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BIOMEDICAL PAPER

Methods for abdominal respiratory motion tracking
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1Faculty of Biomedical Engineering, Silesian University of Technology, Gliwice, Poland, and 2Institute of Computer Science, Silesian University of
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Abstract

Non-invasive surface registration methods have been developed to register and track breathing
motions in a patient’s abdomen and thorax. We evaluated several different registration
methods, including marker tracking using a stereo camera, chessboard image projection, and
abdominal point clouds. Our point cloud approach was based on a time-of-flight (ToF) sensor
that tracked the abdominal surface. We tested different respiratory phases using additional
markers as landmarks for the extension of the non-rigid Iterative Closest Point (ICP) algorithm
to improve the matching of irregular meshes. Four variants for retrieving the correspondence
data were implemented and compared. Our evaluation involved 9 healthy individuals
(3 females and 6 males) with point clouds captured in opposite breathing phases (i.e., inhalation
and exhalation). We measured three factors: surface distance, correspondence distance, and
marker error. To evaluate different methods for computing the correspondence measurements,
we defined the number of correspondences for every target point and the average
correspondence assignment error of the points nearest the markers.
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Introduction

Respiratory motion compensation is an important problem for

radiotherapy and other minimally invasive interventions [1].

The goal of our study was to track and register abdominal

movements to gain better knowledge about breathing motions,

to detect anomalies during breathing or respiration, and to

track the human body displacement during radiotherapy. The

first approach tested was to attach optical black-white markers

to the abdomen to facilitate the tracking of abdominal motion

using a stereo camera and triangulation reconstruction. This

method allowed us to track only a few points [2]. Borgert et al.

[3] used two electromagnetic tracking sensors (internal and

external) to evaluate the possibility of using an external sensor

for respiratory motion compensation. A 78% correlation for

continuous breathing and a 94% correlation for steady

respiration with or without a minimal needle for patient

motion were obtained. The displacements between the

estimated and measured positions were reduced from

3.90 ± 2.0 and 4.14 ± 2.10 mm, respectively, to 0.99 ± 0.66

and 0.94 ± 0.46 mm, respectively, but only for one patient.

Maier-Hein et al. [4] proposed a method to estimate the

movement of a target point in the liver nodule, which was

based on a combination of internal and external markers.

The external markers were black and white, and needles were

used as internal markers. The online tracked positions of the

markers were used to calculate the coefficient of the

deformation field based on a free-form deformation approach,

which was then used to estimate the target movement. One of

the inserted needles served as a target point, and the target

registration error was calculated as the difference between the

measured and estimated target positions. Depending on the

number of internal and external markers and the type of

transformation, the target registration error (TRE) was

between 1 and 5 mm. In this method, increasing the number

of tracking points is difficult due to the number of markers

that need to be connected to the abdomen and the limitation

on the size of the markers.

The most popular clinical approach is the application of a

real-time position management system. To track more abdom-

inal points, the structured light approach is used. An example

of such a solution is the Breathing Assessment for

PneumaCare [5], where a black-and-white chessboard pattern

is projected onto the patient; this is performed without any

physical contact with the patient or the need to subject the

patient to radiological or resonance treatments. Ford et al. [6]

proposed a method to evaluate these systems that tracks a

single object situated on the abdomen. Their method compares

the tracking results using gated breathing computer tomog-

raphy to track the diaphragm according to the backbone

position, which is considered to be a reference point. The error
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between the estimated and measured position is more than

4 mm for this method. Meeks et al. [7] proposed generalizing

the approach of Ford et al. to track more than one point. The

AlignRT commercial optical system (http://www.visionrt.-

com) uses a structured light pattern projected on the subject’s

surface. This system has clinical approval, but is expensive.

Schaerer et al. [8] registered abdominal surfaces using point-

cloud grabbing from AlignRT and a non-rigid modification of

the Iterative Closest Point (ICP) algorithm proposed by

Amberg et al. [9]. They used manually segmented star-

shaped markers to evaluate the registration results. The

residual surface distances (95th percentile) for the rigid and

deformable registrations were 4.18 and 1.08 mm, respectively.

The marker localization errors (median values) were 4.21 and

1.61 mm for the rigid and deformable registrations, respect-

ively. Nicolau et al. [10] proposed a system composed of two

calibrated cameras and a structured light video projector to

reconstruct the surface of human skin in real time. They used

an ICP algorithm to reconstruct the patient’s skin surface with

an accuracy of 2 mm, and preoperatively applied markers to

obtain an accuracy of 5 mm. Our approach uses a non-rigid

ICP algorithm to obtain similar results using inexpensive, off-

the-shelf equipment.

Materials and methods

Marker detection and reconstruction

Our previous studies were based on the reconstruction of the

3D positions of specific points on the liver surface (phantom

and in vivo laparoscopic data) performed with two standard

rigid, calibrated laparoscopic cameras. The calibration was

performed using two perpendicular chessboards and the Tsai

algorithm. The 3D positions of reconstructed points were

computed using a triangulation algorithm and synchronized

cameras. The reconstruction of point X in the 3D space world

coordinate system required the correspondence problem to be

solved for two monocular cameras [11] according to the

following:

X ¼ �ðPL, PP, XL, XPÞ, ð1Þ

where � denotes the triangulation algorithm, PL, Pp are the

projection matrices for the left and right monocular camera,

Figure 1. (a) Zoomed intensity map for the ToF camera image of the abdomen with 9 square markers. (b) The color intensities describe the point
distances between the initial and target positions.
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respectively, and XL, XP are the coordinates of the correspond-

ence points in the left and right images, respectively. Although

this triangulation approach is acceptable, it has a few

disadvantages, mainly with regard to selecting the correspond-

ing points of interests in the left and the right images. To

resolve this issue in real time, we applied a calibrated rigid

stereo camera, the Micron Tracker Claron Hx40 (Claron

Technology Inc., Toronto, Ontario), that eliminates the prob-

lem of stereo correspondence time synchronization. The

spatial correspondence can then be solved using uniquely

shaped markers. The root mean square error of the manufac-

turer-calibrated Claron Hx40 was 0.2 mm. The marker recon-

struction space position error was 0.14 mm, and the image

resolution of the camera was 1024� 768 pixels (http://

www.clarontech.com/microntracker-specifications.php). In

this approach, only single, separable points can be detected

(markers or chessboard corners). Therefore, we used a

SwissRanger SR4000 time-of-flight (ToF) camera (MESA

Imaging AG, Zürich, Switzerland) to increase the number of

reconstructed points.

Acquisition of the 3D surface of respiratory motion

The main advantage of a ToF camera in a stereo system is its

ability to process the markers and structured light in real time

for the surface of the subject. Chiabrando et al. [12]

demonstrated the highest accuracy for ToF on plain objects

without folds. Therefore, similar equipment can be used to

track the abdominal surface. To track breathing motion, we

used a ToF sensor mounted rigidly perpendicular to the

surface of the abdomen. The SR4000 camera was used to

obtain point clouds of the human abdomen. The absolute

accuracy of this ToF camera is ±1 cm or ±1% (http://

www.mesa-imaging.ch/swissranger4000.php). The distance to

the object can be computed as follows:

d ¼ c

2f
� ’
2�

, ð2Þ

where ’ is the shift between the emitted and reflected light

signals, and f is the frequency of the infrared (780 nm) cosine-

shaped light signal. With the frequency set to 30 MHz, we can

measure the distance to the objects for a 5 -m range area,

which is sufficient to track respiratory motion with an

accuracy of 1 cm. A previous study [13] showed the influence

of warm-up time on the distance measurement stability.

Measurements of the minimum relative variations of the mean

values and standard deviations of the average range images

were performed at a 3-m distance with a 100-ms integration

time. Our approach was to acquire a 3D model including the

attached markers. Figure 1 presents the intensity map of the

abdomen and the point distances between the initial and target

positions. The distance between the patient and the ToF

sensor ranged between 1.0 and 1.5 m. Schaerer et al. [8] had

previously used star-shaped markers, but we decided to use

15-mm square markers due to the lower resolution of our ToF

intensity map.

Surface of respiratory motion registration

After acquiring the surface respiratory motion data, the

next step is to perform registration. When the registration

sets are in a point cloud configuration, the most popular

approach is to use the Iterative Closest Point (ICP) algorithm.

This algorithm was proposed independently by Besl

and McKay [14] and Chen and Medioni [15]. The ICP

is an iterative algorithm that consists of two steps.

The first step involves the acquisition of the correspond-

ence between the target and the source points, while the

second step is to provide a transformation, calculated as

follows:

f ðS, TÞ ¼ 1

NS

XNS

i¼1

Ti � RotðSiÞ � TransðSiÞk k2, ð3Þ

where T and S are the target and source sets of points,

respectively, NS is the number of source points equal to the

target points, and Rot and Trans are the rotation and

translation components, respectively, of the final transform-

ation. The updated version of the final transformation in the

current iteration is based on a closed-form solution of the

mean square error problem [1]. The classical approach uses

only one rigid or affine transformation for the whole data set.

The literature contains a description of the disadvantages of

the classical ICP approach [16]. These disadvantages can be

summarized as follows:

� The problem of finding the global minimum of the cost

function depends on an initial guess of the final

transformation.

� The algorithm is sensitive to improper correspondence

data.

� Long times are needed for computation. One of the most

time-consuming operations is retrieving the correspond-

ence data.

Due to these disadvantages, researchers have proposed

various modifications:

� Registration only of subsets of points.

� An improved solution for the correspondence problem.

� Quantitative measurement of proper correspondence.

� Elimination of improper correspondence data.

� Modification of the computation of the minimum cost

function.

We propose experiments that use some additional

modifications:

� Registration of the entire sparse point cloud.

� Filtration of the potential correspondence data using the

maximum normal angle condition.

� Use of the correspondence data in the directions of the

normal and marker vectors.

� Use of a non-rigid ICP algorithm, similar to the Amberg

modification.

The standard ICP approach cannot be used to track the

surfaces of objects that change their shape over time, such as

the human abdomen and chest during breathing, gesticulation

or muscle flexion. In contrast to classical ICP, Amberg et al.

[9] proposed the following equation:

E Xð Þ ¼ EdðXÞ þ �EsðXÞ þ �ElðXÞ, ð4Þ

where Ed(X) is the distance between all target points and the

transformed source points. X is not a single rotation or

translation, but rather a collection of affine transformations

for each point. Es(X) is the stiffness regularization. The
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topology matrix is created based on the neighborhood of

points to preserve the shape of the object during the iterations.

We used a square matrix topology where every point has four

neighbors. El(X) is a factor used for guiding the registration

based on the known positions of landmarks in the source and

target sets of points. The stiffness vector � influences the

flexibility of the cloud shape.

The implemented non-rigid ICP algorithm consists of

two iterative loops. In the outer loop, the stiffness factor a is

gradually decreased with uniform steps, starting from higher

values, which enables the recovery of an initial rigid global

alignment, and proceeding to lower values, which allow for

more localized deformations. For a given a value, the problem

is solved iteratively in the inner loop. The condition for

changing the stiffness vector is the threshold norm of

the transformation difference from the adjoining iterations.

The weighting factor � is used to decrease the importance

of landmarks towards the end of the registration process.

In our method, � is a constant equal to one. The

above equation can be transformed into a system of linear

equations,

EðXÞ ¼
�M � G

WD

�DL

2
4

3
5X �

0

WU

UL

2
4

3
5

������

������

2

F

, ð5Þ

which are solved by computing the pseudo-inverse matrix.

Rigid registration paired-point method

To obtain rigid mapping between two Cartesian

coordinate systems, data must include three or more sets of

corresponding non-collinear points. Horn [17] proposed

a closed-form solution based on a least-squares

formulation. The optimal rotation Rot for the translation

Figure 2. (a) Markers used on the abdomen in conjunction with the Micron Tracker Claron Hx 40 stereo camera. (b) Displacements of the markers
between the opposite breathing phases (inhalation: blue points; exhalation: vectors).
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Trans matrices can be found using a singular value

decomposition of

SVDðCÞ ¼ U diagð�iÞV, ð6Þ

where C ¼
Pn

i¼1 ST
i Ti is the correlation matrix, Si are points

in the first Cartesian coordinate system, Ti are points in the

second Cartesian coordinate system, �i is a non-negative

singular value for the correlation matrix, and U and V are the

orthonormal matrices:

Rot ¼ U

1 0 0

0 1 0

0 0 detðUVTÞ

2
4

3
5VT , ð7Þ

and

Trans ¼ �T � Rotð�SÞ, ð8Þ

Figure 3. The time diagram for the skin central marker positions (near the navel) acquired with the Claron H�40 stereo camera for healthy male (a)
and female (b) patients. The first minute shows shallow breathing; the second minute shows deep breathing. The position of the markers is spread in the
right-left (RL), superior-inferior (SI) and anterior-posterior (AP) spatial directions.

Table I. Average maximum displacement of skin markers for male and
female patients.

Marker
Shallow breathing [mm] Deep breathing [mm]

position A-P R-L S-I A-P R-L S-I

Central 3.3 0.3 0.2 12.5 0.6 Irregular Female
Right-lateral 3.6 0.2 0.8 10.7 0.7 2.4
Left-lateral 1.5 0.5 0.8 5.1 0.9 3.1
Top 3.4 0.6 0.4 11.8 1.7 1.2
Bottom 2.0 0.3 0.9 5.6 0.7 3.2

Central 3.0 0.6 1.5 7.0 2.2 3.0 Male
Right-lateral 2.2 0.3 0.2 6.5 0.8 0.6
Left-lateral 2.5 1.2 1.0 7.5 2.5 2.8
Top 4.1 1.1 0.6 11.2 2.3 0.9
Bottom 2.6 0.8 0.3 8.5 2.4 0.7
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where �S, �T are the average values of the point coordinates in

the first and second coordinate systems, respectively. This

rigid registration approach was used for the initial registration

of the point clouds before starting the normal shooting

retrieving correspondence of the proposed non-rigid ICP

algorithm.

Results and discussion

To track the twelve markers, the average number of

frames per second was 5.4. The Claron system identifies

points on the tracked object based on XPoints – the locations

of the intersections of the white and black areas. The distance

between two XPoints defines a vector. The two vectors

that have different lengths and angles between 8� and 172�

define the simplest marker. Each marker must have a

unique shape. Based on these rules, we can propose

markers for positions on the abdominal surface, as

shown in Figure 2(a). The tracked markers highlight the

differences in position between the opposite breathing phases

(Figure 2b).

Figure 3 shows the multi-dimensional breathing signal

extracted from the abdominal surface. Three spatial directions

(i.e., superior-inferior, right-left and anterior-posterior) of the

central marker (nearest to the navel) are presented for male

and female patients. In the first minute, the patients breathe

normally (shallow); in the second minute, they breathe deeply.

The abdominal surface motions of the areas covered with

the markers are presented in Table I. The average maximum

for the movement of each of the five selected markers is

presented for particular female and male subjects. We

captured and registered the breathing motion while the

patients were lying down using a Claron Hx40 camera

mounted perpendicularly to the coronal plane.

There are commercial systems that can be used for

respiratory motion management (e.g., the PneumaCare

system) that allow the registration of motion tracking data

using chessboards displayed on white t-shirts that are

registered with a stereo camera. Figure 4 shows our solution,

which uses a chessboard projected on the chest and abdomen

(Figure 4a) of the patient to reconstruct the cloud

points (Figure 4b). This approach can be used to detect

anomalies in the breathing motion; however, it causes

displacement of the projected points on the thorax. Accurate

tracking of the point correspondence on smooth surfaces

is difficult for objects that change shape. The breathing

process is remarkably patient-specific. The largest component

Figure 4. (a) Chessboard pattern projected on the abdomen to find the corners on the left and right images with sub-pixel accuracy using two
monocular calibrated cameras and the Tsai algorithm. (b) Reconstructed corners of the chessboard for the Claron Hx 40 stereo camera.

Table II. Scores for fitness (correspondence and surface distances and average marker errors) for four variants of the ICP algorithm: the Euclidean
distance (E), normal vectors with the initial rigid registration (NH), static markers (SM) and dynamic markers (DM).

After registration (after 100 iterations)

Surface distance (mm) Correspondence distance (mm) Marker error (No. of units)

ID No. of points Initial E NH SM DM E NH SM DM E NH SM DM

F1 1152 5.83 0.21 0.6 0.69 0.63 0.26 0.18 0.25 0.58 12.42 10.81 4.45 0.76
F2 899 12.04 0.12 0.74 0.87 0.61 0.12 0.27 0.33 0.87 7.02 6.28 2.12 1.49
F3 506 25.16 0.03 0.03 0.06 3.43 0.04 0.03 0.03 1.7 2.57 2.9 1.86 0.44
M1 676 37.38 0.03 0.1 0.32 1.02 0.03 0.07 0.11 0.21 2.75 2.69 2.83 0.61
M2 506 19.84 0.14 1.04 0.51 3.56 0.14 0.22 0.15 0.88 4.3 4.63 3.6 0.72
M3 1892 5.21 0.004 0.21 0.28 0.28 0.04 0.07 0.1 0.1 4.05 2.61 3.11 4.69
M4 506 8.49 0.28 1.3 2.52 2.79 0.28 0.27 0.43 0.47 3.25 2.9 3.57 0
M5 1716 4.87 0.57 0.3 0.44 0.51 0.56 0.1 0.13 0.24 12.07 12.09 4.04 2.83
M6 528 10.76 0.16 0.15 0.09 1.94 0.16 0.07 0.06 0.53 2.25 1.89 0.75 0.09

Bold values indicate M1 and M5 had the furthest and nearest initial distances, respectively.
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of the skin marker movement is in the anterior-posterior

projection. Deep breathing is sometimes irregular

(see Figure 3), and for minimally invasive breathing motion

compensation it is important to stabilize breathing. The main

disadvantage of our approach is scalability, which needs to be

improved to reconstruct the entire thorax and abdominal

surface.

Point cloud registration

The non-rigid ICP algorithm proposed by Amberg et al. [9]

was tested with several modifications. This iterative algorithm

performs iterations in two steps: finding correspondences

between the source and target points and computing the affine

transformations for each source point. If the second step is

Figure 5. (a, b) Global measurements: average distances between the nearest source and target points (a) and average distances between the
correspondence values (b). (c) Local measurements (i.e., correctness of the correspondence average distances from the closest points to the markers for
the source and target clouds) for different modifications of the ICP computing correspondence algorithm. E¼Euclidean distance, NH¼ normal
shooting with the initial rigid registration, SM¼ static marker vectors, and DM¼ dynamic marker vectors for the ToF camera.
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modified as proposed by Amberg et al., better results can be

obtained. However, the correspondence problem remains

critical for the final results. We therefore tested multiple

approaches, searching for correspondences in the source and

target point clouds using four methods:

� Classical searching based on the Euclidean distance

between the closest points in the source and the target.

� Searching along the normal vectors of the source points,

following the initial rigid registration method based on

the Horn algorithm [17].

� Using static marker vector displacement, in which the

marker vectors are calculated only once at the prelimin-

ary stage. The marker vectors are defined by the positions

of specific markers in the source and target point clouds.

� Using dynamic marker vector displacement, in which

marker vectors are calculated iteratively based on the

constant positions of the nearest marker points in the

matrix topology (Equation 5). Each iteratively trans-

formed point is treated as a new origin for the dynamic

marker vector.

We implemented the algorithm in C++ with an Eigen

library. The point cloud area was limited to the central part of

the abdomen, and the markers were chosen manually. We

tested our approach on 9 subjects (3 females [F1-F3] and

6 males [M1-M6]) using point clouds captured in the opposite

phases of breathing (inhalation and exhalation). Schaerer

et al. [8] proposed the use of star markers, but due to the low

resolution of our ToF intensity map, we used 15-mm square

markers (Figure 1a).

The following global and local criteria were used for

evaluation:

� Global measurements: average distances between the

nearest source and target points, and average distances

between correspondences.

� Local measurement – quality of correspondences: aver-

age correspondence assignment errors for the points

nearest the markers.

Evaluation scores are presented for the different methods

of finding the correspondences in Table II and Figure 5.

In Table II, the data are presented for different subjects: F1-F3

and M1-M6. In Figure 5, cases M1 (green) and M5 (red) are

shown because these data are specific with respect to the

initial average distances between the nearest source and the

target points (before registration). M5 has the nearest initial

distance in the data set, and M1 has the furthest initial

distance in the data set. For this reason, these cases are

presented in detail in Figures 6 through 9.

For M5 (the ‘‘near’’ case), the Euclidean distance

computing correspondence works in a similar way to the

other methods for finding correspondences. There are smaller

white gaps in the transformed source point cloud (Figure 8,

first picture in left column). White gaps mean that specific

points overlap during the registration process. This phenom-

enon is also observed in the correspondence map histogram

(Figure 6b). The groups with only one correspondence in the

correspondence histogram for the Euclidean distance and the

normal shooting (Figure 6b) are the largest because many

points in the target clouds attract only one point from the

source cloud. This situation is desirable in our case. The

attraction of only one point is the only necessary condition for

selecting a good correspondence, but it is not sufficient. We

tested the quality of correspondence by selecting the nearest

Figure 6. Distance map histogram (mm) (a) and correspondence map histogram (number of units) (b) for different modifications of the ICP computing
correspondence algorithm for M5 (near). E¼Euclidean distance, NH¼ normal shooting with the initial rigid registration, SM¼ static marker vectors,
and DM¼ dynamic marker vectors for the ToF camera.
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points to the markers in the source and target clouds and

treating them as local patterns for the correct correspondence

pairs. The calculation of the average correspondence assign-

ment error for the nearest points for all markers is then

performed. Using markers at the stage of choosing corres-

pondences during registration improves the local measure-

ment (the red bars in Figure 5c). The distance map histograms

were similar for all methods used to find the correspondences

(Figure 6a).

For M1 (the ‘‘far’’ case), the Euclidean distance does not

work as well as the marker vectors. Although the average

distances between the nearest source and target points have

the smallest values, there are many gaps in the transformed

source point cloud. This situation means that in many places

the source point cloud locally coincides with a single point.

The group with one correspondence in the correspondence

histogram (Figure 7b) is the smallest for the Euclidean

distance method. The average correspondence assignment

error of the nearest points for all markers was similar between

the Euclidean distance and normal shooting for the initial

rigid registration and static marker vectors. Similar to the M5

case, the average correspondence assignment error was the

smallest for the dynamic vector case. Generally, marker

vector cases appear to work better for point clouds with larger

initial average distances.

To improve the retrieving correspondence using markers,

we implemented a k-nearest neighbor method and a radius

constraint to apply the marker information to not only every

point in the cloud but also the nearest points to the markers.

For points that are not near a marker, the Euclidean distance

was used. Because the two proposed criteria are conceptually

similar, we only present the radius constraint because it is

more intuitive for users. We used the radius constraint

percentage of the cloud width and the k-nearest criteria

percentage of all points. The score results for three selected

values (i.e., 5, 10 and 15%) were calculated. The results are

presented in Table III and in Figures 10 and 11. For the most

demanding criterion (5%), the results showed improvement

(Figures 10 and 11).

Using the Claron Hx40 stereo camera and the projected

chessboard pattern on the abdomen, a limited number of

markers and points could be tracked. There are professional

respiratory management systems that allow tracking of the

entire abdominal and thoracic surface, but these systems are

Figure 7. Distance map histogram (mm) (a) and correspondence map histogram (number of units) (b) for different modifications of the ICP computing
correspondence algorithm for M1 (far). E¼Euclidean distance, NH¼ normal shooting with the initial rigid registration, SM¼ static marker vectors
(SM), and DM¼ dynamic marker vectors for the ToF camera.

Table III. Scores for fitness for the M1 and M5 static marker vectors with k-nearest and radius constraints.

After registration (after 100 iterations)

Surface distance (mm) Correspondence distance (mm) Marker error (No. of units)

ID No. of points Initial SM 5% 10% 15% SM 5% 10% 15% SM 5% 10% 15%

M1 k-nearest 676 37.38 0.32 0.69 0.33 0.33 0.11 0.09 0.03 0.03 2.83 1.79 1.34 1.3
M5 k-nearest 1716 4.87 0.44 0.47 0.58 0.33 0.13 0.36 0.14 0.1 4.04 3.79 3.82 4.04
M1 radius constraint 676 37.38 0.32 0.07 0.05 0.02 0.11 0.07 0.05 0.03 2.83 1.33 1.14 1.79
M5 radius constraint 1716 4.87 0.44 0.05 0.43 0.4 0.13 0.06 0.45 0.36 4.04 3.6 4.31 3.79
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costly and require repeated calibration. We tested a similar

approach for the opposite phases of the respiratory cycle,

which, from the viewpoint of registration, appear to be the

worst case, using a relatively inexpensive and readily

available MESA SR4000 ToF sensor. This method allows us

to increase the number of points that we track and does not

require the implementation of advanced calibration proced-

ures. The ToF camera is also small. In our approach, we

focused on the registration area of the abdomen surface for

different phases of the respiratory cycle and showed the

Figure 8. The 95th percentile distance map (mm) (left column) and the correspondence map (number of units) (right column) for different
modifications of the ICP computing correspondence algorithm for M5 (near). E¼Euclidean distance, NH¼ normal shooting with the initial rigid
registration, SM¼ static marker vectors, and DM¼ dynamic marker vectors for the ToF camera.
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possibility of using markers to find the correspondence using

the non-rigid ICP algorithm. Clinical applications should still

take into account the fact that the accuracy of the spatial

reconstruction from the single points captured by the SR4000

camera is much lower than for the calibrated camera. This

problem can be solved by reconstruction of the respiratory

movement by finding the best-fit plane, for which the RMS

error is less than 1 mm. The best-fit plane can be computed in

Figure 9. The 95th percentile distance map (mm) (left column) and the correspondence map (number of units) (right column) for different
modifications of the ICP computing correspondence algorithm for M1 (far). E¼Euclidean distance, NH¼ normal shooting with the initial rigid
registration, SM¼ static marker vectors (SM), and DM¼ dynamic marker vectors for the ToF camera.
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real time [18]. Generally, we could follow the respiratory

movement for different areas of different sizes, which is more

universal than tracking only single markers.

For abdomen point clouds acquired from the opposite

phases of the respiratory cycle, the registration process is still

challenging. In our approach, we used less expensive

equipment and focused on testing existing problems. The

non-rigid ICP algorithm provided an average residual distance

of 0.93 mm (Euclidean distance not included). Further

analysis of the registration accuracy focused on solving the

correspondence problem. Four methods for solving this

problem were tested: the Euclidean distance treated as a

base line; normal shooting with initial rigid registration based

on the Horn algorithm; static marker vectors (computing only

one at the beginning of the registration process); and dynamic

marker vectors (computing vectors for every iteration).

Because directly measuring the quality of correspondences

is difficult, an observation method was proposed involving a

few steps. The correspondence map (right column of Figures

8 and 9) showed the spatial distribution of the features and the

number of correspondences assigned to each target point

(the desirable value is 1). Comparing correspondence maps

globally for different cases is simple using a correspondence

map histogram (Figures 6b, 7b, 10b and 11b). The average

correspondence assignment errors for the points nearest the

markers enable the measurement of the quality of the

correspondence points from the cloud, which are nearest to

the markers.

The average initial distance of the point clouds achieved

for the opposite breathing phases was used to divide our

analysis into two groups. For the ‘‘near’’ cloud group, the

stiffness vector was constant for almost every iteration of the

non-rigid ICP. The Euclidean distances for this group were

sufficient, which is in accordance with the results of Schaerer

et al. [8]. In contrast to the ‘‘near’’ clouds, the ‘‘far’’ clouds

had stiffness vectors that changed for some iterations. The

Euclidean distances for the far cloud group were not

sufficient, and there were many gaps present in the registered

source clouds. To address this issue, we proposed the use of

static and dynamic marker vectors. If the markers are used not

Figure 10. Distance map histogram (mm) (a) and correspondence map histogram (number of units) (b) for different modifications of the ICP
computing correspondence algorithm for M5 (near): Static marker vector and static marker vector with 5%, 10% and 15% radius constraints for the ToF
camera.
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only in computing the transformation step but also in

computing the correspondence step for each iteration, the

correspondence assignment error for the points nearest to the

markers decreases from 5.4 to 2.1 for confused neighbors.

The normal shooting approach was also evaluated, but the

results were worse than for other cases. However, a combin-

ation of normal shooting and initial rigid registration

improved the results significantly. For medical applications

based on ToF sensors, simplifying the registration process is

desirable; therefore, a synchronization mechanism for acquir-

ing data should be considered. Our results may also be used in

various entertainment and industrial applications for which

point clouds must be registered but high-cost equipment is not

available. Some shape measurements could be used as

distinguishing criteria for ‘‘near’’ and ‘‘far’’ clouds.

Different approaches have been evaluated to track abdom-

inal respiratory motions. Generally, these tracking results can

be used to prepare respiratory motion models, which are

necessary for radiotherapy, when the pathological tissue is

usually located inside the body and different surrogate signals

are used to create respiratory motion models [19]. The

surrogate breathing information from a few external markers

is not sufficient to build a reliable model in every case, and

internal breathing gating, which can be more useful, cannot be

used in every medical application because it increases

invasiveness. Thus, there is interest in acquiring more

sophisticated information on breathing during interventions

to obtain better external gating (e.g., Hostettler et al. [20]

proposed an estimation of the visceral position based on

abdominal and thorax surface registration). The development

of relatively inexpensive ToF sensors provides hope for

methods such as non-rigid ICP, which has been adopted to

build breathing motion models. Our pilot study confirms the

possibility of using modified non-rigid ICP algorithms and

ToF sensor data as inputs to build such models.
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