000

2 —B— C++AMP/HSA
% —a—HSA
g —— C++AMP/OpenCL
g OpenCL
o
M
100
1000 10000 100000 1000000 10000000
Number of double-precision floating point elements
58 of 65

@ STE||AR GROUP

How does AMP perform?

Performance in STREAM benchmark - CUDA, Tesla K80

1000000
100000

10000 =i C++AMP/OpenCL
CUDA

Bandwidth [MB/s]

1000

1000 10000 100000 1000000 10000000

Number of double-precision floating point elements

59 of 65 @ STE||AR GROUP

How does SYCL perform?

Performance in STREAM benchmark - average bandwidth

1000000
100000

10000 —8— SYCL/OpenCL SPIR
OpenCL

Bandwidth [MB/s]

1000

1000 10000 100000 1000000 10000000

Number of double-precision floating point elements

60 of 65 @ STE||AR GROUP

Overhead

HCC

m Compilation of HPX is approximately 2.4x slower

m Compilation of benchmark example increased from 20 to 48
seconds, 2.4x slower

® Peak memory usage of compiler and binary size are both
comparable

ComputeCPP

® For benchmark example, the overhead of device is compiler is 12
seconds to 20 seconds required by g++, slowing the compilation
1.6 times.

® Peak memory usage of compiler and binary size are both
comparable

61 of 65 { STE||AR GROUP

Plan

Goals

61 of 65 @ STE||AR GROUP

Data placement revised

How and when to place data?

® in the current implementation algorithm is responsible for data
allocation

m different types of memory on GPUs = executor should know
where execute kernel, not how to place data

m STL: algorithms and containers = container with special
allocator

® we want to support multiple GPUs — a partitioned vector with
segmented algorithms

62 of 65 { STE||AR GROUP

Algorithms

is_partitioned
max_element
mismatch
partial_ sort
reduce

LEmOV

replace_if
rotate_copy

set_intersection

stable_partition

adjacent difference
copy
count

adjacent_find

1s_sorted

merge

move

partial_ sort_copy

remove

replace

reverse

search

set_symmetric difference
stable_sort

all of

copy_n
exclusive scan
find end
for_each
includes
is_heap
is_sorted until

remove copy
replace copy

Ieverse_copy

search

set_union

swap_ranges

find firsc_of
for_each n

inclusive scan

is_heap_until

exicographical compare

max element
nth element

partition_copy
remove_copy

replace_copy
rotate
set_difference
sort

transform

uninitialized copy 1itialized copy n uninitialized fill uninitialized fill n
unigue igue copy
63 of 65 @ STE||AR GROUP

hpx::compute

® ongoing work to provide standard compliant GPU algorithms in an
"STL way”

includes AMP /SYCL backends presented here

includes existing and developed support for CUDA and OpenCL
focused on distributed computing

64 of 65 @ STE||AR GROUP

Thanks for your attention

mcopik@gmail.com

github.com/mcopik/

65 of 65 @ STE||AR GROUP

	HPX
	Parallelism in C++
	Concepts

	GPU in HPX
	Execution
	Data placement

	GPU standards for C++
	C++AMP
	Khronos SYCL
	Compilers

	Results
	Implementation
	STREAM benchmark

	Goals

